1,640 research outputs found

    Evolution towards Smart Optical Networking: Where Artificial Intelligence (AI) meets the World of Photonics

    Full text link
    Smart optical networks are the next evolution of programmable networking and programmable automation of optical networks, with human-in-the-loop network control and management. The paper discusses this evolution and the role of Artificial Intelligence (AI)

    Optical Network Automation and Programmability for 6G: State-of-the-Art, Vision, and Challenges

    Get PDF
    The current 6G vision foresees a massive increase in connected devices and more widespread adoption of local/distributed intelligence. To support this paradigm shift, optical networks will need to operate in a more dynamic and flexible fashion, and the control and management will need to be highly automated, programmable, and scalable. In this tutorial, we will analyze which of the 6G requirements can be supported by network automation and programmability, and what are the current developments in these areas. We will conclude by discussing the challenges that need to be addressed in the near future

    Isolating SDN Control Traffic with Layer-2 Slicing in 6TiSCH Industrial IoT Networks

    Get PDF
    Recent standardization efforts in IEEE 802.15.4-2015 Time Scheduled Channel Hopping (TSCH) and the IETF 6TiSCH Working Group (WG), aim to provide deterministic communications and efficient allocation of resources across constrained Internet of Things (IoT) networks, particularly in Industrial IoT (IIoT) scenarios. Within 6TiSCH, Software Defined Networking (SDN) has been identified as means of providing centralized control in a number of key situations. However, implementing a centralized SDN architecture in a Low Power and Lossy Network (LLN) faces considerable challenges: not only is controller traffic subject to jitter due to unreliable links and network contention, but the overhead generated by SDN can severely affect the performance of other traffic. This paper proposes using 6TiSCH tracks, a Layer-2 slicing mechanism for creating dedicated forwarding paths across TSCH networks, in order to isolate the SDN control overhead. Not only does this prevent control traffic from affecting the performance of other data flows, but the properties of 6TiSCH tracks allows deterministic, low-latency SDN controller communication. Using our own lightweight SDN implementation for Contiki OS, we firstly demonstrate the effect of SDN control traffic on application data flows across a 6TiSCH network. We then show that by slicing the network through the allocation of dedicated resources along a SDN control path, tracks provide an effective means of mitigating the cost of SDN control overhead in IEEE 802.15.4-2015 TSCH networks

    The software defined transport network:fundamentals, findings and futures

    Get PDF
    The Software Defined Network (SDN) is an established network paradigm, architecture and principles, that attracted significant research effort in recent years. An SDN-enabled infrastructure decouples network control from forwarding and enables direct programming. Recently, there is an increasing effort to introduce SDN support in the transport layers of the network operators WAN infrastructure, like Layer 0 (WDM & DWDM) and Layer 1 (SONET/SDH & OTN) technologies. We refer to this infrastructure as the “Software Defined Transport Network”, and benefits include network management devolvement, timely connectivity provision, improved scalability, and open and flexible programmability using well-defined API. This paper outlines the main elements of Software Defined Transport Networks and highlights relevant Application-Based Network Operations (ABNO) enabling technologies. We demonstrate how this technology will benefit network operators, and provide an overview of research results and deployment examples. Finally, we identify some of the technology gaps and future research opportunities
    • …
    corecore