1,624 research outputs found

    Empirical exploration of air traffic and human dynamics in terminal airspaces

    Full text link
    Air traffic is widely known as a complex, task-critical techno-social system, with numerous interactions between airspace, procedures, aircraft and air traffic controllers. In order to develop and deploy high-level operational concepts and automation systems scientifically and effectively, it is essential to conduct an in-depth investigation on the intrinsic traffic-human dynamics and characteristics, which is not widely seen in the literature. To fill this gap, we propose a multi-layer network to model and analyze air traffic systems. A Route-based Airspace Network (RAN) and Flight Trajectory Network (FTN) encapsulate critical physical and operational characteristics; an Integrated Flow-Driven Network (IFDN) and Interrelated Conflict-Communication Network (ICCN) are formulated to represent air traffic flow transmissions and intervention from air traffic controllers, respectively. Furthermore, a set of analytical metrics including network variables, complex network attributes, controllers' cognitive complexity, and chaotic metrics are introduced and applied in a case study of Guangzhou terminal airspace. Empirical results show the existence of fundamental diagram and macroscopic fundamental diagram at the route, sector and terminal levels. Moreover, the dynamics and underlying mechanisms of "ATCOs-flow" interactions are revealed and interpreted by adaptive meta-cognition strategies based on network analysis of the ICCN. Finally, at the system level, chaos is identified in conflict system and human behavioral system when traffic switch to the semi-stable or congested phase. This study offers analytical tools for understanding the complex human-flow interactions at potentially a broad range of air traffic systems, and underpins future developments and automation of intelligent air traffic management systems.Comment: 30 pages, 28 figures, currently under revie

    Towards Autonomous Aviation Operations: What Can We Learn from Other Areas of Automation?

    Get PDF
    Rapid advances in automation has disrupted and transformed several industries in the past 25 years. Automation has evolved from regulation and control of simple systems like controlling the temperature in a room to the autonomous control of complex systems involving network of systems. The reason for automation varies from industry to industry depending on the complexity and benefits resulting from increased levels of automation. Automation may be needed to either reduce costs or deal with hazardous environment or make real-time decisions without the availability of humans. Space autonomy, Internet, robotic vehicles, intelligent systems, wireless networks and power systems provide successful examples of various levels of automation. NASA is conducting research in autonomy and developing plans to increase the levels of automation in aviation operations. This paper provides a brief review of levels of automation, previous efforts to increase levels of automation in aviation operations and current level of automation in the various tasks involved in aviation operations. It develops a methodology to assess the research and development in modeling, sensing and actuation needed to advance the level of automation and the benefits associated with higher levels of automation. Section II describes provides an overview of automation and previous attempts at automation in aviation. Section III provides the role of automation and lessons learned in Space Autonomy. Section IV describes the success of automation in Intelligent Transportation Systems. Section V provides a comparison between the development of automation in other areas and the needs of aviation. Section VI provides an approach to achieve increased automation in aviation operations based on the progress in other areas. The final paper will provide a detailed analysis of the benefits of increased automation for the Traffic Flow Management (TFM) function in aviation operations

    Uncertainty management at the airport transit view

    Get PDF
    Air traffic networks, where airports are the nodes that interconnect the entire system, have a time-varying and stochastic nature. An incident in the airport environment may easily propagate through the network and generate system-level effects. This paper analyses the aircraft flow through the Airport Transit View framework, focusing on the airspace/airside integrated operations. In this analysis, we use a dynamic spatial boundary associated with the Extended Terminal Manoeuvring Area concept. Aircraft operations are characterised by different temporal milestones, which arise from the combination of a Business Process Model for the aircraft flow and the Airport Collaborative Decision-Making methodology. Relationships between factors influencing aircraft processes are evaluated to create a probabilistic graphical model, using a Bayesian network approach. This model manages uncertainty and increases predictability, hence improving the system's robustness. The methodology is validated through a case study at the Adolfo Suárez Madrid-Barajas Airport, through the collection of nearly 34,000 turnaround operations. We present several lessons learned regarding delay propagation, time saturation, uncertainty precursors and system recovery. The contribution of the paper is two-fold: it presents a novel methodological approach for tackling uncertainty when linking inbound and outbound flights and it also provides insight on the interdependencies among factors driving performance

    Symbolic representation of scenarios in Bologna airport on virtual reality concept

    Get PDF
    This paper is a part of a big Project named Retina Project, which is focused in reduce the workload of an ATCO. It uses the last technological advances as Virtual Reality concept. The work has consisted in studying the different awareness situations that happens daily in Bologna Airport. It has been analysed one scenario with good visibility where the sun predominates and two other scenarios with poor visibility where the rain and the fog dominate. Due to the study of visibility in the three scenarios computed, the conclusion obtained is that the overlay must be shown with a constant dimension regardless the position of the aircraft to be readable by the ATC and also, the frame and the flight strip should be coloured in a showy colour (like red) for a better control by the ATCO

    Observation and Analysis of Departure Operations at Boston Logan International Airport

    Get PDF
    The Departure Planner (DP) is a concept for a decision-aiding tool that is aimed at improving the departure operations performance at major congested airports. In order to support the development of the DP tool, the flow constraints and their causalities in the departure process - primarily responsible for generating inefficiencies and delays- need to be identified. This thesis is an effort to identify such flow constraints and gain a deep understanding of the underlying dynamics of the departure process based on field observations and data analysis at Boston Logan International Airport. It was observed that the departure process is a complex interactive queuing system, where aircraft queues form as a manifestation of the flow constraints. While departure delays were observed in all airport components (runways, taxiways, ramps and gates), it was concluded that the flow constraints manifest mainly at the runway system, which exhibits the largest delays and queues. Major delays and inefficiencies were also observed due to downstream flow constraints, which propagate back and block the departure flow from the airport. It was also observed that the airport system is a highly controlled system as the air traffic controllers manage the flow constraints. The air traffic controllers were, therefore, identified as another flow constraint due to their workload and their main strategies in managing the flow constraints were observed. Based on the observations, a core departure process was identified consisting of two main elements: a queuing element generated by the flow constraints and a control element representing the air traffic controller actions. This core process was abstracted using a controlled queuing framework, where the air traffic controller actions are represented by blocking the flow of aircraft in order to maintain safe operation of the airport resources according to the ATC rules and procedures and regulate the outbound flow to constrained downstream resources. The controlled queuing framework was used to analyze the departure process highlighting the queuing dynamics and the control behavior for different flow constraint examples. In conclusion, a number of implications for the Departure Planner and other improved methods for departure operations are inferred from the observations and analysis.This work was supported by the National Aeronautics and Space Administration Ames Research Center under grant NAG 2-1128

    Existing and Required Modeling Capabilities for Evaluating ATM Systems and Concepts

    Get PDF
    ATM systems throughout the world are entering a period of major transition and change. The combination of important technological developments and of the globalization of the air transportation industry has necessitated a reexamination of some of the fundamental premises of existing Air Traffic Management (ATM) concepts. New ATM concepts have to be examined, concepts that may place more emphasis on: strategic traffic management; planning and control; partial decentralization of decision-making; and added reliance on the aircraft to carry out strategic ATM plans, with ground controllers confined primarily to a monitoring and supervisory role. 'Free Flight' is a case in point. In order to study, evaluate and validate such new concepts, the ATM community will have to rely heavily on models and computer-based tools/utilities, covering a wide range of issues and metrics related to safety, capacity and efficiency. The state of the art in such modeling support is adequate in some respects, but clearly deficient in others. It is the objective of this study to assist in: (1) assessing the strengths and weaknesses of existing fast-time models and tools for the study of ATM systems and concepts and (2) identifying and prioritizing the requirements for the development of additional modeling capabilities in the near future. A three-stage process has been followed to this purpose: 1. Through the analysis of two case studies involving future ATM system scenarios, as well as through expert assessment, modeling capabilities and supporting tools needed for testing and validating future ATM systems and concepts were identified and described. 2. Existing fast-time ATM models and support tools were reviewed and assessed with regard to the degree to which they offer the capabilities identified under Step 1. 3 . The findings of 1 and 2 were combined to draw conclusions about (1) the best capabilities currently existing, (2) the types of concept testing and validation that can be carried out reliably with such existing capabilities and (3) the currently unavailable modeling capabilities that should receive high priority for near-term research and development. It should be emphasized that the study is concerned only with the class of 'fast time' analytical and simulation models. 'Real time' models, that typically involve humans-in-the-loop, comprise another extensive class which is not addressed in this report. However, the relationship between some of the fast-time models reviewed and a few well-known real-time models is identified in several parts of this report and the potential benefits from the combined use of these two classes of models-a very important subject-are discussed in chapters 4 and 7

    Feedback Control of the National Airspace System

    Get PDF
    This paper proposes a general modeling framework adapted to the feedback control of traffic flows in Eulerian models of the National Airspace System. It is shown that the problems of scheduling and routing aircraft flows in the National Airspace System can be posed as the control of a network of queues with load-dependent service rates. Focus can then shift to developing techniques to ensure that the aircraft queues in each airspace sector, which are an indicator of the air traffic controller workloads, are kept small. This paper uses the proposed framework to develop control laws that help prepare the National Airspace System for fast recovery from a weather event, given a probabilistic forecast of capacities. In particular, the model includes the management of airport arrivals and departures subject to runway capacity constraints, which are highly sensitive to weather disruptions.National Science Foundation (U.S.) (Contract ECCS-0745237)United States. National Aeronautics and Space Administration (Contract NNA06CN24A

    Applications of stochastic modeling in air traffic management:Methods, challenges and opportunities for solving air traffic problems under uncertainty

    Get PDF
    In this paper we provide a wide-ranging review of the literature on stochastic modeling applications within aviation, with a particular focus on problems involving demand and capacity management and the mitigation of air traffic congestion. From an operations research perspective, the main techniques of interest include analytical queueing theory, stochastic optimal control, robust optimization and stochastic integer programming. Applications of these techniques include the prediction of operational delays at airports, pre-tactical control of aircraft departure times, dynamic control and allocation of scarce airport resources and various others. We provide a critical review of recent developments in the literature and identify promising research opportunities for stochastic modelers within air traffic management
    corecore