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ABSTRACT The trend toward cloudification of communication networks and services, with user data and
applications stored and processed in data centers, pushes the limits of current Data Center Networks (DCNs),
requiring improved scalability, resiliency, and performance. Here we consider a DCN forwarding approach
based on software-defined addressing (SDA), which embeds semantics in the Medium Access Control
(MAC) address and thereby enables new forwarding processes. This work presents Flow-Zone Switching
(FZS), a loop-free location-based source-routing solution that eliminates the need for forwarding tables by
embedding routing instructions and flow identifiers directly in the flow-zone software-defined address. FZS
speeds the forwarding process, increasing the throughput and reducing the latency of QoS-sensitive flows
while reducing the capital and operational costs of switching. This paper presents details of FZS and a
performance evaluation within a complete DCN.

INDEX TERMS Flow-zone switching (FZS), data center network (DCN), software-defined addressing
(SDA), layer 2, MAC address, routing, forwarding, QoS, clos, stateless.

I. INTRODUCTION
Data center demand has increased profoundly in the last
decade, driven largely by the success of the cloud computing
paradigm. Data center scales have grown from hundreds
of servers to thousands; while 5000 servers is typically
considered the minimum for a ‘‘hyperscale’’ data cen-
ter [1], the numbers grow much larger. Meanwhile, the same
application-driven trends have put additional emphasis on the
performance and cost of the Data Center Network (DCN)
that provides a critical role in data center infrastructure. DCN
designs (e.g. [2]) aim to provide responsive services to clients
based on real-time extraction of results from vast stored
resources. In the background, these data centers simultane-
ously analyze and systematically extract massive amounts of
information from extensive data sets, typically using artificial
intelligence algorithms, with data that is dispersed across the
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data center. In such a scenario, efficiency, scalability, and
resiliency are three key pillars supporting increased perfor-
mance. Capital cost and operating costs, notably those due to
energy consumption, are also critical.

In recent years, Software-Defined Networking (SDN) has
played a major role in the management and orchestration
of the DCNs, increasing the flexibility and programmability
by logically centralizing the network control plane. As in
legacy networks with more distributed control, SDN data
plane forwarding is based on forwarding tables. These for-
warding tables are filled with a huge number of table entries,
typically specifying actions based on Medium Access Con-
trol (MAC) addresses (in Layer 2 DCNs) or Internet Pro-
tocol (IP) addresses (in Layer 3 DCNs), or combinations
thereof. Since the DCN topology may accommodate many
thousands of servers, each running many Virtual Machines
(VMs) and applications, forwarding tables may be huge,
imposing significant local memory requirements at the
switches.
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Serious scalability problems arise, due to an increas-
ing number of switches and table entries therein, including
issues related to network management complications. These
forwarding table problems are particularly troublesome for
Layer 2 networks. While IP addresses are structured so as
to convey network information, MAC addresses are typically
considered to be flat. Aside from two meaningful bits in the
48-bit MAC address, the remainder of the MAC address has
been considered to serve no purpose other than to provide
uniqueness. However, following trends in standardization,
we have considered the possibilities of flexible Software-
Defined Addressing (SDA) and how it can be exploited for
improved network performance and efficiency. Like some
prior approaches, we embed routing instructions semantically
into MAC addresses, with the destination address explicitly
identifying the topological zone of the recipient with suffi-
cient instructions to route a frame most directly to that des-
tination, eliminating the need for forwarding tables entirely
and resolving Layer 2 concerns such as address learning
and looping. The flexibility provided by SDA, applied to
our FZS architecture, allows the implementation of diverse
routing and traffic engineering schema such as source rout-
ing or elephant/mouse differentiation among others, with the
only constraint of requiring a quasi-hierarchical network to
operate. Please note that source routing (and segment routing
specifically) is just one of the possible mechanisms that can
be implemented using FZS and SDA.

In our examples, we segment the DCN topology in four
zone levels, representing the server level at the bottom and
the spine level at the top, passing through the rack level (with
Top-of-Rack (ToR) switches) and the pod level. We assign
each zone an ID in a quasi-hierarchical manner: each pod
has an identifier, each rack has a local identifier within its
pod, and each server has a local identifier within its rack.
Each server is therefore identified with a unique zone in the
topology, identified by the pod, rack and server identifiers.
Spines are uniquely identified but are not associated with
server zones.

Here we enhance prior approaches by embedding specific
flow identification into the address as well. As a result,
the address differentiates and explicitly identifies the various
flows directed toward a particular destination. This explicit
flow identification can be exploited in many ways, such as
ensuring that all frames in a flow follow the same route,
differentiating the frames of a particular server by identifying
the VM, differentiating the frame QoS by flow, and allowing
header suppression per flow. Flow identifiers may be used to
classify frames according to categories that may not normally
be considered ‘‘flow’’ categories. We refer to the method as
Flow-Zone Switching (FZS) because the frame codes both
the zone identifier and flow identifiers. FZS minimizes the
state in switches and, by embedding the routing instructions
directly in the MAC addresses, can completely remove the
need for forwarding tables.

To illustrate the potential use of FZS, we focus here
on examples in which the flow identifier is used to

distinguish latency-sensitive small-frame (mice) flows from
large data-intensive (elephant) flows, as described elsewhere
[3]. We arrange to route the mice and elephant flows dif-
ferently, segregating the mice in low-delay paths that are
source-coded into the frames. We show how this can translate
into better performance and lower network congestion.

Data center source-routing solutions based on zone
addressing have been already explored in the literature. The
majority of existing solutions are based on address trans-
lation, reducing but not completely removing the need for
table lookups. FZS aims to enhance the state of the art by
completely removing the lookup tables and at the same time
providing fine granularity for specific flow management,
boosting the DCN performance while reducing its cost.

Unlike DCN routing methods based on overlays, FZS rout-
ing is conducted end-to-end at Layer 2, with routing instruc-
tions embedded in the MAC address. No overlay headers,
additional frame tags, or other performance-reducing frame
overhead is introduced. FZS offers the potential for a high
performance with low complexity.

The following are the key contributions of this work:

• The routing mechanism minimizes the state in switches
by embedding the routing instructions directly in the
MAC addresses, completely removing the need for for-
warding tables.

• Flow identifiers, embedded in the MAC address,
are assigned directly at the frame source, allow-
ing a fine-grained distinction of flows, rather than a
course-grained version based on later frame classifica-
tion. For example, TCP data segments can be classified
as elephants and TCP ACKs as mice, even though they
contain identical TCP/IP five-tuples. This allows new
traffic engineering possibilities.

• Flow identifiers are exposed to all switches, allowing
diverse flow management methods, as well as to the
receiving end station, for post-reception processing such
as header decompression indexed by the fine-grained
flow.

• Each frame contains the path towards its source, as well
as to the destination, with separate source-based and
destination-based flow fields, without the intervention
of any other protocol or mechanism. This means, for
example, that the destination can directly learn the Layer
2 flow-zone address associated with the IP address of a
received frame and can respond to that framewithout the
need to consult an external ARP server.

• No overhead is introduced into the frame, since all
identification is included in Layer 2 headers that are
unavoidable in any Ethernet transmission. No overlay
headers or labels are used.

• No distribution of control (e.g., label to path binding) is
required; all control is managed by the hosts.

• Using a 48-bit MAC address, the method is scalable to
many orders of magnitude larger than current data center
and can be scaled larger if necessary.
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• Thanks to its programmability and flexibility, FZS can
implement arbitrary traffic engineering mechanisms,
even separating packets that, per traditional 5-tuple char-
acterization, belong to the same flow (e.g., TCP data
segment and TCP ACK).

Additional details regarding the benefits of FZS are pro-
vided in Section VII.

The rest of the paper is organized as follows. Section II
provides a brief background. Section III summarizes related
work. Section IV explains the concept of Software-Defined
Addressing (SDA) and semantic MAC addresses in the con-
text of recent standardization. In Section V, we detail the
FZS structure and architecture, including zones, flows, and
the address formats. Section VI details the forwarding oper-
ations, the stateless configuration, and an address assign-
ment procedure. Section VII summarizes potential benefits of
FZS. Section VIII focuses on the implementation details of a
validation study compared to a table-based legacy solution.
Section IX presents a performance evaluation of FZS in a
DCNs using several Transmission Control Protocol (TCP)
algorithms and traffic distribution solutions, comparing it
to a legacy solution. Section X suggests possible areas for
followup research. Finally, Section XI draws the conclusions
of the paper.

II. BACKGROUND
Data center architectures are based on multi-tier topologies,
typically structured as a generalized fat-tree [4]. The gen-
eralized fat-tree network is based on a folded Clos network
topology and is usually constructed with many commodity
switches instead of complex ones. These topologies provide
multiple paths between pairs of communicating nodes. This
allows networks to scale in bandwidth by adding ports and
switches rather than simply by scaling the bandwidth of the
physical link. This results in better cost/performance ratio
as well as increased resilience with respect to link failure.
The existence of multiple paths leads to the well-known
problem of loops. Many technologies have been developed to
overcome the loop problem in Layer 2 networks, but many of
these, such as spanning tree algorithms, are based on limiting
the available paths and therefore counteract the intention to
provide multiple parallel routes for bandwidth purposes. Tra-
ditional Layer 2 networks also face scaling problems due to
the flat network address that requires a forwarding table entry
for each endpoint. Layer 2 approaches to this scaling issue,
such as provider bridging and provider backbone bridging,
have been introduced but are not popular in DCNs, possibly
due to their added complexity and frame overhead due to the
extra overlay encapsulation. These issues have kept Layer
2 networking from widespread use as a basis of routing in
the massive data center.

Recently, a number of routing methods have been intro-
duced for generalized fat-tree topologies. Many of these are
based on a form of source routing, in which the routing
instructions are entirely or partially embedded in the packet

or frame. In some cases, the information is embedded in an IP
address, a MAC address, or a customized label. FZS follows
this general approach.

III. RELATED WORK
A flow-zone destination address conveys a zone identifier,
which specifies a location and therefore a portion of the
path to the destination, as well as flow information, which
can be configured to specify the remaining portion of the
path starting at the source. Thus, FZS is a form of source
routing (SR). Layer 2 source addresses conveying routing
information alone have been explored previously in the lit-
erature. Segment routing is a form of source routing, recently
standardized in the IETF Source Packet Routing in Network-
ing (SPRING)Working Group,1 in which routing is specified
along segments that comprise the entire path.While FZS does
not accord with the SPRING standard, it can be viewed as a
form of segment routing, particular when addresses route the
frame specifically only over a portion of the path.

Methods pertaining to our research can be classified based
on how the routes are carried in the packets:
• Label-based SR: Methods in this category append labels
to packets or frames indicating the path to be followed
towards the destination. MPLS is typically used to
encapsulate the labels, therefore achieving SR in legacy
MPLS networks. Work in this area includes [10], [28]–
[30], [33], [37], [38], [44] and [23].

• Address-based SR:Methods in this category use destina-
tion addresses to indicate routing. Typically this involves
rewriting the address at edge nodes so that the source
and destination hosts use a native address independent of
the network structure. This approach can use addresses
at various levels of the protocol stack, including MAC
and IP addresses. Work in this category includes [5]–[9],
[22], [41] and [36].

SR may be coupled with an SDN controller, which has a
view of the overall network topology and may have insight
into its status as well. Such an SDN controller can compute
routes across the network and enforce those routes by con-
figuring either the source routes inserted into packets or to
the forwarding tables, or both. In the literature, SR associated
with SDN mostly follows the label-based approach, perhaps
since MPLS allows a straightforward implementation of SR.
In some cases, such as in the methods of [28] or [33], labels
expose the source of the packet to many or all possible paths
towards the destination. Imposing a route in the label reduces
the forwarding table burden and can improve throughput.

Label-based SR has also been used to provide backup
routes and perform traffic engineering. [44], presents
an SDN-based Fast Rerouting Mechanism (SFRM) for
rescheduling elephant flows in a load-aware manner. A flow-
selecting module in the controller reschedules elephant flows
selectively and reroutes a few elephant flows with SR to
balance the load. In SlickFlow [38], packet headers contain a

1https://tools.ietf.org/wg/spring/
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source route for a primary path and an alternate path. In these
approaches, substantial path information is included in the
packet header, which expands accordingly. Moreover, these
techniques require changes in the core of the network to
handle the new headers (although this can be minimized if an
MPLS data path is specified). Another set of work uses SR
to perform traffic engineering with the objective of reducing
the power consumption of the data center. [23], [29], [37]
and [30] are similar works using label-based SR (withMPLS)
to aggregate traffic and shut down unused links within data
centers, therefore saving energy. The SDN controller speci-
fies links to be decommissioned and the label-path mappings
in the switch forwarding tables.

Address-based SR carries routes in MAC or IP addresses,
or a combination. Typically, this uses a destination address
to identify a routing segment, with address translation or
modification typically required at the termination of that
segment. Some publications also specify interactions with
other protocols, such as ARP, to provide routing addresses.
For example, the Monsoon [5] data center architecture is
designed to connect 100,000 or more servers using a single
Layer 2 network. In order to overcome scaling limitations,
the network is made hierarchical by encapsulating frames
using three MAC addresses, which specify three particular
switches along the route. The three addresses are inserted at
the source server, based on a customized directory lookup;
subsequent forwarding decisions are made by switches based
on table lookups. The use of three MAC addresses introduces
significant frame overhead and also operational complexity
due to encapsulation and decapsulation and the directory
service required to support it.

PortLand [6] presumes a Clos network and achieves a hier-
archy withoutMAC encapsulation by assigning a hierarchical
48-bit Pseudo MAC (PMAC) address encoding the end host
zone. End hosts maintain a separate Actual MAC (AMAC)
address. ToR switches perform the address translation and
header rewriting. PortLand employs a logically centralized
fabric manager to maintain a soft state of the network con-
figuration in order to construct the PMACs and respond
to ARP replies. Torii-HLMAC [7] assigns to each node a
Hierarchical Local MAC (HLMAC) address at every port.
Torii-HLMAC improves PortLand by automatically assign-
ing multiple addresses in a distributed form without dupli-
cates, avoiding the use of a centralized fabric manager.
GA3 [8] is a generalized labeling protocol for data center
networks, originally designed for the Torii-HLMAC [7] rout-
ing protocol but later extended to support a wider range of
topologies based on the same concepts.

DCnet [9] uses a hierarchical, zonal MAC address, known
as a Routable MAC (RMAC) address, shared among all VMs
in a server. DCnet also identifies each VM with a Unique
ID. A logically centralized binding server keeps track of the
mapping of these Unique IDs to the RMACs, distributing the
mapping to all the ToR switches in the data center. When a
VMmigrates among servers, its Unique ID remains but a new
zonal RMAC address is assigned and the update is distributed

to all the ToR switches. [41] shows how the destination MAC
address can be used as universal label in SDN and how the
ARP cache of a host can be exploited as an ingress label table
and therefore reduce the size of the forwarding table. This
offloads packet labeling to the host, using the ARP protocol,
rather than requiring a forwarding table entry to form the label
at the ingress switch.

Shadow MACs [22] uses addresses as opaque forwarding
labels, allowing an SDN controller to leverage large MAC
forwarding tables to manage a plethora of fine-grained paths.
In this shadow MAC model, the SDN controller can install
MAC rewrite rules at the network edge to guide traffic onto
intelligently selected paths for traffic balancing, to avoid
failed links, or to route flows through middleboxes.

Finally, [36] proposes an OpenFlow (OF)-based Scal-
able Routing strategy (OSCAR) for DCNs using a hybrid
addressing mechanism. Each module in the DCN consti-
tutes a segment in the network. Inter-segment routing is per-
formed using virtual MAC IDs assigned to the segments and
intra-segment routing is done using IP addresses.

In general, SR requires mechanisms to express a path in a
label or address. Arithmetic-based SR approaches, explored
in several publications, make use of arithmetic operations,
such as a Residue Number System (RNS). This approach
was first applied to optical packet-switched networks to avoid
header rewriting and label distribution protocols [43]. This
idea was further integrated with SDN in core packet-switched
networks by KeyFlow [35], which builds a fabric model
to replace the table lookup in the forwarding engine by
elementary operations relying on RNS. Another approach
to RNS [39], applied to Service Function Chaining (SFC),
includes two RNS labels, one for routing in the physical
layer and one for routing between Service Functions in an
overlay layer. KeySet [40] presents a new routing scheme
without flow tables that enables constant-time switching at
the forwarding switches. KeySet relies on a residual system
to quickly calculate routing paths. A further elaboration of
this concept, KeySFC [26], uses simple label-based SR in
edge software switches to classify, encapsulate, forward, and
decapsulate flows, along with core table-less switches that
forward packets based on simple modulo operations over
the labels. Finally, [25] proposes an algorithmic-based SR
forwarding making use of a high-performance forwarding
mechanism based on XOR operations. The major drawbacks
of these solutions are the need for computation at the switches
and possible scalability issues in large networks.

Another possible mechanism to embed the path infor-
mation into the label or address is to represent the route
as a sequence of ports, using Port Switching Source Rout-
ing (PSSR). Since the network topology of the data center
network is typically structured and static by design, PSSR
represents a routing path as a sequence of switch egress
ports leading to a known destination. For example, Torii-
HLMAC [7], using address-based SR, usually works as PSSR
since addresses convey a sequence of traversed ports. The
LESS method [11] embeds egress port identifiers directly in
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TABLE 1. Related data center switching methods.

MAC addresses and routing instructions as a label-switched
path. This approach eliminates the need for forwarding tables
but requires extra overhead in the frames for the labels
and effort at the switches in order to push and pop labels.
Sourcey [32] proposes an oversimplification of the DCN in
which switches have no CPU, no software, no forwarding
tables, no state, and no configuration. Sourcey pushes all con-
trol plane functions, including routing, to the servers. At each
hop, a Sourcey switch pops the top label of the path stack and
uses the label value as the egress port identifier. Although
this mechanism highly simplifies the switches, it requires
overhead per packet and modification of each packet. Sec-
ondNet [31] is a DCN virtualization architecture based on
PSSR, implemented using MPLS. In order to handle the case
of a server connecting to multiple neighbors through the
same port, SecondNet introduces the concept of virtual port.
A physical port can map to multiple virtual ports depending

on the number of neighboring servers. A server maintains a
virtual-port table in which every row represents a neighboring
server. Finally, [45] proposes a port-based source routing
addressing scheme that renders table lookup unnecessary and
can reduce the complexity of the switches, taking advantage
of fat-tree topology.

To summarize this literature, Table 1 provides a tabular
view of a representative set of data center switching methods,
characterizing each according to its SR type, the presumed
topology, some key contributions, and some identified draw-
backs.

IV. SOFTWARE-DEFINED ADDRESSING
The key rules of IEEE 802 MAC addresses are specified in
IEEE Std 802 [14], which covers the IEEE 802Overview and
Architecture. This standard specifies that the least significant
MAC address bit is the Individual/Group (I/G) bit, used to
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identify the destination address either as an individual or
as a group address, and the second least is the Universally
or Locally Administered (U/L) bit, indicating whether the
address has been assigned for global or only local uniqueness.
Regarding locally administered addresses, virtually no infor-
mation was provided until 2017, leaving implementation and
use completely in the hands of the local administrator, with
no interoperability between protocols mandated.

Since 2017, an amendment to IEEE Std 802, entitled IEEE
Std 802c [15], has added specifications regarding local MAC
addresses, including a plan, known as the Structured Local
Address Plan (SLAP), for use of the local address space. The
SLAP divides the local space into four quadrants, each of
which is specified for a different use. The quadrants (identi-
fied by the third and fourth least significant bits of the initial
octet in the local MAC address) are identified for use by:

1) Extended Local Identifier (ELI) addresses, which
are 24-bit extensions of a 24-bit Company ID (CID)
assigned to a company upon application to IEEE. Such
addresses are similar in structure to the historical 48-bit
Extended Unique Identifier (EUI) addresses based on
IEEE-assigned 24-bit Organizationally Unique Iden-
tifier (OUI) identifiers. The difference is that OUI
assignments are made to hardware vendors with the
intention of the EUI-48 being permanently assigned to
hardware. The ELI-48 is expected to be locally, but
not necessarily globally, unique and can be assigned
dynamically;

2) Administratively Assigned Identifier (AAI)
addresses, which assigned in arbitrary fashion by
an administrator, with simply a requirement to avoid
duplication; and

3) Standard Assigned Identifier (SAI) addresses,
whose specified use is, per IEEE Std 802c, the respon-
sibility of the future IEEE 802.1CQ [16] standard.
Multiple protocols for assigning SAI may be spec-
ified within various IEEE 802 standards. Per IEEE
Std 802c,‘‘In some cases, an SAI assignment protocol
may assign the SAI to convey specific information.
Such information may be interpreted by receivers and
bridges that recognize the specific SAI assignment
protocol, as identified by the subspace of the SAI.’’

While a closed network may operate successfully without
observing the SLAP, the standardization progress neverthe-
less highlights the trend toward assigning MAC addresses
with semantic meaning and ensuring that switches under-
stand the semantics and process frames accordingly. We use
the term ‘‘software-defined addressing’’ to describe tech-
niques in which Layer 2 addresses are semantically struc-
tured, rather than flat, and dynamically assigned, rather than
hardware bound, with the addresses serving to steer frames
through the infrastructure. In this paper, we intend to explore
whether software-defined addressing, with semantic cues to
routing and QoS management, can increase network perfor-
mance. At the same time, we surmise that it can significantly

reduce the complexity and operational expenses of the net-
work switching infrastructure while improving latency at the
switch by minimizing processing requirements.

V. FLOW-ZONE SWITCHING: STRUCTURE
Flow-zone switching (FZS) [17] is a loop-free routingmethod
that embeds not only routing instructions but also flow iden-
tity directly in addresses within the frame. Given a suitable
DCN topology and a compatible assignment of addresses,
forwarding tables are not required. In this paper, we consider
FZS with Layer 2 addressing.

FZS is compatible with many multi-tier topologies, includ-
ing generalized Clos data center architectures. Such topolo-
gies provide multiple paths between hosts to support full
bisection bandwidth. This paper analyses the method in a
pod-spine Clos architecture [2].

A. PRINCIPLES
The following key properties are characteristic of FZS:

• Zonal addressing: Each FZS end node is assigned a set
of flow-zone addresses, coded within which are zonal
identification fields that uniquely identify the zone; that
is, the location of the end node within the data center
topology, including information that encodes forwarding
instructions to reach that zone.

• Flow addressing: The FZS addresses assigned to the
end node are distinguished with flow identification
fields embedded in the flow-zone address. A flow-zone
address may include multiple flow identifiers. Flow
identifiers may be used within the switching networks,
for example as flow type indicators for purposes such
as QoS. They may also be used at the end nodes, for
example, as indicators of the virtual machine destination
within the node and as indicators of suppressed headers.

• Frame addressing: Each frame carries an Source
Address (SA) that is assigned by source end node from
its allocated set of flow-zone addresses. Each also carries
a flow-zone Destination Address (DA). Flow identifica-
tion fields in both the SA and DA may be considered by
switches.

• Switches: Flow-zone switching is based on flow-zone
addresses. Switches are aware of their own zonal iden-
tification fields, which indicate their position in the
topology. Forwarding tables, if provided, are simple port
mapping tables serving only to translate a specific field
of the flow-zone address into an output port. Such tables
are therefore extremely small: typically, one entry per
local port, rather than scaling with the number of hosts.
In some cases, the addressing is configured so that the
specific field of the flow-zone address is a literal iden-
tifier of the output port, in which case no forwarding
tables are used.

• Routing: FZS routing is based on forwarding decisions
made by switches. Data frames, generated at end nodes,
begin in an ascent stage during which they are forwarded
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FIGURE 1. Zone levels.

upward in the network, typically until they have risen
high enough to begin descent down through the topology
to the destination zone. During the ascent stage, multiple
equal-cost routes are possible. The choice among these
routes is informed by the flow identifiers within the
flow-zone addresses. Frames belonging to a common
flow, indicated by suitable flow identifiers, are routed
on a common path. During the descent phase, typi-
cally only a single lowest-cost path is available, and the
routing follows that path, typically based solely on the
zone identification fields of the destination flow-zone
address.

B. TOPOLOGY, NODES, AND ZONE LEVELS
A flow-zone address includes fields identifying a zone within
the topology. This paper considers the pod-spine Clos topol-
ogy (see Fig. 1).
The zone is identified with reference to a set of zone levels,

including, in the pod-spine Clos topology, five zone levels
(see Fig. 1):
• Zone Level 0: The lowest level of the FZS topology,
Level 0, represents the servers, i.e., the end nodes of the
data center traffic, represented by the circles in Fig. 1.
Each server is connected to a top-of-rack (ToR) switch
and is identified by a Server ID (‘‘a’’, ‘‘b, ‘‘c’’, and ‘‘d’’
in the figure) unique among all the servers connected

to the same rack. In order to fully identify a server in
the topology, the Server ID is used in conjunction with
a unique identifier of the rack to which it is connected.

• Zone Level 1: Level 1 represents the racks, each includ-
ing the servers and the ToR switch to which they are
connected, as colored in gray in Fig. 1. Each rack exists
within one and only one pod (see Level 2) and is identi-
fied by a Rack ID (‘‘a’’ and ‘‘b’’ in the gray areas of the
figure) unique among all the racks within that pod.

• Zone Level 2: Level 2 represents the pods, indicated
in the figure by dotted lines. A pod includes the racks
within the pod as well as a set of fabric switches, shown
as the green and yellow switches in Fig. 1. Each fabric
switch exists within one and only one pod. Each pod is
identified by a Pod ID (‘‘a’’ in the green fabric switches
and ‘‘b’’ in the yellow fabric switches of the figure)
unique among all the pods within the network. Each ToR
switch in the pod is connected to each fabric switch in
that pod.

• Zone Level 3: Level 3 is the spine level. Each spine
switch (the red and magenta switches of Fig. 1) is
connected to one fabric switch in each pod. A spine
switch, together with all the fabric switches to which is
connected, comprise a spine. Each spine switch and each
fabric switch exists within one and only one spine and
is identified by a Spine ID (‘‘x’’ and ‘‘y’’ in the red and
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FIGURE 2. Flow-zone address formats.

magenta areas of the figure) unique among all the spines
in the network.

• Zone Level 4: Level 4 (not identified in the figure) is the
spine switch level. A spine switch is identified by a Spine
Switch ID (‘‘a’’ and ‘‘b’’ in the red and magenta spine
switches of the figure) to uniquely identify it within its
spine.

C. DEVICE IDENTIFIERS AND ZONES
Each node in the FZS infrastructure is identified with a zonal
tuple that uniquely identifies both the zone and its location
in the network. Fig. 1 depicts an example of zonal tuple
assignment in a small topology of 12 switches and 16 servers.
The zonal tuple of each switch includes two independent
identifiers. The zonal tuple of each server includes three
independent identifiers. Each node is aware of its own node
type and of its own zonal tuple. The node types are:

• Server: The server is located in a zone that is specified
by its identifier at Zone Level 2 (Pod ID), Zone Level 1
(Rack ID), and Zone Level 0 (Server ID).

• ToR Switch: The ToR switch is located in a zone that is
specified by its identifier at Zone Level 2 (Pod ID) and
Zone Level 1 (Rack ID).

• Fabric Switch: The fabric switch is located in a zone
that is specified by its identifier at Zone Level 2 (Pod
ID) and Zone Level 3 (Spine ID).

• Spine Switch: The spine switch is located in a zone that
is specified by its identifier at Zone Level 3 (Spine ID)
and at Zone Level 4 by its Spine Switch ID.

D. FLOW-ZONE ADDRESS FORMATS AND ZONAL
INDICATOR FIELDS
Each node is assigned a set of addresses for use as source
and destination addresses. Each such address includes fields
to identify the complete zonal tuple of the node to which that
address is assigned. In the examples of this paper, flow-zone
addresses are IEEE 802 MAC (Layer 2) addresses, typically
in the local address space. For simplicity of explanation,
and in accordance with the typical DCN scales, the 48-bit
IEEE MAC address is divided into six octets. The first of

these contains an address header. Per IEEE Std 802, least
significant bits of the address header are, respectively, the M
bit (set to 1 for a multicast address), the X bit (set to 1 for
a local address), and two bits indicating the SLAP quadrant.
The remaining bits of the address header are used to indicate
the node type of the device to which the address is assigned.
The flow-zone addresses are illustrated in Fig. 2 for the node
types discussed herein.

• Server Address Format: In the server flow-zone
address, the address header identifies the address as
belonging to a server. Additional octet-sized fields iden-
tify the server’s zone by its Pod ID, Rack ID, and Server
ID (see Fig. 2a).

• ToR Switch Address Format: In the ToR switch
flow-zone address, the address header identifies the
address as belonging to a ToR switch. Additional
octet-sized fields identify the switch’s zone by its (Pod
ID) and Rack ID (see Fig. 2b). (Alternately, the ToR
Switch and Server addresses could use identical address
header formats and be distinguished by, for example,
a particular value in the Server ID field.)

• Fabric Switch Address Format: In the fabric switch
flow-zone address, the address header identifies the
address belonging to a fabric switch. Additional
octet-sized fields identify the switch’s zone by its Pod
ID and Spine ID (see Fig. 2c).

• Spine Switch Address Format: In the spine switch
flow-zone address, the address header identifies the
address belonging to a spine switch. Additional
octet-sized fields identify the switch’s zone by its Spine
ID and Spine Switch ID (see Fig. 2d).

Bits in the flow-zone address not devoted to zonal identifier
fields are available for use in flow identification. In Fig. 2,
the flow identification bits are indicated as divided into
one-octet fields, but the actual division can be made flexibly.
As a practical example, in the server flow-zone address of
Fig. 2a, the Flow Level 1 ID field could be a one-octet
field specifying the frame’s virtual machine (VM, which
here also includes containers) source or destination, and the
Flow Level 2 ID field could represent a specific flow of
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frames originating from or destined for that VM. The flow
identification fields are fully flexible and may be used to
classify frames according to categories that may not normally
be considered ‘‘flow’’ categories; furthermore, those fields
could carry any descriptive information, including, for exam-
ple, telemetry. The flow fields are directly exposed at Layer 2,
without requiring deeper inspection.

The order of zonal identifier fields in the flow-zone address
is not critical, but it may be convenient for all flows associated
with a device to share a common preamble and to be discrim-
inated by the less significant bits of the address; in this case,
the device is assigned a contiguous block of addresses.

The dimensions of the zonal identifier fields can be
adjusted to match the scale of the network. The dimensions
of Fig. 2 would support, for example: 256 spines, 256 spine
switches per spine (each with 256 ports), 256 pods, 256 racks
per pod, 256 fabric switches and 256 ToR switches per pod
(each with 512 ports), and 256 servers per rack, for a limit of
224 (≈17M) total servers. The flow partitioning as described
supports 256 VMs per server, with 8 bits remaining for flow
differentiation within the VM. This would support a network
vastly larger than those currently deployed or anticipated. In a
smaller network, the zonal fields can be compacted, freeing
up bits in the address for flow fields.

VI. FLOW-ZONE SWITCHING: FORWARDING
A. FLOW-ZONE FORWARDING TO SERVER
Flow-zone routing can be summarized by rules governing the
forwarding by each node type.

In general, the device first examines the address header of
the destination address of the incoming frame to determine
the flow-zone address format, as illustrated in Fig. 2. Here
we describe the forwarding process only for the case in
which that address header indicates a server (Fig. 2a). Similar
considerations provide for appropriate forwarding when the
destination is a switch. If the destination header indicates
that the destination address is not formatted as a flow-zone
address, the switch may process it with an alternative for-
warding method; e.g., using legacy Layer 2 forwarding.

• Server Forwarding: A server compares the Pod ID,
Rack ID, and Server ID of the destination address of an
incoming frame to its own internal identities. In case all
three parameters match, the frame is passed to a local
process, such as a local VM as identified by the Flow
Level 1 ID parameter. If the three parameters do not
match, the server forwards the frame upward to its ToR
switch.

• ToR Switch Forwarding: A ToR switch compares the
Pod ID and Rack ID of the destination address of an
incoming frame to its own internal identities. In case the
parameters match, a port mapping is used to determine
the port to the server identified by the frame’s Server
ID value; the frame is forwarded downward to that
port. If the two parameters do not match, the switch
forwards the frame upward to a port attached to a fabric

switch. The choice of ascending port may be informed
by the frame’s flow identification values.

• Fabric Switch Forwarding: A fabric switch compares
the Pod ID of the destination address of an incoming
frame to its own internal Pod ID identity. In case the
parameters match, a port mapping is used to identify the
port to the rack identified by the frame’s Rack ID value;
the frame is forwarded downward to that port. If the Pod
ID values do not match, the switch forwards the frame
upward to a port attached to a fabric switch. The choice
of ascending port may be informed by the frame’s flow
identification values.

• Spine Switch Forwarding: A spine switch uses a port
mapping to identify the port to the pod identified by the
frame’s Pod ID value; the frame is forwarded downward
to that port.

Notice that, in all cases, the incoming port need not be
identified in order to complete the forwarding decision, and
no determination need be made as to whether the frame
arrived an ascending or descending frame.

B. STATELESS ZONAL FORWARDING TO SERVER
As seen from the description of flow-zone forwarding,
no address learning is used, and the only forwarding tables are
the port mapping tables indicating the port of the identified
server, rack, or pod. These are at most small tables, with one
entry per active port. This requires a very small amount of
memory and a simple one-to-one lookup.

The port mapping can be made entirely stateless as well.
To achieve statelessness, the zonal identifiers can be selected
so that they literally identify, in numbers directly meaningful
to the switch, the ports to the identified zones. Achieving
this result requires specific network cabling. Fig. 3 illustrates
this cabling method and the associated zonal identification.
The small white rectangles indicate ports, and the letters
therein indicate the internal identifier with which the switch
identifies each port. Fig. 3 illustrates a single pod (Pod ID=J)
and its connections.

In the figure, the rack switches and fabric switches are
shown with an upper bank of ports, with an identifier begin-
ning with ‘‘1’’, and a lower bank of ports, with an identifier
beginning with ‘‘0’’. This requires an explanation. As noted
earlier, with 8-bit zonal identification fields, the network can
scale to 256 racks per pod and 256 spines. In this case, the fab-
ric and racks switches need to support 512 ports: 256 upwards
and 256 downwards. The port numbering in the figure is
designed to avoid limiting the network scale. Let us assume
that 512 ports are numbered 0-511. The lower half of these (0-
255, with the most significant bit of the identifier equal to 0)
are cabled downward; the upper half (256-511, with the most
significant bit of the identifier equal to 1) are cabled upward.
In this case, the nine-bit port identifier can be abbreviated
by its eight least significant bits (e.g., 0A and 1A are both
abbreviated as ‘‘A’’). However, from the switching context,
the switch can always determine whether the identified port
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FIGURE 3. Cabling and identifiers for Stateless Flow-Zone Forwarding.

is upward or downward, as confirmed by review of the rules
in subsection VI-A for forwarding of a server-directed frame.
Therefore, using this technique, the network can scale to
full dimension. If the rack switches and fabric switches are
limited to 256 ports, the abbreviation is not necessary, but
little effort is saved by doing away with it.

Fig. 3 is helpful in understanding these key points of the
stateless configuration:

• Server: The local zonal identify of each server (Server
ID, equal to A, B, C, or D in the ovals of the figure)
is identical to the (abbreviated) internal port identifier,
within the rack switch, of the port at which the server is
connected. This suffices to eliminate the need, described
in subsection VI-A, for a port mapping table to identify
the port associated with a Server ID value.

• Rack: The local zonal identify of each rack (Rack ID,
equal to a, b, c, or d in the figure) is identical to
the (abbreviated) internal port identifier, within the fab-
ric switch, of the port at which the rack’s ToR switch
is connected. The cabling condition is that every link to
a rack from a fabric switch must be connected, at the
fabric switch, by an identically named port. For example,
in Fig. 3, every link from a fabric switch to the ToR
switch in Rack ID=d is connected to that fabric switch’s
port 0d. This suffices to eliminate the need, described in
subsection VI-A, for a port mapping table to identify the
port associated with a Rack ID value.

• Pod: The zonal identify of each pod Pod ID (J in the
figure) is identical to the internal port identifier, within
the spine switch, of the port at which the pod’s fabric

switch is connected. The cabling condition is that every
link to a fabric switch from a spine switch must be
connected, at the spine switch, by an identically named
port. For example, in Fig. 3, every link from a spine
switch to any fabric switch in Pod ID=J is connected to
that fabric switch’s port J. This suffices to eliminate the
need, described in subsection VI-A, for a port mapping
table to identify the port associated with a Pod ID value.

These conditions suffice to eliminate all three of the port
mapping tables and the associated zonal lookup requirements
during frame descent toward a destination server. Consider,
for example, a frame sent from outside pod J to the rightmost
server (server D of rack d) of Fig. 3. The frame will ascend
to a spine switch, which will check the destination Pod ID,
see the value J, and then, without a table lookup, forward
the frame out port J, forwarding it thereby to pod J. The
frame will arrive at a fabric switch, which will determine
that the destination Pod ID identifies the fabric switch’s own
pod identifier (pod J) and therefore that the frame needs to
descend. Then, checking the destination’s Rack ID, the fabric
switch finds the identifier d.Without a table lookup, the fabric
switch forwards the frame downward to its port 0d, which
delivers it to rack switch d. Finally, rack switch d will deter-
mine that the destination Pod ID and Rack ID jointly identify
the rack switch’s own rack identity and therefore that the
frame needs to descend. Checking the destination’s Server
ID, the rack switch finds the identifier D. Without a table
lookup, the rack switch forwards the frame downward to its
port 0D, which delivers it to serverD. This forwarding system
works regardless of the spine switch at which the descent
began.
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Note that the port mapping tables (or alternatively the state-
less flow-zone zone identification which avoids those tables)
are relevant only to routing the frame toward the server during
the descent phase. During the ascent phase, the forwarding
decisions are not based on the destination zone, since any
fabric switch and any zone switch will be suitable.

C. STATELESS ZONAL FORWARDING TO SWITCHES
The prior subsection considered only the forwarding of
frames to servers, in which case the choice of spine and
spine switch may be secondary or arbitrary and in any case
is relevant only during descent. As noted above, this paper
does not fully detail the forwarding processing of frames
directed toward switches, but here we do note that fabric
switches (Fig. 2c) and spine switches (Fig. 2d) are located
on a particular spine, so identifying the Spine ID is a critical
step in the routing process. Likewise, the Spine Switch ID is
essential to routing a frame to a spine switch. The process of
forwarding such frames can make use of small port mapping
tables, as described above for the routing of server-directed
frames, or those lookups can be eliminated with stateless
forwarding.

The cabling and zonal identification structure of Fig. 3 is
designed to eliminate port mapping tables for switch-directed
frames as well as server-directed ones. The key additional
points illustrated in the figure are:

• The zonal identity of each spine switch Spine Switch ID
is identical to the (abbreviated) internal port identifier,
within the fabric switch, of the port at which that spine
switch is connected. The cabling condition is that every
link to a spine switch from a fabric switch must be
connected, at the fabric switch, by an identically named
port. For example, in Fig. 3, every link from a fabric
switch to a spine switch with Spine Switch ID=a is
connected to that fabric switch’s port 1a. Note that the
figure does not fully illustrate this point because only
one pod is shown.

• The zonal identity of each spine Spine ID is identical
to the (abbreviated) internal port identifier, within the
ToR switch, of the port at which that spine switch is
connected, via a fabric switch in that spine. The cabling
condition is that every link to a fabric switch in a partic-
ular spine from a ToR switch must be connected, at the
ToR switch, by an identically named port. For example,
in Fig. 3, every link from a ToR switch to a fabric switch
with Spine ID=A is connected to that fabric switch’s
port 1A.

Consider, for example, a frame addressed to the rightmost
spine switch (spine D, spine switch b) of Fig. 3. If the rack
switch determines, based on the address header, that the frame
is of the type illustrated in Fig. 2c or Fig. 2d, then it reads
the Spine ID value (D) from the destination address and
accordingly forwards the frame upward to port 1D, which
passes it to a fabric switch in spine D. If that fabric switch
determines, based on the address header, that the frame is

of the type illustrated in Fig. 2d and determines that the
switch is on the same spine as the destination, then it reads
the Spine Switch ID value (b) from the destination address
and accordingly forwards the frame upward to port 1b, which
passes it to the destination switch.

D. FLOW FORWARDING
While stateless flow-zone zone identification for server-
directed frames is relevant only in the descent phase, we can
also consider flow-zone flow identification, which is relevant
to the ascent phase. Namely, the rack switch, forwarding up
to a fabric switch, needs to select a spine; likewise, the fabric
switch, forwarding up, needs to select a spine switch within
that spine. Those selections cannot be made completely arbi-
trarily; for example, the network must be constrained to
maintain the order of frames within a flow, which implies
that each frame in the flow should follow the same route.
Equal-cost multi-path routing (ECMP) typically approaches
the problems by computing a hash over some components of
the frame sufficient to identify the flow and then forwarding
based on the hash. This is a nonideal approach because (1) the
flows are imprecisely identified by the network; (2) the flows
are all treated equally and intermingled, without respect to
their differentiated QoS requirements; (3) the hash calcula-
tions are an additional burden to the switches.

The FZS approach to this problem is to specify the flow
in the Flow Level ID fields of the frame and ensure that
the switches are informed of the preferred Spine ID and
Spine Switch ID of that flow. The switch can be informed
in various ways. For example, port mapping tables could be
used to translate the Flow Level 2 ID and Flow Level 1 ID
fields of a server-directed frame into specific ports leading
to the designated spine and spine switch; this could also be
made stateless (see the following subsection).With additional
complexity, switches could be enabled to make independent
decisions; for examples, choosing an alternative forwarding
port based on knowledge of congestion.

E. STATELESS FLOW FORWARDING
The flow-zone zone identification of subsection VI-C can
be applied to stateless ascent forwarding of server-directed
frames based on flow identifiers. Consider, for example,
a frame sent from the leftmost server (server A of rack a
of Fig. 3). Once the rack switch determines, based on the
destination address zonal fields, that the frame needs to be
forwarded upwards, it needs to choose a port (1A, 1B, 1C,
or 1D). Using stateless flow-zone flow forwarding, that deci-
sion is made (or at least suggested) by the frame itself, which
contains the literal port identifier. This could be contained
in, for example, the Flow Level 2 ID field. So, for example,
Flow Level 2 ID field valueDwould direct the rack switch to
forward the frame upward out port 1D, which would transfer
it to a fabric switch in Spine D. From there, the fabric switch,
reading (for example) Flow Level 1 ID field, might find
the value b and therefore forward the frame out its port 1b,
thereby transferring the frame to Spine Switch b.
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F. STATELESS FLOW-ZONE ADDRESS ASSIGNMENT
In order to further illustrate the network configuration
required for stateless flow-zone forwarding, we provide
here an algorithm to automatically assign, given the cabling
arrangement of Fig. 3, all of the zone identifiers to match the
port identifiers of the output ports leading to those zones. The
cabling requirements are described in more detail above in
subsections VI-B and VI-C.

All messages exchanged in conducting this algorithm are
transmitted as link-local frames, meaning that they are not
forwarded by a receiving switch. For example, IEEE Std
802.1Q specifies that frames addressed to 01:80:C2:00:00:0E
are not forwarded by an IEEE 802.1Q bridge. Thesemessages
will be read only by the immediate recipient.

1) Spine switches are made aware that they are spine
switches and should begin the assignment process.

2) Each spine switch sends a spine-to-fabric message
from each of its ports indicating that the recipient
is a fabric switch and including a parameter equal
to the spine switch’s internal identifier of that output
port.

3) Each fabric switch receives those spine-to-fabric mes-
sages and confirms that they all contain the same value;
otherwise, the physical connectivity is incorrect and
a diagnostic error results. If the incoming messages
are consistent, the fabric switch identifies those ports
as upward spine switch ports, identifies itself as a
fabric switch, and identifies its own Pod ID value as
the common parameter received in the spine-to-fabric
messages.

4) Each fabric switch sends, to each of its other live ports,
a fabric-to-rack message with a Parameter 1 equal to its
own Pod ID value and a Parameter 2 equal to the fabric
switch’s (abbreviated) internal identifier of the output
port.

5) Each rack switch receives those fabric-to-rack mes-
sages and confirms that they all contain the same
parameter values; otherwise, the physical connectivity
is incorrect and a diagnostic error results. If the incom-
ing messages are consistent, the rack switch identifies
those ports as upward fabric switch ports, identifies
itself as a rack switch, identifies its own Pod ID value
as the common Parameter 1 received in the fabric-to-
rack messages, and identifies its own Rack ID value as
the common Parameter 2 received in the fabric-to-rack
messages.

6) Each rack switch replies to each fabric switch with a
rack-to-fabric message including a parameter equal to
the rack switch’s (abbreviated) internal identifier of that
output port. Each fabric switch receives those rack-
to-fabric messages and confirms that they all contain
the same value; otherwise, the physical connectivity is
incorrect and a diagnostic error results. If the incoming
messages are consistent, the fabric switch identifies
those ports as downward rack switch ports, confirms its
identify as a fabric switch, and identifies its own Spine

ID value as the common parameter received in the rack-
to-fabric messages.

7) Each rack switch sends, to each of its other live ports,
a rack-to-server message with Parameter 1 equal to its
own Pod ID value, Parameter 2 equal to its own Rack
ID value, and a Parameter 3 equal to the rack switch’s
(abbreviated) internal identifier of the output port.

8) Each server identifies those ports as rack switch ports,
identifies itself as a server, identifies its own Pod ID
value as the common Parameter 1 received in the rack-
to-server messages, identifies its own Rack ID value as
the common Parameter 2 received in the rack-to-server
messages, and identifies its own Server ID value as
the common Parameter 3 received in the rack-to-server
messages.

9) Each fabric switch replies to each spine switch with a
fabric-to-spine message including a Parameter 1 equal
to its equal to its own Spine ID value and a Parame-
ter 2 equal to the fabric switch’s (abbreviated) internal
identifier of the output port. Each spine switch receives
those fabric-to-spine messages and confirms that they
all contain the same value; otherwise, the physical
connectivity is incorrect and a diagnostic error results.
If the incoming messages are consistent, the spine
switch identifies those ports as downward fabric switch
ports, confirms its identify as a spine switch, identifies
its own Spine ID value as the common Parameter 1
received in the fabric-to-spine messages, and identifies
its own Spine Switch ID value as the common Parame-
ter 2 received in the fabric-to-spine messages.

Each switch and server, once it has identified its zonal
identifiers, configures a set of Layer 2 addresses for itself,
based on the formats shown in Fig. 2.

VII. FLOW-ZONE SWITCHING: BENEFITS
To summarize key points of this description, flow-zone
switching promises numerous benefits, including:

1) Scalability: As noted earlier, the version of flow-zone
network described, with three one-octet zone identi-
fier fields and two one-octet flow identifier fields in
an address, can scale to 224 servers with 256 VMs
per server and 256 flows per server. In a smaller net-
work, the zonal fields can be scaled to smaller size, and
additional bits are thereby freed up for new purposes or
finer flow granularity. In the near term, 224 servers is
far larger than necessary for practical data centers. For
example, the hyperscale network of in [2] appears to
use 4 spines (compared to a limit of 256), up to 48 spine
switches per spine (compared to 256), and 48 racks per
pod (compared to 256), with a topology claimed to be
‘‘capable of accommodating hundreds of thousands’’
of servers.

2) Switch simplicity: Flow-Zone switches, particularly
with stateless configuration, maintain no forwarding
tables and forward to ports specified in the frame,
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potentially with discretion to use alternate forward-
ing when appropriate. This implies a drastic reduc-
tion in on-board memory. The parallel reduction the
computational requirements (through the elimination
of lookups, hash calculations, etc.) may result in mea-
surable improvement in latency and electrical power
consumption. Note that Layer 3 forwarding requires at
least a frame update, replacing the IP TTL as well as
the MAC SA, DA, and FCS fields; identifying the DA
typically requires an ARP cache lookup, and the FCS
requires recalculation. By comparison, Layer 2 for-
warding requires none of these, as frames are forwarded
unaltered.

3) Overhead: Because end-to-end routing is achieved
directly based on Layer 2, extra frame overhead due to
overlays is avoided. Also, flow identifiers can be used
to as indices to headers that are common to all frames
in the flow and may be consequently suppressed during
transmission, to be rebuilt at the destination. This can
achieve overhead reduction.

4) Overhead: Address distribution: Flow identifiers are
exposed to all switches, allowing diverse flow man-
agement methods, as well as to the receiving end
station, for post-reception processing such as header
decompression indexed by the fine-grained flow. Each
frame contains the path towards its source, as well
as to the destination, with separate source-based and
destination-based flow fields, assigned without the
intervention of any other protocol or mechanism. This
means, for example, that the destination can learn
directly learn the Layer 2 flow-zone address associated
with the IP address of a received frame and can respond
to that frame without the need to consult an external
ARP server.

5) Network QoS: Flows can be directly identified in
the frame. The network can consequently route differ-
ent flows differently, with fine granularity, based on
instructions imposed at the source.

The issue of network QoS is a complex one that deserves fur-
ther study and is, in fact, a primary subject of the evaluation
study reported below. The example we have studied consid-
ers TCP flows. This is a simple but interesting case. TCP
flows generally take two different forms: large data packets
in one direction, and small, latency-sensitive acknowledge-
ments (ACKs) in the other. In this paper, we refer to the
data flows as ‘‘elephant flows’’, regardless of the number
of frames in the flow, and the ACK flows as ‘‘mice flows’’.
Likewise, we refer to data frames, typically 1500 bytes long,
as ‘‘elephant frames’’, and ACK frames, typically 64 bytes
long, as ‘‘mice frames’’. Switches that attempt to classify
frames on the basis of typical frame headers (MAC addresses,
IP addresses, Ethertype, Layer 4 port, etc.) will not see a dif-
ference between the elephant data frames and themice ACKs.
However, the source is well equipped to identify the ACKs
and can assign them a flow identifier to distinguish them
from the elephants. If the flow-zone network is configured

to sense the flow identifiers and consequently route the mice
onto a path that is reserved for mice only, then we can
expect less-congested and lower-latency receipt of ACKs,
which may result in a more efficient TCP process. Such a
reserved route is easily configured, by steering the mice onto
a particular spine or to particular spine switches, as described
in VI-D. In such a simple example, one might ask whether
the loss of bandwidth available to the elephants (due to their
confinement to fewer spine switches) might be more than
offset by the gain due to the timelier ACK delivery. Such a
study is reviewed below. Note that this example is but one
simple case of how FZS might be applied in the DCN for
flow segregation.

VIII. FLOW-ZONE SWITCHING: IMPLEMENTATION
The SDN paradigm decouples the control and data planes,
centralizing the network logic in a controller. SDN boosts net-
work flexibility and programmability, as compared to legacy
distributed-control networks. Control in SDN is installed
in the data planes via diverse protocols and languages.
We review the two most popular, which we considered for
our FZS study: OpenFlow and P4.

A. OPENFLOW CONSIDERATIONS
The understanding and deployment of SDN has been sig-
nificantly accelerated by the Open Networking Foundation
(ONF) [19]. The original focus of the ONF was the specifi-
cation of the OpenFlow Switch Speci?cation [18].

An OpenFlow Logical Switch includes ?ow tables that per-
form packet lookups and forwarding and provides an Open-
Flow channel to an external controller to control and config-
ure the flow tables. Lookups and actions are programmable
and can be performed consecutively. While we considered
implementing FZS in OpenFlow, we ultimately concluded
that it was not sufficiently flexible.

An OpenFlow flow table can be programmed to match any
bits, as specified by an arbitrary bit mask, of a frame’s MAC
SA or DA. Based on this capability, we provide the following
example of steps that could be implemented in OpenFlow
to embody the ToR Switch Forwarding of a server-directed
frame, as described in subsection VI-A:

• In the first flow table, the OpenFlow ToR switch com-
pares the address header of the incoming frame’s DA to
the address header indicating a server (Fig. 2a). In case
of a match, the frame is passed to a second flow table.

• In the second flow table, the switch compares the Pod
ID and Rack ID of the DA to the switch’s own internal
identities. In case the parameters match, the frame needs
to be forwarded downward to a server port; to determine
the port, the frame is passed to a third flow table.

• The third flow table includes an entry for each Server ID
and the associated identifier the port to that server. The
switch checks for a match of the Server ID and the frame
is forwarded downward to the identified server port.
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FIGURE 4. P4 abstract forwarding model.

While this approach is generally suitable for implementing
FZS, it cannot implement the stateless FZS of subsection VI-
B because the last table needs to be stored and populated.
In stateless FZS, the Server ID literally provides the port
identifier. To our understanding, OpenFlow does not provide
a means to forward to a port identified by a variable (such as a
parameter read from the frame) but only to a value identified
by a table match. As a result, we did not pursue an OpenFlow
implementation of FZS.

B. p4 CONSIDERATIONS
OpenFlow evolved rapidly beginning in around 2008 but has
not been updated since April 2015. Meanwhile, the ONF [19]
hosts the ongoing development of P4.

P4 [20] (a name derived from the term ‘‘programming
protocol-independent packet processors’’) provides a pro-
grammable language to specify the forwarding behavior
of a switch, whether the switch is based on Application-
Specific Integrated Circuit (ASIC), Network Processing
Unit (NPU), Field Programmable Gate Array (FPGA) or
reconfigurable soft switch technology. P4 is based on an
abstract forwarding model, illustrated in Fig. 4, compris-
ing a packet parser, a set of tables with match-action
flows, and a deparser. The imperative P4 language describes
the behavior of each of the abstract forwarding model
components.

Unlike OpenFlow, which analyzes packets based on a
well-known set of protocols, P4 specifies parsing in a
protocol-independent, programmable fashion. P4 supports
parsing all the bytes of the packet and programmatically
extracting specified headers. Based on the extracted headers,
P4 processes the packet through ingress and egress pipelines,
comprising a series of table match-action pairs that support
conditional statements. Subsequently, the deparser constructs
an output packet, and forwarding instructions, based on the
table actions. Once a program specifies the abstract forward-
ing model, a compiler creates a binary for the specific switch
implementation, including a Table DependencyGraph (TDG)
allowing independent tables to be processed in parallel for
speedy completion.

P4 provides sufficient flexibility to implement stateless
FZS per subsection VI-B, along with stateless flow forward-
ing per subsection VI-E.

C. P4 IMPLEMENTATION
We developed a P4 implementation of the stateless FZS of
subsection VI-C, including the stateless flow forwarding of
subsection VI-E. At startup, each switch is configured with
three parameters describing its location in network. These
parameters can be configured using any convenient method,
such as the stateless flow-zone address assignment process of
subsection VI-F. The three parameters are:
• switch type: one of the three values ToR, fabric, or spine,
indicating the node type, per subsection V-C

• ZoneID1 and ZoneID2: two parameters identifying the
switch zone in the network, assigned as in Fig. 2 for the
three switch types. In particular:
– if switch type = ToR then ZoneID1 = Pod ID and
ZoneID2 = Rack ID

– if switch type = fabric then ZoneID1 = Spine ID
and ZoneID2 = Pod ID

– if switch type= spine then ZoneID1= Spine ID and
ZoneID2 = Spine Switch ID

The programmability offered by P4 allows us to specify
the parsing of incoming packets, enabling the extraction of
the flow-zone address fields depicted in Fig 2.

The implementation used for the experimentation stores,
in a P4 header structure, each of the bytes of the DA and SA
for further processing. The first byte of each address contains
the flow-zone address header, which identifies the address
format as one of the four types shown in (see Fig. 2). Here
we consider only server-directed frames (i.e., with the DA
formatted as in Fig. 2a).

The P4 program next makes a frame forwarding deci-
sion based on the flow-zone forwarding method described
in section VI. During frame descent, the forwarding method
of subsections VI-A and VI-B is applied. During ascent, our
study applies a simple form of the forwarding method of
subsections VI-A andVI-E in which forwarding decisions are
independent of the fields extracted from the SA. Therefore,
since the destination is a server, the DA has the format of
Fig. 2a and the following are the relevant fields:

• Pod ID = 2nd byte of DA
• Rack ID = 3rd byte of DA
• Server ID = 4th byte of DA
• Flow Level 1 ID = 5th byte of DA
• Flow Level 2 ID = 6th byte of DA
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Each of these fields is presumed to contain the literal identi-
fier of a forwarding port. As seen in the following paragraph,
each switch uses only a subset of these fields and need not
parse or store the others.

The forwarding method depends on the switch type:
• switch type=ToR: If Pod ID=ZoneID1 and RackID=
ZoneID2, the (downward) output port is identified as the
frame’s Server ID value. Otherwise, the (upward) output
port identified as the frame’s Flow Level 2 ID value.

• switch type=fabric: If Pod ID=ZoneID1, the (down-
ward) output port is identified as the frame’s Rack ID
value. Otherwise, the (upward) output port identified as
the frame’s Flow Level 1 ID value.

• switch type=spine: The (downward) output port is iden-
tified as the frame’s Pod ID value.

Next, P4 deparses the frame, constructing an egress frame
that, in this case, is a duplicate of the ingress frame. Finally,
the switch forwards this egress frame to the selected output
port, as literally extracted from the DA.

D. SINGLE-SWITCH VALIDATION
After implementing the FZS solution, we performed unit test-
ing, comparing the performance of stateless FZS to a baseline
switching method. Both methods were programmed in P4 in
a single switch, built with the ‘‘behavioral-model’’(bmv22)
reference P4 software switch. Both switches were configured
to parse the ingress frame, identify an output port, deparse
the frame, and forward the egress frame, which was identical
to the ingress frame. The only difference between the two
methods was in the determination of the forwarding port. The
FZS method extracted it literally from a field in the DA. The
baseline switch performed a table look up the DA, to identify
the egress port. We populated the forwarding table of the
baseline switch with 5000 entries as a reference value for the
lookup delay (considering 5000 as the minimum number of
servers in an ‘‘hyperscale’’ data center). [1]

The unit test validation testbed consisted of one
bmv2 switch connected to two hosts running in a mininet
environment. Firstly, we measured the throughput using TCP
traffic generated by iPerf,3 with results depicted in Fig. 5a.
FZS achieved an average throughput of 963Mbit/s, compared
to 853 Mbit/s with the baseline table-based solution.

We also measured the round-trip time (RTT) in the same
validation scenario using the Linux ping tool. The results are
shown in Fig. 5b. The stateless FZS solution achieved a lower
average RTT of 0.27ms, compared to 0.29ms when using the
baseline table-based solution.

In these experiments, the link capacities were unlimited,
and the switch operations were all conducted in software,
rather than in custom hardware optimized for table matching.
The simulation results are therefore not intended to simulate
the performance of a real switch but only to ensure FZS
operation and to compare it with an estimate of the baseline

2https://github.com/p4lang/behavioral-model
3https://iPerf.fr

FIGURE 5. P4 switch comparison of baseline table-based switching vs.
Stateless Flow-Zone Switching.

table-based switch performance. These results show that
FZS performs better than the baseline table-based solution
in the unit testing scenario, establishing a baseline result
for the understanding of the experimentation performed in
Section IX, regarding the performance of both software
switching approaches on the machine used to perform the
experimentation.

It is worth highlighting that in order to incorporate flow
differentiation into the baseline table-based switch, we would
need a more complex P4 pipeline, and a hash calculation to
emulate Equal Cost Multi-Path (ECMP). We anticipate that
this would add delay and reduce the overall performance.
However, in the FZS case, this functionality is embedded
directly in the flow level identifiers of the address and adds
no processing burden.

With unit testing showing FZS performance better than the
legacy approach, we proceeded to evaluation in a complete
DCN.

IX. EXPERIMENTAL EVALUATION
A. SCENARIO
Herein we evaluate the FZS solution in a complete DCN.
The experimental evaluation detailed in this section was con-
ducted using the topology depicted in Fig. 6, which is con-
sistent with that of Fig. 1 and Fig. 3. The evaluation topology
comprises 4 spines of 4 spine switches each, 4 pods of 4 fabric
switches and 4 rack switches each, and 2 servers per rack. The
switches and servers are numbered in the figure in accordance
with the location in the topology:
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FIGURE 6. Data center topology used for the evaluation.

1) spine switches are labeled with a digit indicating the
spine and a second indicating the spine switch within
the spine;

2) fabric switches are labeled with a digit indicating the
pod and a second indicating the spine;

3) ToR switches are labeled with a digit indicating the pod
and a second indicating the rack;

4) servers are labeled with two digits indicating the rack
and a third indicating server within the rack.

These identifiers are aligned with the element flow-zone
address formats of Fig. 2.

The topology was created using Mininet,4 a network emu-
lator that uses process-based virtualization to run many hosts
and switches on a single Operating System (OS) kernel.
We set the link bandwidth to 10 Mbit/s. Each switch egress
port was configured with 1.5 MB of buffer, per the default
Linux configuration.

For TCP data, we ran iPerf (iPerf2) processes at each
server. In iPerf terminology, the client process sends data to
the iPerf server process. In our case, each server in the net-
work executes one iPerf server process and three iPerf client
processes. Each of the server’s three iPerf client processes
is configured to transmit TCP data blocks in a different data
block size; the sizes are small (500 KB), medium (5 MB)
and large (50 MB). Each iPerf client selects a server, opens
a TCP connection to that server, transmits its data block,
closes the TCP connection, and then repeats, beginning again
by selecting a new server. Each connection is considered
small, medium, or large, in accordance with the size of the
transmitted data block. The servers are selected at random
among those outside the pod of the client, so that all TCP
traffic is forced through a spine switch.

All switches were programmed as described in subsec-
tion VIII-C, with Flow Level 2 ID identifying the spine and
Flow Level 1 ID identifying the spine switch. Note that, in this

4http://mininet.org/

example, the flow identification fields were not used as VM
identifiers, but they could be used independently for that
purpose as well with suitable partitioning.

A key feature of FZS is the flexibility to implement
flow-dependent routing behaviors and, based on Software-
Defined Addressing (SDA), specify the routing entirely at the
end nodes, without reconfiguration of the network. To illus-
trate this potential, we implemented experiments using FZS
to segregate TCP segments, routing elephants (data packets)
and mice (ACKs) through different switches. This can illus-
trate not only the features of FZS but also its potential to
implement new routing behaviors. Using a single experimen-
tal network configuration, as described above, we evaluate
two different forwarding methods, based not on differences
in the DCNs or the switch forwarding method but only on
differences in the servers’ creation of the frame DAs. The two
methods are:

1) Flow Distribution: The servers create the DA Flow
Level 2 ID and Flow Level 1 ID randomly, so that the
ascending route to a spine switch is randomized over
the whole topology. This method can be interpreted as a
particular form of label-based segment routing, where
the source of the packet indicates the destination and
the route to reach it, although in this case the route is
randomly selected by the source.

2) Flow Segregation: The servers again assign Flow
Level 1 ID randomly, distributing both mice and ele-
phant flows among the spine switches within the Flow
Level 2 ID spine. However, mice and elephants are
segregated into separate spines. The servers tag the
DA of all ‘‘elephant’’ frames (TCP data frames) with
DA Flow Level 2 ID selected randomly among the
values 2, 3, or 4; they tag the DA of all ‘‘mice’’ frames
(TCP ACK frames without data) with DA Flow Level
2 ID equal to 1. As a result, spine 1 is used exclu-
sively for mice frames and spines 2-4 exclusively for
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elephant frames. The intention of the segregation is
that, by reserving switching capacity for mice and elim-
inating ACK competition with elephants in fabric and
spine switches, we can reduce the ACK latency and its
jitter and thereby improve network efficiency, in spite
of the fact that the elephants will be limited to 75% of
the spine capacity. This improvement may be estimated
using a classic result (sometimes knows as the ‘‘Mathis
equation’’ [21]) predicting the TCP throughput T as:

T <
MSS
RTT

C
√
p

(1)

where C is a constant on the order of 1, MSS is the
maximum segment size (typically 1460 bytes here), p
is the packet (frame) loss rate, and RTT is the TCP
round trip time. In this model, reducing RTT may
improve the throughput, unless p increases drastically.
In addition, reduced jitter may increase the accuracy of
round-trip time estimates and thereby reduce the like-
lihood of false TCP timeouts, which result in unneces-
sary retransmissions and congestion window fallbacks.

In both methods, Flow Level 2 ID and Flow Level 1 ID
are kept constant throughout the duration of a connection,
routing all frames of a connection on the same path to prevent
reordering.

B. STATIC LINK LOAD ANALYSIS
In order to better understand the scenario, we developed a
static analysis of the network with an emphasis on under-
standing the extent towhich its links are likely to be congested
by data frames. As described above, the data frame sources
select destination servers and spine routes randomly. Each
such selection determines a full route. After each server
selects a route for each of its three connections, we can
analyze the links to determine how many connections each
carries.We repeated this random selection to conduct aMonte
Carlo simulation over many runs. The results are summarized
in Table 2 and Table 3, using Flow Distribution and Flow
Segregation, respectively. The tables refer to five link types:

• ‘‘RF’’ links go from a ToR switch to a fabric switch;
• ‘‘FS’’ links go from a fabric switch to a spine switch;
• ‘‘SF’’ links go from a spine switch to a fabric switch;
• ‘‘FR’’ links go from a fabric switch to a ToR switch;
• ‘‘RS’’ links go from a ToR switch to a server.

TABLE 2. Static Link Load using Flow Distribution.

TABLE 3. Static Link Load using Flow Segregation.

The RS load averages 3.0; an average of three connections
is delivered to each server. Using Flow Distribution, each
spine link type averages a load of 1.5 connections in each run,
since the 96 connections are distributed across the 64 links
at each level. Using Flow Segregation, that equivalent load
is 2.0 in each run, since the data frame connections are
distributed across only 48 links. The tables do not show the
load of the first link, from a server to a ToR switch, because
that is 3.0 in each case, since each server sends exactly three
connections.

We also counted the ‘‘overloaded links’’, which we define
to be those bearing more than the three connections borne by
the server link to a ToR switch. If each such connection were
delivered with one-third of the line rate, an overloaded link
would be congested. Using Flow Distribution, approximately
4-6% of the spine links are overloaded. These could poten-
tially result in congestion affecting not only data connec-
tions but also ACKs in mice flows. Using Flow Segregation,
the ratio of overloaded spine links is more than doubled;
however, this should not affect the delivery of mice flows,
since they are routed through the reserved spine.

Additional detail is shown in Fig. 7, which provide his-
tograms showing the number of links of each type for each
level of connection load. As shown, some links are over-
loaded with more than four connections; this could lead to
particularly heavy congestion. Note that RS link overload,
which is independent of the network and routing, is dominant.
As a result, the error rate p in Eq. (1) is expected to vary little
between FD and FS, suggesting that improvement due to RTT
may dominate.

C. EMULATION RESULTS
We analyzed the FZS DCN using the network and TCP traffic
patterns discussed above, studying primarily:

• total transmission time to successfully transmit a 50 MB
data chunk;

• TCP congestion window (which we abbreviate subse-
quently as ‘‘Cwnd’’), measuring the maximum Cwnd
achieved per TCP connection;

• duplicated ACKs and retransmissions.

For each metric, we measured with both Flow Distribution
and Flow Segregation, and we collected data individually for
the three connection sizes.We also conducted each studywith
two common TCP congestion control algorithms: CUBIC
and Reno. CUBIC, the default TCP algorithm in Linux
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FIGURE 7. Link Load Histograms.

kernels, uses a cubic function to grow the Cwnd. Reno grows
the Cwnd using a linear function, resulting in a less aggressive
increase than CUBIC. For both TCP variants, we used its
native Linux stack implementation.

Fig. 8 presents cumulative distribution functions (CDFs)
of the transmission time needed to convey a 50 MB data
chunk in one large TCP connection, with a 50MB data block;
in 10 medium TCP connections, with 5 MB data blocks; and
in 100 small TCP connections, with 500 KB data blocks.
The results are averaged over all the iPerf clients during
experiments of 600 seconds, repeated 30 times for both
TCP variants and including only connections that completed
within 600 s.

Fig. 9, derived from the data underlying Fig. 8, indicates
the throughput of the chunk; we call this the ‘‘chunk rate.’’
As shown, only in a few cases did the chunk rate approach
themaximum theoretical rate (the line rate of 10Mbit/s minus
about 5% in Layer 1–4 overhead).

To better understand the effect of Flow Segregation as
enabled by FZS, Fig. 10 shows the maximum Cwnd achieved
per connection, for the three connection sizes, as CDFs.

Using the data of Figs. 8, 9 and 10, we tabulated average
results, in Tables 4 and 5.

These tables, summarizing Flow Distribution and Flow
Segregation, respectively, present individual results for each
of the three connection sizes and both of the TCP methods.

FIGURE 8. Time to transmit 50 MB using different connection sizes.

FIGURE 9. Throughput transmitting 50 MB using different connection
sizes.

The third column shows the chunk rate. The fourth column
sums the three chunk rates in order to obtain a server data rate,
totaled over all three connections transmitted by the server
(excluding ACK transmission). The fifth column shows the
average value of the maximum Cwnd attained during the
course of each connection.

68360 VOLUME 9, 2021



S. Gonzalez-Diaz et al.: Stateless FZS Using SDA

TABLE 4. Results using flow distribution.

TABLE 5. Results using Flow Segregation.

FIGURE 10. Maximum TCP congestion window (Cwnd).

Tables 4 and 5 also include data not related to the prior
figures. In particular, the sixth column uses a TCP retransmis-
sion (reTx) count, as totaled over a sample interval of 300 s.
The column displays the average reTx rate, as normalized to
the number of frames sent during the sample interval; this was
estimated based on the duration of the sample (300 s) and the
average chunk rate, given in the third column, at 1500 bytes
per frame.

In Tables 4 and 5, the seventh column shows the average
unique duplicated ACK rate, again normalized to the number

of data frames sent during the 300 s sample. Here, a unique
duplicatedACK is a series of ACK frameswithout an increase
in the acknowledgement number. Such a sequence indicates
a dropped frame, a defective frame, or an out-of-order frame.
Since out-of-order frames are essentially precluded by the
network flow and defective frames unlikely given the experi-
mental arrangement, we presume that each unique duplicated
ACK indicates a dropped data frame, which, to our knowl-
edge, can occur only as a result of buffer overflow. Therefore,
we refer to this number as the ‘‘drop rate’’ of data frames, and
we have labeled the column accordingly.

The TCP retransmissions represented in the sixth column
are issued in response to both triple-duplicate ACKs (indica-
tive of dropped data frames) and timeouts (indicative of
dropped ACKs).

Therefore, the reTx rate minus the unique duplicated ACK
rate should indicate the timeout rate, which is displayed in the
eighth column and labeled accordingly.

Table 5 also displays the relative change, as a percentage,
of the Flow Segregation results in comparison to the parallel
Flow Distribution result of Table 4.

Based on these tables, we make the following observations
regarding the data rates and Cwnd results:

1) Flow Segregation increases the server data rate of
the network with both TCP methods, even though,
as shown in the static link load analysis of IX-B,
the connection load of the network links increases by
1/3 and the links are accordingly much more likely to
be overloaded. In our study, the increase in server data
rate was 17 % for CUBIC and 14 % for Reno.

2) The performance of CUBIC and Reno were similar
using Flow Distribution. CUBIC benefited more from
Flow Segregation, particularly for small connections,
and performed better overall in that case.
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3) In each case, the sum of the three maximum Cwnd
values for each server was around 2-3 MB. This pro-
vides an upper bound on the average Cwnd from each
server. Considering the 32 servers, this suggests a total
Cwnd of considerably less than 100 MB at any given
time. The Cwnd represents the data in flight, which is
stored in buffers. The total amount of buffer space in the
network (at 1.5 MB per switch egress port) is 432 MB.
Consequently, it appears that the typical buffer was
mostly empty, suggesting that the congestion was lim-
ited to a few switches at any given time. This matches
our understanding of the network based on the static
link load analysis of IX-B.

4) Flow Segregation had very little effect on the Cwnd
of the small and medium connections and affected the
Cwnd of large connections only using CUBIC. These
results are more clearly illustrated by Fig. 10. It appears
that the small connections may have been too short for
TCP to reach a stable point. To illustrate, note that,
for each small connection case, the average maximum
Cwnd is at least half the connection size (e.g., for Reno,
the Cwnd was 0.32 MB for a connection of 0.5 MB).
This suggests that, at the time the maximum Cwnd was
reached, half the total data was in flight, suggesting that
the flow will complete in less than one round trip time
afterwards. In spite of this ambiguous result concerning
the window size, it is clear from Table 5 that the chunk
data rate of the small connections was nevertheless
improved by Flow Segregation, by near 29% using
CUBIC. Therefore, it appears that the improvement
may not be strictly explainable in terms of window size.

5) Flow Segregation had little effect on the maximum
Cwnd of the medium connections; those might have
also been too short for TCP to reach a stable point, with
the maximum Cwnd about a tenth of the connection
size. The chunk data rates of the medium connections
were improved by Flow Segregation, but only slightly.

6) The chunk data rates of the large connections were sig-
nificantly improved by Flow Segregation, but without a
clear correlation to the maximum Cwnd. Other factors
may better explain the improvements. For example,
if Flow Segregation decreases the timeout rate, then
the connections will spent more time operating near
the maximum Cwnd point and less time shrinking the
window and retransmitting.

7) Flow Segregation reduces the rate of retransmission
due to both dropped data frames and timeouts, as seen
in the last two columns of Table 5. For both TCP
variants, the improvement in the retransmission rate
correlates with the increased chunk rate, as particularly
seen in the large and small connection data.

8) According to our basic understanding, the timeout
rate is associated with dropped ACKs, resulting from
buffers that are filled due to congestion. We expect
Flow Segregation to alleviate ACK drops occurring in
the spines but not to directly aid in drops at the ToR

switches. Therefore, we anticipate Flow Segregation to
significantly, but not entirely, reduce the timeout rate.
This matches the results in Table 5.

9) The timeout rate is relatively independent of connec-
tion size. It is comparable to the drop rate for small
connections but much larger for larger ones.

10) The drop rate is highest for the small connections and
decreases for the medium and large connections, vary-
ing roughly with the inverse of the connection size.
Based on this observation, we postulate that most of
the packet drops occurs during the startup phase of the
TCP stream; on aggregate, the small streams start up
10 times as often as the medium ones and 100 times
as often as the large, which is consistent with the pos-
tulation and the data. Regarding the improvement that
FS brings to the drop rate, in spite of the reduction in
switching capacity for the elephant frames, we surmise
that the improved ACK latency shortens the startup
phase.

X. FOLLOWUP RESEARCH
FZS suggests many opportunities for future research. Here
we note a few points.

1) Access links: Methods to reduce the bottleneck we
observed at the access link from the server to the
ToR switch should be considered. For example, mul-
tiple parallel links could be provided, and the role of
flow identifiers in choosing an access link could be
considered.

2) Flow Routing: Our evaluation considered two sim-
ple alternatives for flow routing: flow-neutral Flow
Distribution, and Flow Segregation, which reserved a
spine for TCP ACKs. Without changing the network,
many other possible approaches are available simply by
various forms of Software-Defined Addressing. Flows
could be segregated in different switch configurations,
such as by spine switch, and could be sorted based on
different flow characteristics.

3) Frames addressed to switches: In V-D, we described
flow-zone address formats suitable for frames
addresses to the network switches, but our analysis
was confined to frames addresses to servers. Many
applications of FZS are relevant also to delivery
of control-plane and management-plane frames to
switches. For example, software-defined networking
relies on timely communication among nodes and
with controllers. As a direct extension of the methods
described herein, we could consider a controller that
would reprogram forwarding to select an alternative to
the port specified in the frame, based on switch or link
failures or temporary congestion.

4) Additional use of flow identifiers by switches: The
FZS flow identifier could be used to separate flows into
queues; for example, to segregate mice and elephants
at the ToR switch and ensure that ACKs are on the
fast lane, end to end. The flow identifier could be used
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for other purposes, including, for example, exposing
flow identifications directly at Layer 2 for flow control
purposes.

5) Additional use of flow identifiers by end nodes: The
FZS flow identifier could be used to encode header
suppression fields to reduce overhead and possibly
for security purposes. For example, a series of frames
addressed from one VM to another may all refer to a
common IP source address and a common IP destina-
tion address. In that case, the IP addresses could be sup-
pressed in the network, where they are unneeded, and
restored at the destination based on the flow identifier.

6) Mobility: A key aspect of the design of data center
routing methodology is the need to accommodate VM
mobility, since flexible usage demands the ability to
seamlessly migrate VMs among servers. Traditionally,
addresses serve to provide both an identity and a loca-
tion, and mobility demands both. Historically, Layer 2
addresses have been flat and unique, characteristics
suitable for identification, and Layer 3 addresses have
been hierarchical, characteristics suitable for location.
In the form of FZS described herein, the Layer 2
address serves as a complete identifier of the location
of the server, and, if appropriate, VMs as well. In an
typical data center, the VMs will also be assigned an
IP address at Layer 3. In this case, the IP address
serves as an identifier but does not necessarily provide
location. As a result, the logical approach to migration
is for the VMs to retain its identity; namely, its IP
address, while the network updates the location (the
Layer 2 address). Some sort of mapping from Layer 3
destination address to Layer 2 destination address is
required. In the simplest case, FZS can use a form of
ARP, preferably proxy ARP, for this purpose, or more
efficient alternatives may be feasible.

XI. CONCLUSION
This work presents Flow-Zone Switching, a loop-free routing
solution based on Software-Defined Addressing. The method
embeds routing instructions directly in the MAC address,
simplifying the switch hardware and processing requirements
and eliminating the need for routing tables and lookups. FZS
uses the octets of the MAC address to encode an address for-
mat identifier to identify the type of frame, two or three zone
identifiers to locate the servers and switches in the typical
topology, and one or more flow IDs to identify the traffic
flows or flow types, allowing per-flow management with fine
granularity, complex Quality of Service (QoS) management,
and advanced resource allocation.

Key characteristics and advantages of this work can be
summarized as follows:

• The FZS routing method minimizes the state in switches
by embedding the routing instructions directly in the
MAC addresses, completely removing the need for for-
warding tables.

• The routing instructions embedded in the MAC address
express the zonal location of the network element in
the topology as well as flow identifiers allowing diverse
flowmanagement methods, differentiating FZS from the
previous solutions.

• The approach does not incur in any overhead in the
packet and it can be implemented so no distribution of
control (e.g., label to path binding) is required.

• Each FZS frame contains the path towards destina-
tion and it specifies also the full path towards its
source, without the intervention of any other protocol or
mechanism.

• The FZS approach provides enhanced scalability
through switch simplification and flexible MAC address
semantic space.

• FZS can implement arbitrary traffic engineering mech-
anisms, even separating packets that, per traditional
5-tuple characterization, belong to the same flow
(e.g., TCP data segment and TCP ACK).

• Our approach follows the latest innovations in IEEE
802 addressing, using the new features provided by
IEEE 802c.

• As with the IETF RIFT5 (Routing in Fat Trees) Working
Group, the method is not generalized to all topologies
but instead is designed to take advantage of the popular
Fat Tree network topology.

To validate the abovemerits, we evaluated the performance
of FZS in a four-spine Clos data center network structure,
using two versions of TCP. We implemented two different
routing methods entirely at the end servers, without recon-
figuring the network in any way, simply by changing the
Software-Defined Addressing approach. In the Flow Distri-
bution (FD) method, flow addressing was used to distribute
the flows randomly over the switching network. In the Flow
Segregation (FS) method, we reserved one spine (25% of
the network capacity) for ACKs, segregating the elephants
(data frames) from the ‘‘mice’’(ACKs). The second approach
exhibited better performance, with improved throughput that
we attribute to improved ACK transmission more than off-
setting the restricted switching fabric experienced by the
‘‘elephant’’ data frames.

We conclude that FZS is a robust routing method for
data center networks, offering the opportunity for flexibility,
higher performance, advanced QoS and traffic management
capabilities compared to legacy solutions while reducing the
network equipment cost by eliminating the need of routing
tables.
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