1,652 research outputs found

    K-means online-learning routing protocol (K-MORP) for unmanned aerial vehicles (UAV) adhoc networks

    Get PDF
    Unmanned Aerial Vehicles (UAVs) have become a hot topic due to their flexible architecture adopted in many wireless technologies. In UAV ad hoc networks, traditional routing protocols with a fixed topology are ineffective due to dynamic mobility and unstable paths. Therefore, the mobility patterns of UAVs challenge efficient and reliable routing in UAV networks. Traditional routing algorithms are often based on assumptions of static nodes and predetermined network topologies. Which are not suitable for the dynamic and unpredictable nature of UAV mobility patterns. To address this problem, this paper introduces a K-means online learning routing protocol (KMORP) scheme employing a Markov mobility model for UAV ad hoc networks. Initially, the proposed method utilizes a 3D Gauss Markov mobility model to accurately estimate UAV positions, while K-means online learning is adopted for dynamic clustering and load balancing. Designed for real-time data processing, KMORP is well suited for UAV ad hoc networks, quickly adapting to network environmental changes such as UAV mobility, interference, and signal degradation to ensure efficient data transmission and communication. This is achieved while reducing the overall communication overhead and increasing the packet delivery ratio(PDR%). In the routing phase, the proposed scheme employs inter-cluster forwarding nodes to transmit messages among different clusters. Extensive simulations demonstrate the performance of the proposed KMORP, showing a 38% better PDR compared to OLSR and over 50% less end-to-end(E2E) delay compared to typical K-Means. Furthermore, the proposed KMORP exhibited an average throughput of 955 kbps, showing a substantial improvement in network performance. The results underscore that the proposed KMORP outperforms existing techniques in terms of PDR, E2E delay, and throughput.© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).fi=vertaisarvioitu|en=peerReviewed

    A survey on intelligent computation offloading and pricing strategy in UAV-Enabled MEC network: Challenges and research directions

    Get PDF
    The lack of resource constraints for edge servers makes it difficult to simultaneously perform a large number of Mobile Devices’ (MDs) requests. The Mobile Network Operator (MNO) must then select how to delegate MD queries to its Mobile Edge Computing (MEC) server in order to maximize the overall benefit of admitted requests with varying latency needs. Unmanned Aerial Vehicles (UAVs) and Artificial Intelligent (AI) can increase MNO performance because of their flexibility in deployment, high mobility of UAV, and efficiency of AI algorithms. There is a trade-off between the cost incurred by the MD and the profit received by the MNO. Intelligent computing offloading to UAV-enabled MEC, on the other hand, is a promising way to bridge the gap between MDs' limited processing resources, as well as the intelligent algorithms that are utilized for computation offloading in the UAV-MEC network and the high computing demands of upcoming applications. This study looks at some of the research on the benefits of computation offloading process in the UAV-MEC network, as well as the intelligent models that are utilized for computation offloading in the UAV-MEC network. In addition, this article examines several intelligent pricing techniques in different structures in the UAV-MEC network. Finally, this work highlights some important open research issues and future research directions of Artificial Intelligent (AI) in computation offloading and applying intelligent pricing strategies in the UAV-MEC network

    Communication and Control in Collaborative UAVs: Recent Advances and Future Trends

    Full text link
    The recent progress in unmanned aerial vehicles (UAV) technology has significantly advanced UAV-based applications for military, civil, and commercial domains. Nevertheless, the challenges of establishing high-speed communication links, flexible control strategies, and developing efficient collaborative decision-making algorithms for a swarm of UAVs limit their autonomy, robustness, and reliability. Thus, a growing focus has been witnessed on collaborative communication to allow a swarm of UAVs to coordinate and communicate autonomously for the cooperative completion of tasks in a short time with improved efficiency and reliability. This work presents a comprehensive review of collaborative communication in a multi-UAV system. We thoroughly discuss the characteristics of intelligent UAVs and their communication and control requirements for autonomous collaboration and coordination. Moreover, we review various UAV collaboration tasks, summarize the applications of UAV swarm networks for dense urban environments and present the use case scenarios to highlight the current developments of UAV-based applications in various domains. Finally, we identify several exciting future research direction that needs attention for advancing the research in collaborative UAVs
    • …
    corecore