16 research outputs found

    Board-level multiterminal net assignment

    Get PDF

    Control Plane Hardware Design for Optical Packet Switched Data Centre Networks

    Get PDF
    Optical packet switching for intra-data centre networks is key to addressing traffic requirements. Photonic integration and wavelength division multiplexing (WDM) can overcome bandwidth limits in switching systems. A promising technology to build a nanosecond-reconfigurable photonic-integrated switch, compatible with WDM, is the semiconductor optical amplifier (SOA). SOAs are typically used as gating elements in a broadcast-and-select (B\&S) configuration, to build an optical crossbar switch. For larger-size switching, a three-stage Clos network, based on crossbar nodes, is a viable architecture. However, the design of the switch control plane, is one of the barriers to packet switching; it should run on packet timescales, which becomes increasingly challenging as line rates get higher. The scheduler, used for the allocation of switch paths, limits control clock speed. To this end, the research contribution was the design of highly parallel hardware schedulers for crossbar and Clos network switches. On a field-programmable gate array (FPGA), the minimum scheduler clock period achieved was 5.0~ns and 5.4~ns, for a 32-port crossbar and Clos switch, respectively. By using parallel path allocation modules, one per Clos node, a minimum clock period of 7.0~ns was achieved, for a 256-port switch. For scheduler application-specific integrated circuit (ASIC) synthesis, this reduces to 2.0~ns; a record result enabling scalable packet switching. Furthermore, the control plane was demonstrated experimentally. Moreover, a cycle-accurate network emulator was developed to evaluate switch performance. Results showed a switch saturation throughput at a traffic load 60\% of capacity, with sub-microsecond packet latency, for a 256-port Clos switch, outperforming state-of-the-art optical packet switches

    A scalable packetised radio astronomy imager

    Get PDF
    Includes bibliographical referencesModern radio astronomy telescopes the world over require digital back-ends. The complexity of these systems depends on many site-specific factors, including the number of antennas, beams and frequency channels and the bandwidth to be processed. With the increasing popularity for ever larger interferometric arrays, the processing requirements for these back-ends have increased significantly. While the techniques for building these back-ends are well understood, every installation typically still takes many years to develop as the instruments use highly specialised, custom hardware in order to cope with the demanding engineering requirements. Modern technology has enabled reprogrammable FPGA-based processing boards, together with packet-based switching techniques, to perform all the digital signal processing requirements of a modern radio telescope array. The various instruments used by radio telescopes are functionally very different, but the component operations remain remarkably similar and many share core functionalities. Generic processing platforms are thus able to share signal processing libraries and can acquire different personalities to perform different functions simply by reprogramming them and rerouting the data appropriately. Furthermore, Ethernet-based packet-switched networks are highly flexible and scalable, enabling the same instrument design to be scaled to larger installations simply by adding additional processing nodes and larger network switches. The ability of a packetised network to transfer data to arbitrary processing nodes, along with these nodes' reconfigurability, allows for unrestrained partitioning of designs and resource allocation. This thesis describes the design and construction of the first working radio astronomy imaging instrument hosted on Ethernet-interconnected re- programmable FPGA hardware. I attempt to establish an optimal packetised architecture for the most popular instruments with particular attention to the core array functions of correlation and beamforming. Emphasis is placed on requirements for South Africa's MeerKAT array. A demonstration system is constructed and deployed on the KAT-7 array, MeerKAT's prototype. This research promises reduced instrument development time, lower costs, improved reliability and closer collaboration between telescope design teams

    Design and Implementation of Benes/Clos On-Chip Interconnection Networks

    Full text link
    Networks-on-Chip (NoCs) have emerged as the key on-chip communication architecture for multiprocessor systems-on-chip and chip multiprocessors. Single-hop non-blocking networks have the advantage of providing uniform latency and throughput, which is important for cachecoherent NoC systems. Existing work shows that Benes networks have much lower transistor count and smaller circuit area but longer delay than crossbars. To reduce the delay, we propose to design the Clos network built with larger size switches. Using less than half number of stages than the Benes network, the Clos network with 4x4 switches can significantly reduce the delay. This dissertation focuses on designing high performance Benes/Clos on-chip interconnection networks and implementing the switch setting circuits for these networks. The major contributions are summarized below: The circuit designs of both Benes and Clos networks in different sizes are conducted considering two types of implementation of the configurable switch: with NMOS transistors only and full transmission gates (TGs). The layout and simulation results under 45nm technology show that TG-based Benes networks have much better delay and power performance than their NMOS-based counterparts, though more transistor resources are needed in TG-based designs. Clos networks achieve average 60% lower delay than Benes networks with even smaller area and power consumption. The Lee’s switch setting algorithm is fully implemented in RTL and synthesized. We have refined the algorithm in data structure and initialization/updating of relation values to make it suitable for hardware implementation. The simulation and synthesis results of the switching setting circuits for 4x4 to 64x64 Benes networks under 65nm technology confirm that the trend of delay and area results of the circuit is consistent with that of the Lee’s algorithm. To the best of our knowledge, this is the first complete hardware implementation of the parallel switch setting algorithm which can handle all types of permutations including partial ones. The results in this dissertation confirm that the Benes/Clos networks are promising solution to implement on-chip interconnection network

    Stateless Flow-Zone Switching Using Software-Defined Addressing

    Get PDF
    The trend toward cloudification of communication networks and services, with user data and applications stored and processed in data centers, pushes the limits of current Data Center Networks (DCNs), requiring improved scalability, resiliency, and performance. Here we consider a DCN forwarding approach based on software-defined addressing (SDA), which embeds semantics in the Medium Access Control (MAC) address and thereby enables new forwarding processes. This work presents Flow-Zone Switching (FZS), a loop-free location-based source-routing solution that eliminates the need for forwarding tables by embedding routing instructions and flow identifiers directly in the flow-zone software-defined address. FZS speeds the forwarding process, increasing the throughput and reducing the latency of QoS-sensitive flows while reducing the capital and operational costs of switching. This paper presents details of FZS and a performance evaluation within a complete DCN.This work was supported in part by the H2020 Europe/Taiwan Joint Action 5G-DIVE under Grant 859881, in part by the Spanish State Research Agency through the TRUE5G Project under Grant PID2019-108713RB-C52/AEI/10.13039/501100011033, and in part by the Comunidad de Madrid through the Project TAPIR-CM under Grant S2018/TCS-4496

    Design and Implementation of a Multi-Class Network Architecture for Hardware Neural Networks

    Get PDF
    Die vorliegende Arbeit beschreibt den Entwurf und die Implementierung einer Netzwerkarchitektur, welche Techniken von leitungsvermittelnden und paketvermittelnden Netzwerken verbindet, um zwei verschiedene Dienstgüten anzubieten: isochrone Verbindungen und paketbasierte Verbindungen mit bestmöglicher Zustellung. Isochrone Verbindungen verwenden reservierte Netzwerkresourcen, um eine verlustfreie Übertragung sowie eine niedrige Ende-zu-Ende Verzögerung mit begrenzter Varianz zu garantieren. Die Synchronisierung aller Netzwerkknoten sowie die Berechnung einer kompakten Reservierungsbelegung werden durch effiziente Algorithmen gelöst. Paketbasierte Übertragungen verwenden die verbleibende Bandbreite. Das Multiplexen beider Verkehrsklassen wird von einem neuartigen Bypass-Switch geleistet, der skalierbar ist in der Anzahl der Schnittstellen sowie in der externen Bandbreite und ohne eine interne Beschleunigung auskommt. Die Netzwerkarchitektur kommt in der Forschung innerhalb des FACETS Projektes mit großskaligen künstlichen neuronalen Netzen in Hardware zum Einsatz, für die Vernetzung eines verteilten Systems aus VLSI neuronalen Netzen. Axonale Verbindungen zwischen Neuronen werden mit Hilfe von isochronen Verbindungen modelliert, wohingegen paketbasierte Übertragung die Grundlage für eine systemweite gemeinsame Speicherarchitektur bildet. Der zur Laufzeit ausgeführte Teil des Netzwerkes ist in programmierbarer Logik implementiert und arbeitet mit einer externen Übertragungsrate von 3.125 Gbit/s. Die Arbeit diskutiert die anwendungsbezogenen Anforderungen an das Netzwerk, sowie dessen Entwurf und Referenzimplementierung in programmierbarer Logik und Software. Theoretische Überlegungen über die Leistungsfähigkeit werden durch Messungen und Simulationen verifiziert. Obwohl die Netzwerkarchitektur für die spezielle Anwendung mit neuronalen Netzen entworfen wurde, stellt sie eine generelle Lösung für alle Netzwerkumgebungen dar, welche isochrone Verbindungen und Paketvermittlung mit niedriger Komplexität benötigen. Die Architektur ist insbesondere für den Einsatz in der nächsten Stufe der Hardwareentwicklung des FACETS Projektes zur Vernetzung künstlicher neuronaler Netze auf Wafer-Ebene geeignet

    Technical Design Report for the PANDA Micro Vertex Detector

    Get PDF
    This document illustrates the technical layout and the expected performance of the Micro Vertex Detector (MVD) of the PANDA experiment. The MVD will detect charged particles as close as possible to the interaction zone. Design criteria and the optimisation process as well as the technical solutions chosen are discussed and the results of this process are subjected to extensive Monte Carlo physics studies. The route towards realisation of the detector is outlined

    Proceedings of the 5th International Workshop on Reconfigurable Communication-centric Systems on Chip 2010 - ReCoSoC\u2710 - May 17-19, 2010 Karlsruhe, Germany. (KIT Scientific Reports ; 7551)

    Get PDF
    ReCoSoC is intended to be a periodic annual meeting to expose and discuss gathered expertise as well as state of the art research around SoC related topics through plenary invited papers and posters. The workshop aims to provide a prospective view of tomorrow\u27s challenges in the multibillion transistor era, taking into account the emerging techniques and architectures exploring the synergy between flexible on-chip communication and system reconfigurability
    corecore