thesis

Design and Implementation of a Multi-Class Network Architecture for Hardware Neural Networks

Abstract

Die vorliegende Arbeit beschreibt den Entwurf und die Implementierung einer Netzwerkarchitektur, welche Techniken von leitungsvermittelnden und paketvermittelnden Netzwerken verbindet, um zwei verschiedene Dienstgüten anzubieten: isochrone Verbindungen und paketbasierte Verbindungen mit bestmöglicher Zustellung. Isochrone Verbindungen verwenden reservierte Netzwerkresourcen, um eine verlustfreie Übertragung sowie eine niedrige Ende-zu-Ende Verzögerung mit begrenzter Varianz zu garantieren. Die Synchronisierung aller Netzwerkknoten sowie die Berechnung einer kompakten Reservierungsbelegung werden durch effiziente Algorithmen gelöst. Paketbasierte Übertragungen verwenden die verbleibende Bandbreite. Das Multiplexen beider Verkehrsklassen wird von einem neuartigen Bypass-Switch geleistet, der skalierbar ist in der Anzahl der Schnittstellen sowie in der externen Bandbreite und ohne eine interne Beschleunigung auskommt. Die Netzwerkarchitektur kommt in der Forschung innerhalb des FACETS Projektes mit großskaligen künstlichen neuronalen Netzen in Hardware zum Einsatz, für die Vernetzung eines verteilten Systems aus VLSI neuronalen Netzen. Axonale Verbindungen zwischen Neuronen werden mit Hilfe von isochronen Verbindungen modelliert, wohingegen paketbasierte Übertragung die Grundlage für eine systemweite gemeinsame Speicherarchitektur bildet. Der zur Laufzeit ausgeführte Teil des Netzwerkes ist in programmierbarer Logik implementiert und arbeitet mit einer externen Übertragungsrate von 3.125 Gbit/s. Die Arbeit diskutiert die anwendungsbezogenen Anforderungen an das Netzwerk, sowie dessen Entwurf und Referenzimplementierung in programmierbarer Logik und Software. Theoretische Überlegungen über die Leistungsfähigkeit werden durch Messungen und Simulationen verifiziert. Obwohl die Netzwerkarchitektur für die spezielle Anwendung mit neuronalen Netzen entworfen wurde, stellt sie eine generelle Lösung für alle Netzwerkumgebungen dar, welche isochrone Verbindungen und Paketvermittlung mit niedriger Komplexität benötigen. Die Architektur ist insbesondere für den Einsatz in der nächsten Stufe der Hardwareentwicklung des FACETS Projektes zur Vernetzung künstlicher neuronaler Netze auf Wafer-Ebene geeignet

    Similar works