114 research outputs found

    Reliable and Low-Latency Fronthaul for Tactile Internet Applications

    Get PDF
    With the emergence of Cloud-RAN as one of the dominant architectural solutions for next-generation mobile networks, the reliability and latency on the fronthaul (FH) segment become critical performance metrics for applications such as the Tactile Internet. Ensuring FH performance is further complicated by the switch from point-to-point dedicated FH links to packet-based multi-hop FH networks. This change is largely justified by the fact that packet-based fronthauling allows the deployment of FH networks on the existing Ethernet infrastructure. This paper proposes to improve reliability and latency of packet-based fronthauling by means of multi-path diversity and erasure coding of the MAC frames transported by the FH network. Under a probabilistic model that assumes a single service, the average latency required to obtain reliable FH transport and the reliability-latency trade-off are first investigated. The analytical results are then validated and complemented by a numerical study that accounts for the coexistence of enhanced Mobile BroadBand (eMBB) and Ultra-Reliable Low-Latency (URLLC) services in 5G networks by comparing orthogonal and non-orthogonal sharing of FH resources.Comment: 11pages, 13 figures, 3 bio photo

    Reliable Packet Streams with Multipath Network Coding

    Get PDF
    With increasing computational capabilities and advances in robotics, technology is at the verge of the next industrial revolution. An growing number of tasks can be performed by artificial intelligence and agile robots. This impacts almost every part of the economy, including agriculture, transportation, industrial manufacturing and even social interactions. In all applications of automated machines, communication is a critical component to enable cooperation between machines and exchange of sensor and control signals. The mobility and scale at which these automated machines are deployed also challenges todays communication systems. These complex cyber-physical systems consisting of up to hundreds of mobile machines require highly reliable connectivity to operate safely and efficiently. Current automation systems use wired communication to guarantee low latency connectivity. But wired connections cannot be used to connect mobile robots and are also problematic to deploy at scale. Therefore, wireless connectivity is a necessity. On the other hand, it is subject to many external influences and cannot reach the same level of reliability as the wired communication systems. This thesis aims to address this problem by proposing methods to combine multiple unreliable wireless connections to a stable channel. The foundation for this work is Caterpillar Random Linear Network Coding (CRLNC), a new variant of network code designed to achieve low latency. CRLNC performs similar to block codes in recovery of lost packets, but with a significantly decreased latency. CRLNC with Feedback (CRLNC-FB) integrates a Selective-Repeat ARQ (SR-ARQ) to optimize the tradeoff between delay and throughput of reliable communication. The proposed protocol allows to slightly increase the overhead to reduce the packet delay at the receiver. With CRLNC, delay can be reduced by more than 50 % with only a 10 % reduction in throughput. Finally, CRLNC is combined with a statistical multipath scheduler to optimize the reliability and service availability in wireless network with multiple unreliable paths. This multipath CRLNC scheme improves the reliability of a fixed-rate packet stream by 10 % in a system model based on real-world measurements of LTE and WiFi. All the proposed protocols have been implemented in the software library NCKernel. With NCKernel, these protocols could be evaluated in simulated and emulated networks, and were also deployed in several real-world testbeds and demonstrators.:Abstract 2 Acknowledgements 6 1 Introduction 7 1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.2 Use Cases and Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.3 Opportunities of Multipath . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.4 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2 State of the Art of Multipath Communication 19 2.1 Physical Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.2 Data Link Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.3 Network Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.4 Transport Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.5 Application Layer and Session Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.6 Research Gap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3 NCKernel: Network Coding Protocol Framework 27 3.1 Theory that matters! . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.2 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.3.1 Socket Buffers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.3.2 En-/Re-/Decoder API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.3.3 Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.3.4 Timers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.3.5 Tracing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.4 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.5 Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 4 Low-Latency Network Coding 35 4.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 4.2 Random Linear Network Coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 4.3 Low Latency Network Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 4.4 CRLNC: Caterpillar Random Linear Network Coding . . . . . . . . . . . . . . . . . . 38 4.4.1 Encoding and Packet Format . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 4.4.2 Decoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 4.4.3 Computational Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 4.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 4.5.1 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 4.5.2 Simulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 4.5.3 Packet Loss Probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 4.5.4 Delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 4.5.5 Window Size Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 5 Delay-Throughput Tradeoff 55 5.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 5.2 Network Coding with ARQ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 5.3 CRLNC-FB: CRLNC with Feedback . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 5.3.1 Encoding and Packet Format . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 5.3.2 Decoding and Feedback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 5.3.3 Retransmissions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 5.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 5.4.1 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 5.4.2 Simulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 5.4.3 Systematic Retransmissions . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 5.4.4 Coded Packet Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 5.4.5 Comparison with other Protocols . . . . . . . . . . . . . . . . . . . . . . . . 67 5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 6 Multipath for Reliable Low-Latency Packet Streams 73 6.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 6.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 6.3 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 6.3.1 Traffic Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 6.3.2 Network Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 6.3.3 Channel Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 6.3.4 Reliability Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 6.4 Multipath CRLNC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 6.4.1 Window Size for Heterogeneous Paths . . . . . . . . . . . . . . . . . . . . . 77 6.4.2 Packet Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 6.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 6.5.1 Simulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 6.5.2 Preliminary Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 6.5.3 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 6.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 7 Conclusion 94 7.1 Results and Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 7.2 Future Research Topics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 Acronyms 99 Publications 101 Bibliography 10

    Immersive interconnected virtual and augmented reality : a 5G and IoT perspective

    Get PDF
    Despite remarkable advances, current augmented and virtual reality (AR/VR) applications are a largely individual and local experience. Interconnected AR/VR, where participants can virtually interact across vast distances, remains a distant dream. The great barrier that stands between current technology and such applications is the stringent end-to-end latency requirement, which should not exceed 20 ms in order to avoid motion sickness and other discomforts. Bringing AR/VR to the next level to enable immersive interconnected AR/VR will require significant advances towards 5G ultra-reliable low-latency communication (URLLC) and a Tactile Internet of Things (IoT). In this article, we articulate the technical challenges to enable a future AR/VR end-to-end architecture, that combines 5G URLLC and Tactile IoT technology to support this next generation of interconnected AR/VR applications. Through the use of IoT sensors and actuators, AR/VR applications will be aware of the environmental and user context, supporting human-centric adaptations of the application logic, and lifelike interactions with the virtual environment. We present potential use cases and the required technological building blocks. For each of them, we delve into the current state of the art and challenges that need to be addressed before the dream of remote AR/VR interaction can become reality

    6G Wireless Systems: Vision, Requirements, Challenges, Insights, and Opportunities

    Full text link
    Mobile communications have been undergoing a generational change every ten years or so. However, the time difference between the so-called "G's" is also decreasing. While fifth-generation (5G) systems are becoming a commercial reality, there is already significant interest in systems beyond 5G, which we refer to as the sixth-generation (6G) of wireless systems. In contrast to the already published papers on the topic, we take a top-down approach to 6G. We present a holistic discussion of 6G systems beginning with lifestyle and societal changes driving the need for next generation networks. This is followed by a discussion into the technical requirements needed to enable 6G applications, based on which we dissect key challenges, as well as possibilities for practically realizable system solutions across all layers of the Open Systems Interconnection stack. Since many of the 6G applications will need access to an order-of-magnitude more spectrum, utilization of frequencies between 100 GHz and 1 THz becomes of paramount importance. As such, the 6G eco-system will feature a diverse range of frequency bands, ranging from below 6 GHz up to 1 THz. We comprehensively characterize the limitations that must be overcome to realize working systems in these bands; and provide a unique perspective on the physical, as well as higher layer challenges relating to the design of next generation core networks, new modulation and coding methods, novel multiple access techniques, antenna arrays, wave propagation, radio-frequency transceiver design, as well as real-time signal processing. We rigorously discuss the fundamental changes required in the core networks of the future that serves as a major source of latency for time-sensitive applications. While evaluating the strengths and weaknesses of key 6G technologies, we differentiate what may be achievable over the next decade, relative to what is possible.Comment: Accepted for Publication into the Proceedings of the IEEE; 32 pages, 10 figures, 5 table

    A Comprehensive Survey of the Tactile Internet: State of the art and Research Directions

    Get PDF
    The Internet has made several giant leaps over the years, from a fixed to a mobile Internet, then to the Internet of Things, and now to a Tactile Internet. The Tactile Internet goes far beyond data, audio and video delivery over fixed and mobile networks, and even beyond allowing communication and collaboration among things. It is expected to enable haptic communication and allow skill set delivery over networks. Some examples of potential applications are tele-surgery, vehicle fleets, augmented reality and industrial process automation. Several papers already cover many of the Tactile Internet-related concepts and technologies, such as haptic codecs, applications, and supporting technologies. However, none of them offers a comprehensive survey of the Tactile Internet, including its architectures and algorithms. Furthermore, none of them provides a systematic and critical review of the existing solutions. To address these lacunae, we provide a comprehensive survey of the architectures and algorithms proposed to date for the Tactile Internet. In addition, we critically review them using a well-defined set of requirements and discuss some of the lessons learned as well as the most promising research directions

    A Prospective Look: Key Enabling Technologies, Applications and Open Research Topics in 6G Networks

    Get PDF
    The fifth generation (5G) mobile networks are envisaged to enable a plethora of breakthrough advancements in wireless technologies, providing support of a diverse set of services over a single platform. While the deployment of 5G systems is scaling up globally, it is time to look ahead for beyond 5G systems. This is driven by the emerging societal trends, calling for fully automated systems and intelligent services supported by extended reality and haptics communications. To accommodate the stringent requirements of their prospective applications, which are data-driven and defined by extremely low-latency, ultra-reliable, fast and seamless wireless connectivity, research initiatives are currently focusing on a progressive roadmap towards the sixth generation (6G) networks. In this article, we shed light on some of the major enabling technologies for 6G, which are expected to revolutionize the fundamental architectures of cellular networks and provide multiple homogeneous artificial intelligence-empowered services, including distributed communications, control, computing, sensing, and energy, from its core to its end nodes. Particularly, this paper aims to answer several 6G framework related questions: What are the driving forces for the development of 6G? How will the enabling technologies of 6G differ from those in 5G? What kind of applications and interactions will they support which would not be supported by 5G? We address these questions by presenting a profound study of the 6G vision and outlining five of its disruptive technologies, i.e., terahertz communications, programmable metasurfaces, drone-based communications, backscatter communications and tactile internet, as well as their potential applications. Then, by leveraging the state-of-the-art literature surveyed for each technology, we discuss their requirements, key challenges, and open research problems

    Towards Tactile Internet in Beyond 5G Era: Recent Advances, Current Issues and Future Directions

    Get PDF
    Tactile Internet (TI) is envisioned to create a paradigm shift from the content-oriented communications to steer/control-based communications by enabling real-time transmission of haptic information (i.e., touch, actuation, motion, vibration, surface texture) over Internet in addition to the conventional audiovisual and data traffics. This emerging TI technology, also considered as the next evolution phase of Internet of Things (IoT), is expected to create numerous opportunities for technology markets in a wide variety of applications ranging from teleoperation systems and Augmented/Virtual Reality (AR/VR) to automotive safety and eHealthcare towards addressing the complex problems of human society. However, the realization of TI over wireless media in the upcoming Fifth Generation (5G) and beyond networks creates various non-conventional communication challenges and stringent requirements in terms of ultra-low latency, ultra-high reliability, high data-rate connectivity, resource allocation, multiple access and quality-latency-rate tradeoff. To this end, this paper aims to provide a holistic view on wireless TI along with a thorough review of the existing state-of-the-art, to identify and analyze the involved technical issues, to highlight potential solutions and to propose future research directions. First, starting with the vision of TI and recent advances and a review of related survey/overview articles, we present a generalized framework for wireless TI in the Beyond 5G Era including a TI architecture, the main technical requirements, the key application areas and potential enabling technologies. Subsequently, we provide a comprehensive review of the existing TI works by broadly categorizing them into three main paradigms; namely, haptic communications, wireless AR/VR, and autonomous, intelligent and cooperative mobility systems. Next, potential enabling technologies across physical/Medium Access Control (MAC) and network layers are identified and discussed in detail. Also, security and privacy issues of TI applications are discussed along with some promising enablers. Finally, we present some open research challenges and recommend promising future research directions

    A prospective look: key enabling technologies, applications and open research topics in 6G networks

    Get PDF
    The fifth generation (5G) mobile networks are envisaged to enable a plethora of breakthrough advancements in wireless technologies, providing support of a diverse set of services over a single platform. While the deployment of 5G systems is scaling up globally, it is time to look ahead for beyond 5G systems. This is mainly driven by the emerging societal trends, calling for fully automated systems and intelligent services supported by extended reality and haptics communications. To accommodate the stringent requirements of their prospective applications, which are data-driven and defined by extremely low-latency, ultra-reliable, fast and seamless wireless connectivity, research initiatives are currently focusing on a progressive roadmap towards the sixth generation (6G) networks, which are expected to bring transformative changes to this premise. In this article, we shed light on some of the major enabling technologies for 6G, which are expected to revolutionize the fundamental architectures of cellular networks and provide multiple homogeneous artificial intelligence-empowered services, including distributed communications, control, computing, sensing, and energy, from its core to its end nodes. In particular, the present paper aims to answer several 6G framework related questions: What are the driving forces for the development of 6G? How will the enabling technologies of 6G differ from those in 5G? What kind of applications and interactions will they support which would not be supported by 5G? We address these questions by presenting a comprehensive study of the 6G vision and outlining seven of its disruptive technologies, i.e., mmWave communications, terahertz communications, optical wireless communications, programmable metasurfaces, drone-based communications, backscatter communications and tactile internet, as well as their potential applications. Then, by leveraging the state-of-the-art literature surveyed for each technology, we discuss the associated requirements, key challenges, and open research problems. These discussions are thereafter used to open up the horizon for future research directions
    • …
    corecore