3,804 research outputs found

    Neighbouring Link Travel Time Inference Method Using Artificial Neural Network

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.This paper presents a method for modelling relationship between road segments using feed forward back-propagation neural networks. Unlike most previous papers that focus on travel time estimation of a road based on its traffic information, we proposed the Neighbouring Link Inference Method (NLIM) that can infer travel time of a road segment (link) from travel time its neighbouring segments. It is valuable for links which do not have recent traffic information. The proposed method learns the relationship between travel time of a link and traffic parameters of its nearby links based on sparse historical travel time data. A travel time data outlier detection based on Gaussian mixture model is also proposed in order to reduce the noise of data before they are applied to build NLIM. Results show that the proposed method is capable of estimating the travel time on all traffic link categories. 75% of models can produce travel time data with mean absolute percentage error less than 22%. The proposed method performs better on major than minor links. Performance of the proposed method always dominates performance of traditional methods such as statistic-based and linear least square estimate methods

    Estimation of Travel Time using Temporal and Spatial Relationships in Sparse Data

    Get PDF
    Travel time is a basic measure upon which e.g. traveller information systems, traffic management systems, public transportation planning and other intelligent transport systems are developed. Collecting travel time information in a large and dynamic road network is essential to managing the transportation systems strategically and efficiently. This is a challenging and expensive task that requires costly travel time measurements. Estimation techniques are employed to utilise data collected for the major roads and traffic network structure to approximate travel times for minor links. Although many methodologies have been proposed, they have not yet adequately solved many challenges associated with travel time, in particular, travel time estimation for all links in a large and dynamic urban traffic network. Typically focus is placed on major roads such as motorways and main city arteries but there is an increasing need to know accurate travel times for minor urban roads. Such information is crucial for tackling air quality problems, accommodate a growing number of cars and provide accurate information for routing, e.g. self-driving vehicles. This study aims to address the aforementioned challenges by introducing a methodology able to estimate travel times in near-real-time by using historical sparse travel time data. To this end, an investigation of temporal and spatial dependencies between travel time of traffic links in the datasets is carefully conducted. Two novel methodologies are proposed, Neighbouring Link Inference method (NLIM) and Similar Model Searching method (SMS). The NLIM learns the temporal and spatial relationship between the travel time of adjacent links and uses the relation to estimate travel time of the targeted link. For this purpose, several machine learning techniques including support vector machine regression, neural network and multi-linear regression are employed. Meanwhile, SMS looks for similar NLIM models from which to utilise data in order to improve the performance of a selected NLIM model. NLIM and SMS incorporates an additional novel application for travel time outlier detection and removal. By adapting a multivariate Gaussian mixture model, an improvement in travel time estimation is achieved. Both introduced methods are evaluated on four distinct datasets and compared against benchmark techniques adopted from literature. They efficiently perform the task of travel time estimation in near-real-time of a target link using models learnt from adjacent traffic links. The training data from similar NLIM models provide more information for NLIM to learn the temporal and spatial relationship between the travel time of links to support the high variability of urban travel time and high data sparsity.Ministry of Education and Training of Vietna

    Estimation of Travel Times for Minor Roads in Urban Areas Using Sparse Travel Time Data

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link

    Understanding Dynamic Spatio-Temporal Contexts in Long Short-Term Memory for Road Traffic Speed Prediction

    Full text link
    Reliable traffic flow prediction is crucial to creating intelligent transportation systems. Many big-data-based prediction approaches have been developed but they do not reflect complicated dynamic interactions between roads considering time and location. In this study, we propose a dynamically localised long short-term memory (LSTM) model that involves both spatial and temporal dependence between roads. To do so, we use a localised dynamic spatial weight matrix along with its dynamic variation. Moreover, the LSTM model can deal with sequential data with long dependency as well as complex non-linear features. Empirical results indicated superior prediction performances of the proposed model compared to two different baseline methods.Comment: 10pages, 2 tables, 4 figures, 2017 KDD Cu

    Functional mimicry of Ruffini receptors with fibre Bragg gratings and deep neural networks enables a bio-inspired large-area tactile-sensitive skin

    Get PDF
    Collaborative robots are expected to physically interact with humans in daily living and the workplace, including industrial and healthcare settings. A key related enabling technology is tactile sensing, which currently requires addressing the outstanding scientific challenge to simultaneously detect contact location and intensity by means of soft conformable artificial skins adapting over large areas to the complex curved geometries of robot embodiments. In this work, the development of a large-area sensitive soft skin with a curved geometry is presented, allowing for robot total-body coverage through modular patches. The biomimetic skin consists of a soft polymeric matrix, resembling a human forearm, embedded with photonic fibre Bragg grating transducers, which partially mimics Ruffini mechanoreceptor functionality with diffuse, overlapping receptive fields. A convolutional neural network deep learning algorithm and a multigrid neuron integration process were implemented to decode the fibre Bragg grating sensor outputs for inference of contact force magnitude and localization through the skin surface. Results of 35 mN (interquartile range 56 mN) and 3.2 mm (interquartile range 2.3 mm) median errors were achieved for force and localization predictions, respectively. Demonstrations with an anthropomorphic arm pave the way towards artificial intelligence based integrated skins enabling safe human–robot cooperation via machine intelligence

    Artificial Intelligence-based Control Techniques for HVDC Systems

    Get PDF
    The electrical energy industry depends, among other things, on the ability of networks to deal with uncertainties from several directions. Smart-grid systems in high-voltage direct current (HVDC) networks, being an application of artificial intelligence (AI), are a reliable way to achieve this goal as they solve complex problems in power system engineering using AI algorithms. Due to their distinctive characteristics, they are usually effective approaches for optimization problems. They have been successfully applied to HVDC systems. This paper presents a number of issues in HVDC transmission systems. It reviews AI applications such as HVDC transmission system controllers and power flow control within DC grids in multi-terminal HVDC systems. Advancements in HVDC systems enable better performance under varying conditions to obtain the optimal dynamic response in practical settings. However, they also pose difficulties in mathematical modeling as they are non-linear and complex. ANN-based controllers have replaced traditional PI controllers in the rectifier of the HVDC link. Moreover, the combination of ANN and fuzzy logic has proven to be a powerful strategy for controlling excessively non-linear loads. Future research can focus on developing AI algorithms for an advanced control scheme for UPFC devices. Also, there is a need for a comprehensive analysis of power fluctuations or steady-state errors that can be eliminated by the quick response of this control scheme. This survey was informed by the need to develop adaptive AI controllers to enhance the performance of HVDC systems based on their promising results in the control of power systems. Doi: 10.28991/ESJ-2023-07-02-024 Full Text: PD

    Distributed multi-agent based traffic management system

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    A Bayesian machine learning approach for spatio-temporal prediction of COVID-19 cases

    Get PDF
    Modeling the spread of infectious diseases in space and time needs to take care of complex dependencies and uncertainties. Machine learning methods, and neural networks, in particular, are useful in modeling this sort of complex problems, although they generally lack of probabilistic interpretations. We propose a neural network method embedded in a Bayesian framework for modeling and predicting the number of cases of infectious diseases in areal units. A key feature is that our combined model considers the impact of human movement on the spread of the infectious disease, as an additional random factor to the also considered spatial neighborhood and temporal correlation components. Our model is evaluated over a COVID-19 dataset for 245 health zones of Castilla-Leon (Spain). The results show that a Bayesian model informed by a neural network method is generally able to predict the number of cases of COVID-19 in both space and time, with the human mobility factor having a strong influence on the model, together with the number of infections and deaths in nearby areas.J. Mateu has been partially funded by grants PID2019-107392RB-I00 from Ministry of Science and Innovation and UJI-B2018-04 from University Jaume I. P. Niraula has been funded through the Erasmus Mundus programme by the European Commission under the Framework Partnership Agreement, FPA-2016-2054

    Screening the stones of Venice: Mapping social perceptions of cultural significance through graph-based semi-supervised classification

    Get PDF
    Mapping cultural significance of heritage properties in urban environment from the perspective of the public has become an increasingly relevant process, as highlighted by the 2011 UNESCO Recommendation on the Historic Urban Landscape (HUL). With the ubiquitous use of social media and the prosperous developments in machine and deep learning, it has become feasible to collect and process massive amounts of information produced by online communities about their perceptions of heritage as social constructs. Moreover, such information is usually inter-connected and embedded within specific socioeconomic and spatiotemporal contexts. This paper presents a methodological workflow for using semi-supervised learning with graph neural networks (GNN) to classify, summarize, and map cultural significance categories based on user-generated content on social media. Several GNN models were trained as an ensemble to incorporate the multi-modal (visual and textual) features and the contextual (temporal, spatial, and social) connections of social media data in an attributed multi-graph structure. The classification results with different models were aligned and evaluated with the prediction confidence and agreement. Furthermore, message diffusion methods on graphs were proposed to aggregate the post labels onto their adjacent spatial nodes, which helps to map the cultural significance categories in their geographical contexts. The workflow is tested on data gathered from Venice as a case study, demonstrating the generation of social perception maps for this UNESCO World Heritage property. This research framework could also be applied in other cities worldwide, contributing to more socially inclusive heritage management processes. Furthermore, the proposed methodology holds the potential of diffusing any human-generated location-based information onto spatial networks and temporal timelines, which could be beneficial for measuring the safety, vitality, and/or popularity of urban spaces
    corecore