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A B S T R A C T

Mapping cultural significance of heritage properties in urban environment from the perspective of the public
has become an increasingly relevant process, as highlighted by the 2011 UNESCO Recommendation on the
Historic Urban Landscape (HUL). With the ubiquitous use of social media and the prosperous developments in
machine and deep learning, it has become feasible to collect and process massive amounts of information
produced by online communities about their perceptions of heritage as social constructs. Moreover, such
information is usually inter-connected and embedded within specific socioeconomic and spatiotemporal
contexts. This paper presents a methodological workflow for using semi-supervised learning with graph neural
networks (GNN) to classify, summarize, and map cultural significance categories based on user-generated
content on social media. Several GNN models were trained as an ensemble to incorporate the multi-modal
(visual and textual) features and the contextual (temporal, spatial, and social) connections of social media
data in an attributed multi-graph structure. The classification results with different models were aligned and
evaluated with the prediction confidence and agreement. Furthermore, message diffusion methods on graphs
were proposed to aggregate the post labels onto their adjacent spatial nodes, which helps to map the cultural
significance categories in their geographical contexts. The workflow is tested on data gathered from Venice as a
case study, demonstrating the generation of social perception maps for this UNESCO World Heritage property.
This research framework could also be applied in other cities worldwide, contributing to more socially inclusive
heritage management processes. Furthermore, the proposed methodology holds the potential of diffusing any
human-generated location-based information onto spatial networks and temporal timelines, which could be
beneficial for measuring the safety, vitality, and/or popularity of urban spaces.
1. Introduction

Documenting and mapping the values (cultural significance) of
cities have always been an important task in the practice of urban
conservation (Zancheti and Jokilehto, 1997; ICOMOS, 2013). As an
art critic, historian, writer, polymath, and a pioneer in heritage con-
servation, John Ruskin openly expressed and actively promoted the
cultural significance of the grandiose architecture on the Venetian
island in his three-volume masterpiece The Stones of Venice (Ruskin,
1879; Ruskin and Quill, 2015). Through several visits to Venice, Ruskin
was attracted by the buildings, monuments, sculptures, and building
elements, especially those dating from the era of Byzantine and Gothic.
In fear of losing its cultural significance by industrial modernization
and destructive restorations, Ruskin tirelessly documented every stone
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of Venice with his detailed drawings and enthusiastic guide for the
readers on what to appreciate and value in future visits. However,
the expressions Ruskin used can be subjective and reflect his personal
tastes, which is evident in his objection against the ‘‘colourless’’ Renais-
sance buildings. Like all other visitors, the words of Ruskin describing
Venice were regarded as a myth, a fiction, and a symbolic landscape,
reflecting his own imagination of this idealized city (Cosgrove, 1982;
Psarra, 2018). Turning the argument around, like Ruskin, all the other
visitors and residents in Venice are also qualified to express the values
the city conveys to them. Psarra (2018) argues that ‘‘[a]ny effort to
describe Venice runs the risk of confusing the city with the words and the
images that describe it ’’, bringing up another question about what these
‘‘words and images’’ really are about.
vailable online 4 August 2023
924-2716/© 2023 The Author(s). Published by Elsevier B.V. on behalf of Internatio
pen access article under the CC BY license (http://creativecommons.org/licenses/by

https://doi.org/10.1016/j.isprsjprs.2023.07.018
Received 22 December 2022; Received in revised form 21 June 2023; Accepted 18
nal Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). This is an
/4.0/).

July 2023

https://www.elsevier.com/locate/isprsjprs
http://www.elsevier.com/locate/isprsjprs
mailto:n.bai@tudelft.nl
https://doi.org/10.1016/j.isprsjprs.2023.07.018
https://doi.org/10.1016/j.isprsjprs.2023.07.018
http://crossmark.crossref.org/dialog/?doi=10.1016/j.isprsjprs.2023.07.018&domain=pdf
http://creativecommons.org/licenses/by/4.0/


ISPRS Journal of Photogrammetry and Remote Sensing 203 (2023) 135–164N. Bai et al.

g

c

The modern era of Social Media has given more opportunities and
challenges to the process of collecting and mapping cultural signifi-
cance from the perspective of general public. This is because social
media has made possible the open publication of ideas, opinions, and
emotions by everyone among the online communities with their own
‘‘words and images’’ (Cartwright, 2010). Like the pieces of stones
observed by Ruskin, those posts on social media could be understood
as ‘‘digital notes of stones’’ to be screened and inspected to dig valuable
messages. Analysing such massive data can help collect information
on the cultural significance (i.e., the values of cultural heritage em-
bodied in the places for all generations) conveyed to the general
public, map knowledge from alternative perspectives other than the
expert-based authorized heritage discourse, and construct an inclusive
heritage management plan respecting the collective opinions (ICOMOS,
2013; Aggarwal, 2011; Amato et al., 2016; Bigne et al., 2021; Bai
et al., 2021b). This aligns well with the goals and objectives set by
the 2011 UNESCO Recommendation on the Historic Urban Landscape
(HUL) (UNESCO, 2011; Bandarin and Van Oers, 2012; Pereira Roders,
2019). Among all the information and knowledge to be extracted and
mapped, heritage values (why to conserve) and heritage attributes
(what to conserve) are arguably the most informative ones to fully
understand the cultural significance of a heritage property, being listed
or not, e.g., see Pereira Roders (2007), Tarrafa Silva and Pereira Roders
(2010) and Veldpaus (2015). Ginzarly et al. (2019) demonstrates an
example in this line to map the HUL values revealed on Flickr by
manually checking the post contents. In the past decades, the advances
in Machine Learning (ML) and Deep Learning (DL), especially Multi-
modal Machine Learning focusing on fusing information from different
modalities (such as texts and images), have enabled similar analyses at
larger scales (LeCun et al., 2015; Baltrusaitis et al., 2019; Cao et al.,
2020). In order to extract and map the most representative categories
of descriptions and/or images of a place, earlier studies constructed
textual and visual information from social media posts with hand-
crafted or learned features (Crandall et al., 2009; Monteiro et al., 2014;
Huang and Li, 2016; Lai et al., 2017; Boy and Uitermark, 2017), while
recent studies have been updating the process with neural network
models pre-trained on generic tasks for generalizable results (Gomez
et al., 2019; Zhang et al., 2019b; Kang et al., 2021; Cho et al., 2022;
Bai et al., 2022; Zhang et al., 2022b; Wang et al., 2022a; He et al.,
2022).

However, two challenges remain for the approach of mapping cul-
tural significance to be broadly applied in heritage and urban studies:
(1) the raw user-generated data collected from social media are usually
hard to annotate especially when the labels need complex expert knowl-
edge; (2) the time-stamped and geo-tagged posts are usually scattered
in space, which need to be further aggregated and summarized into
higher-level spatial units, resulting in maps that are comprehensible
by planners and decision-makers. Since social media posts are em-
bedded in socioeconomic and spatiotemporal contexts (i.e., in explicit
or intrinsic graph structures denoting the connections of posts such
as located in nearby places, posted in consecutive time periods, and
owned by similar social groups), both challenges can be handled with
the emerging fields of Semi-supervised Machine Learning on Graphs
with Graph Neural Network (GNN) (Zhang and Cheng, 2020; Ma and
Tang, 2021; Wu et al., 2022; Xu et al., 2022). Different from conven-
tional supervised learning, semi-supervised learning models also have
access to features from unlabelled data during training process without
knowing their ‘‘true’’ labels (Zhou and Li, 2010). This is proved to be
effective especially on graphs since neighbours on graphs are assumed
to be similar both in the feature space and the label space (Zhu and
Ghahramani, 2002; Kipf and Welling, 2016; Xu et al., 2022). With
spatial data in physical space, such similarity is expressed as the rule
of the First Law of Geography (Tobler, 1970), that nearby things are
enerally similar to, and therefore, more likely to influence each other.

This paper aims to explore the use of graph-based semi-supervised
136

lassification to spatially map the cultural significance categories of
cities with multi-modal social media data embedded in a graph struc-
ture. To reach the aim, three research questions are explored, becoming
the three main components of the workflow proposed in this paper:

1. How can graph-based semi-supervised classification help to clas-
sify a partially labelled multi-modal social media dataset con-
cerning location-based categorical information in a city?

2. How can an ensemble of trained models help to further improve
classification performance and reliability?

3. How can the labels assigned for the posts be aggregated onto
the spatial network of a city in order to map the categorical
information (the perceived cultural significance)?

The scope and the approach of this study are highly related to Liu
and De Sabbata (2021), where the authors presented a framework for
using GNN to classify multi-modal features into user-defined label sets.
Whereas Liu and De Sabbata (2021) focused on exploring the effects
of different graph construction methods for only one specific type
of GNN model (i.e., Graph Convolutional Network) and the mapping
procedure was only a showcase of randomly sampled scatter points
without further spatial aggregation and applicational analyses, this
study has the following further contributions:

• A few Deep Learning models are trained on a semi-supervised
classification task about cultural significance with partially la-
belled multi-modal graph-based datasets, and the soft-label pre-
dictions of individual models were aggregated into ensemble
results, keeping track of the confidence and agreement of the
models, as a measure of reliability;

• The obtained post labels are further aggregated into spatial nodes
and diffused on a spatial network based on the
geographical/topological proximity, effectively summarizing the
information into a set of spatial maps for cultural significance
categories;

• Detailed analyses on the spatial and aspatial distributions of
the cultural significance categories, as well as the association of
input features and output categories are provided, informative for
future inclusive heritage management processes.

The workflow demonstrated in this paper with the special case of
heritage cultural significance can be easily generalized in other use
cases for spatially diffusing and mapping any human-generated features
and labels, which can be extended to the evaluation of spatial safety,
vitality, and/or architectural style in urban spaces (Cheng and Wicks,
2014; Zhang et al., 2022a; Sun et al., 2022).

2. Methodology

2.1. Case study

To relate to the metaphor of the title and its relationship with
Ruskin’s controversial masterpiece The Stones of Venice (Ruskin, 1879;
Ruskin and Quill, 2015), this study selects Venice as a case study to
test the methodological framework. Venice and its Lagoon was inscribed
in the UNESCO World Heritage List in 1987 fulfilling all first six
selection criteria of Outstanding Universal Value (OUV) related to
cultural heritage (UNESCO, 1972, 2008; Jokilehto, 2007). Despite its
status as a cultural heritage property, its special urban typology and
intimate relationship with the water give the city strong clues of natural
values (Bai et al., 2022), making it a popular tourism destination
of diverse interests, which also means that it may suffer from the
mass-tourism (Urry and Larsen, 2011; Bertocchi and Visentin, 2019).
Meanwhile, Venice can be found in various academic publications
and non-academic fictions, as well as voluntary comments on social
media platforms, providing abundant information from all sorts of
perspectives (Calvino, 1978; Cosgrove, 1982; Bigne et al., 2021). The
city itself is also a product of top-down conscious city planning (state-

craft) and bottom-up collective community building (city-craft) (Psarra,
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Table 1
The distribution of cultural significance categories as OUV selection criteria and heritage attributes in the training sets.

Dataset VEN VEN-XL VEN VEN-XL

OUV Selection Criteria (361) (11,569) Heritage attributes (361) (11,569)
(within top-3 entries) (within top-1 entries)
Criterion (i) - Masterpiece 172 (15.9%) 2463 (7.1%) Monument and buildings 69 (19.1%) 1507 (13.0%)
Criterion (ii) - Influence 188 (17.4%) 4704 (13.6%) Building elements 71 (19.7%) 1501 (13.0%)
Criterion (iii) - Testimony 247 (22.8%) 9864 (28.4%) Urban form elements 101 (28.0%) 2636 (22.8%)
Criterion (iv) - Typology 261 (24.1%) 8578 (24.7%) Urban scenery 6 (1.7%) 113 (1.0%)
Criterion (v) - Land-use 7 (0.6%) 54 (0.2%) Natural features and
Criterion (vi) - Association 205 (18.9%) 8921 (25.7%) Landscape scenery 30 (8.3%) 2051 (17.7%)
Criterion (vii) - Natural Beauty 1 (0.1%) 58 (0.2%) Interior scenery 25 (6.9%) 480 (4.1%)
Criterion (viii) - Geological Process 0 (0.0%) 18 (0.1%) People’s activity and
Criterion (ix) - Ecological Process 1 (0.1%) 19 (0.1%) Association 49 (13.6%) 2457 (21.2%)
Criterion (x) - Bio-diversity 1 (0.1%) 28 (0.1%) Gastronomy 9 (2.5%) 139 (1.2%)
Others - Not related 0 (0.0%) 0 (0.0%) Artifact products 1 (0.3%) 685 (5.9%)
Table 2
Descriptive overview of the data used for this study previously collected by Bai et al. (2022).

Dataset VEN VEN-XL

Number/Count Rate/Proportion Number/Count Rate/Proportion

Nodes 2 951 – 80,963 –
Nodes with Visual Features 2 951 100% 80,963 100%
Nodes with Textual Features 1 761 59.7% 49,823 61.5%
Nodes with OUV Labels 756 25.6% 25,771 31.8%
Nodes with Heritage Attribute Labels 1 356 45.9% 37,289 46.1%
Nodes with Both Types of Labels 361 12.2% 11,569 14.3%

Number/Count Average degree Density Number/Count Average degree Density

Temporal Links 249,120 84.4 .057 35,527,354 438.8 .011
Social Links 242,576 82.2 .056 38,170,651 471.5 .012
Spatial Links 221,414 75.0 .051 101,046,098 1248.1 .031
Simple Composed Linksa 534,513 181.1 .123 145,005,270 1791.0 .044

aMultiple links among two nodes leads to only one link in the simple composed graph.
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2018), both firmly embedded in a spatiotemporal and socioeconomic
context. All these characteristics make Venice a representative case
study to demonstrate the utility of the proposed framework. Yet, it is
also important to notice that the selection of Venice as the case study
is only a pragmatic choice, and hypothetically the framework should
be generalizable in other cities containing World Heritage, similar to
Psarra’s argument, that Venice could be considered as a prototype of
other global cities (Psarra, 2018).

2.2. Data

This study uses the open datasets Heri-Graphs-Venice (VEN) and
enice-Large (VEN-XL) introduced by Bai et al. (2022), where multi-
odal information from the social media platform Flickr is collected,

ontaining visual and textual features, temporal, social, and spatial
ontexts (as a multi-graph), as well as partially-labelled pseudo-labels
or cultural significance categories based on model confidence. In their
efinition, cultural significance was specified with two concepts as soft
abels, effectively providing two probability distribution vectors: an
1-class OUV selection criteria (referred to from here on as OUV for
implicity) category (UNESCO, 1972, 2008; Jokilehto, 2008; Bai et al.,
021a), and a 9-class heritage attributes (HA) category (Veldpaus,
015; Gustcoven, 2016; Ginzarly et al., 2019), both listed in Table 1.
ince Flickr is an image-sharing platform and textual information is
ot mandatory during posting, both datasets collected therefrom were
etter equipped with visual features as 982-dimensional stacked vectors
f a few pre-trained model outputs, and only about half of data sam-
les contained valid BERT-based textual features as 771-dimensional
ectors.

Within the two datasets, the lite version VEN was already formatted
s a multi-graph with three types of undirected weighted links (tem-
oral, social, and spatial) showing the contextual connections among
he nodes representing posts on Flickr. However, the larger version
EN-XL was only provided with the nodal features because of the
137
large memory requirement to construct adjacency matrices with a huge
number of nodes. Following the guidelines given by Bai et al. (2022),
this paper also constructed multi-graph mini-batches for VEN-XL in
Pytorch-Geometric library (Fey and Lenssen, 2019) using sparse matri-
ces as graph structure (Yuster and Zwick, 2005). An overview of both
datasets is given in Table 2. The label rates (.122/.143) of the datasets
are comparable with common semi-supervised learning datasets in
graph neural networks such as Citeer (.036) and Cora (.052) (Kipf and
Welling, 2016; Yang et al., 2016). Note VEN-XL has a larger average
degree for nodes with all types of links, yet the multi-graphs are less
dense than the lite VEN dataset.

As a summary, the datasets in this study have three challenges
or the semi-supervised classification task: (1) only partial labels are
vailable for the categories of interest, requiring the unlabelled nodes
o be tagged; (2) only partial features are available for some nodes,
equiring the models to learn as much as possible from their neighbours
n graphs; (3) the VEN-XL dataset is too large to conduct training
nd inference directly, requiring sampling of subgraphs. All these char-
cteristics of the datasets entail that both transductive (training and
nference on the same graph) and inductive (inference on unseen [sub-]
raphs) semi-supervised learning on graphs (Yang et al., 2016; Liu and
e Sabbata, 2021) are indispensable, reflecting the scope and necessity
f this study. For both datasets, the nodes with both types of labels
OUV and HA) are treated as the training sets (361 for VEN ; 11,569

for VEN-XL), and the nodes with only one type of labels are randomly
and evenly separated as validation sets (695; 19,961) and test sets (695;
19,961), while the remainder of the nodes is considered as unlabelled
data (1200; 29,472). In the training sets, all essential categories are
present, though the distribution is unbalanced, as presented in Table 1.

2.3. Problem definition

The workflow proposed in this paper is visualized in Fig. 1. The
input data from two databases VEN and VEN-XL are: (1) a partially-
labelled attributed multi-graph about the inter-related social media
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Fig. 1. The general methodological workflow proposed in this paper, both as zoomed-out high-level modulated framework in the upper part, and as a detailed workflow with
mathematical notations in the lower part to be instantiated in the texts. Only the lite dataset VEN is used to train the models in the first step of semi-supervised learning, while
the large dataset VEN-XL is directly used for inference and later steps. The indices 𝑖, 𝑗, 𝑘 are respectively a generic example of the posts 𝑣𝑖 ∈  , the models 𝐟𝑗 ∈  , and the spatial
intersection nodes 𝜈𝑘 ∈ 𝑉 .
posts; (2) an assignment bipartite graph with relations mapping the
posts to their closest street intersections (spatial nodes); (3) a topo-
logical representation of the spatial network as a weighted undirected
graph marking the proximity of the street intersections. After three
main components, i.e., (1) semi-supervised learning of multiple mod-
els co-trained in a classification task (Section 2.3.2), (2) aggregating
the prediction outputs as soft labels of those models (Section 2.3.3),
and (3) aggregating and diffusing the post-level labels on the spatial
graph (Section 2.3.4), two outputs are obtained: (1) a graph fully-
labelled on all post-level nodes together with confidence and agreement
scores based on model performance; (2) a graph fully-labelled on
spatial-level nodes summarizing the information of nearby posts and
proximate spatial neighbours. Both outcomes are tested with qualitative
and quantitative inspections (Section 3.3). The graph structures are
conceptually visualized in Fig. 3. The process will be formally described
in the following Sections. The relevant works concerning the proposed
workflow will be discussed in Section 5.4.

2.3.1. General notations of attributed graphs
Since the data structure is exactly the same for VEN and VEN-

XL except for the sample size, this section will describe the general
notation system eligible for both datasets. For each dataset, an undi-
rected multi-graph  = ( , {TEM, SPA, SOC}) with three types of links
(temporal, spatial, and social, as mentioned in Section 2.2) represents
its contextual structure, where  = {𝑣𝑖}, 𝑖 ∈ [0, 𝐾) is the node set of all
the posts collected and 𝐾 is the total number of posts, and (𝑣𝑖, 𝑣𝑖′ ) ∈
 (∗) ⊆  ×  ,  (∗) ∈ {TEM, SPA, SOC} is a link marking one type of
contextual relations among the posts. For simplicity, the link weights
138
in Bai et al. (2022) are omitted, resulting in binary adjacency matrices
𝑨(*) ∶= [𝐴(∗)

𝑖,𝑖′ ] ∈ {0, 1}𝐾×𝐾 ,𝑨(*) ∈ {𝑨TEM,𝑨SPA,𝑨SOC}, where all the
links (𝑣𝑖, 𝑣𝑖′ ) with an original weight larger than 0 will lead to 𝐴(∗)

𝑖,𝑖′ = 1,
otherwise 𝐴(∗)

𝑖,𝑖′ = 0. Moreover, a simple composed graph ′ = ( , )
could be obtained by merging the adjacency matrices into 𝑨, so that
𝑨 =

(

𝑨TEM > 0
)
⋁

(

𝑨SPA > 0
)
⋁

(

𝑨SOC > 0
)

∈ {0, 1}𝐾×𝐾 . In this simple
composed graph ′, a link would exist if at least one contextual type of
links exists between two nodes in the multi-graph .

For all the nodes in the graph , a 2D feature array 𝑿 ∶=
[

𝒙𝑖
]

𝑖∈[0,𝐾) =
[

𝑿vis

𝑿tex

]

∈ R1753×𝐾 would exist, where 𝒙𝑖 ∈ R1753×1 is a vector rep-

resenting the features of node 𝑣𝑖, 𝑿vis ∈ R982×𝐾 ,𝑿tex ∈ R771×𝐾 are

respectively the visual and textual features, and
[

⋅
⋅

]

is the vertical

concatenation operation of arrays. In cases where no textual data was
available for a post node, the corresponding entries in vector 𝒙𝑖 would
be all zeros, dividing the nodes  into two sub-clusters tex+,tex− ⊂  ,
with or without textual data.

Since pseudo-labels for posts were respectively provided for a dif-
ferent subset of  concerning OUV and HA, four sub-clusters V+,A+,
V+,A−,V−,A+,V−,A− ⊂  could be categorized, as they have different
label arrays:

• For nodes with both labels in V+,A+, the label array would

be 𝒀 V+,A+ =
⎡

⎢

⎢

⎣

𝒚OUV
𝑖

𝒚HA

⎤

⎥

⎥

⎦

, where 𝒚OUV
𝑖 ∈ [0, 1]11×1, 𝒚HA

𝑖 ∈
𝑖 𝑣𝑖∈V+,A+
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Fig. 2. The Venn Diagram showing the logic relations of the three types of sub-
clustering of nodes in  . The relationship described in Eqs. (1) and (2) are
visualized.

[0, 1]9×1 are respectively a column-stochastic vector denoting the
soft labels of node 𝑣𝑖 for OUV and HA categories;

• For nodes with only OUV labels in V+,A−, the label array would
be 𝒀 V+,A− =

[

𝒚OUV
𝑖

]

𝑣𝑖∈V+,A−
;

• For nodes with only HA labels in V−,A+, the label array would
be 𝒀 V−,A+ =

[

𝒚HA
𝑖

]

𝑣𝑖∈V−,A+
;

• For nodes with in V−,A−, there is no label array.

Note the following relationship holds for the sub-clusters:

(V+,A+ ∪ V+,A−) ⊂ tex+,

(V−,A+ ∪ V−,A−) ∩ tex+ ≠ ∅,

(V−,A+ ∪ V−,A−) ∩ tex− ≠ ∅, (1)

meaning that having textual features as input is a necessary but not
sufficient condition of having the OUV label.

2.3.2. Semi-supervised training on sampled graphs
As described in Section 2.2, the nodes in  are further split into

training set train, validation set val, test set test, and unlabelled set
unlab, where:

train = V+,A+,

unlab = V−,A−,

val ∪ test = V+,A− ∪ V−,A+,

|val| = |test|. (2)

The semi-supervised learning task in this paper is to use the training
nodes train and teach a group of models to learn the mapping functions
within a candidate model set  = {𝐟𝑗}, 𝑗 ∈ [0, | |) from input features
𝑿 to output labels 𝒀 , tune the hyper-parameters and select the optimal
models based on their performance on the validation nodes val, evalu-
ate the generalizability of the models on unseen test data on test, and
apply the trained models to generate predicted soft labels �̂� =

[

�̂�𝑖
]

𝑣𝑖∈
for all nodal data including the ones in unlab. The logic relations among
the three types of clustering of the node set  mentioned in Eqs. (1) and
(2) are illustrated in the Venn Diagram of Fig. 2.

For both efficiency and generalizability, sub-graphs are strategi-
cally sampled from the original graphs to train the models: 𝑠 =
(𝑠, {TEM

𝑠 , SPA
𝑠 , SOC

𝑠 }) or 𝑠 = (𝑠, 𝑠) with respectively sampled
adjacency matrices 𝑨(*)

𝑠 ,𝑨𝑠 and feature array 𝑿𝑠, where 𝑠 ⊆  , 𝑠 ⊆
 ,  (*)

𝑠 ⊆  (*), depending on if the models would use the multi-graph
structure or the simple composed one. For each training epoch, non-
repetitive mini-batches of nodes batch ⊂ 𝑠 are used as base nodes to
sample several different sub-graphs  . Then the training loss  of
139

𝑠 train
any model 𝐟𝑗 with model parameter 𝜣𝑗 for each mini-batch batch could
be described as:

train(𝜣𝑗 ,batch) =
∑

𝑣𝑖∈batch∩train

(

𝓁(�̂�OUV
𝑗,𝑖 , 𝒚OUV

𝑖 ) + 𝜔V/A𝓁(�̂�HA
𝑗,𝑖 , 𝒚

HA
𝑖 )

)

,

(3)

�̂�𝑗,𝑖 ∶=
⎡

⎢

⎢

⎢

⎣

�̂�OUV
𝑗,𝑖

�̂�HA
𝑗,𝑖

⎤

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎣

softmax(𝒛OUV
𝑗,𝑖 )

softmax(𝒛HA
𝑗,𝑖 )

⎤

⎥

⎥

⎥

⎦

, (4)

𝟏𝖳11×1�̂�
OUV
𝑗,𝑖 = 𝟏𝖳9×1�̂�

HA
𝑗,𝑖 = 1, (5)

and 𝒛𝑗,𝑖 ∶=
⎡

⎢

⎢

⎢

⎣

𝒛HV
𝑗,𝑖

𝒛HA
𝑗,𝑖

⎤

⎥

⎥

⎥

⎦

= 𝐟𝑗 (𝑨𝑠,𝑿𝑠;𝜣𝑗 )𝑖, (6)

where 𝓁 is a loss function comparing the similarity of two vectors,
such as cross-entropy (Rubinstein and Kroese, 2013), 𝜔V/A is a scalar
parameter balancing the importance of OUV and HA categories during
training, �̂�OUV

𝑗,𝑖 ∈ [0, 1]11×1, �̂�HA
𝑗,𝑖 ∈ [0, 1]9×1 are respectively predicted

stochastic label vectors for OUV and HA by the 𝑗th model on the 𝑖th
example, and 𝒛OUV

𝑗,𝑖 ∈ R11×1, 𝒛HA
𝑗,𝑖 ∈ R9×1 are respectively components

of the model output vector 𝒛𝑗,𝑖 ∈ R20×1. Notice that the two objectives
of classifying OUV and HA are trained together with a shared model
architecture and are only distinguished before final loss computation,
instead of having two separate models. This is assumed to be more
generalizable and could capture more information on the associations
between the two closely-related topics.

While evaluating the model performance on validation set val
(and eventually on test set test), the computation of the scores OUV

val
and HA

val respectively on OUV and HA categories would be further
distinguished as:

OUV
val (𝜣𝑗 ) =

∑

batch⊂val

∑

𝑣𝑖∈batch∩V+,A−
𝓁V(�̂�OUV

𝑗,𝑖 , 𝒚OUV
𝑖 )

|

|

|

val ∩ V+,A−
|

|

|

, (7)

HA
val (𝜣𝑗 ) =

∑

batch⊂val

∑

𝑣𝑖∈batch∩V−,A+
𝓁A(�̂�HA

𝑗,𝑖 , 𝒚
HA
𝑖 )

|

|

|

val ∩ V−,A+
|

|

|

, (8)

where 𝓁V and 𝓁A are topic-specific evaluation metrics for both classifi-
cation tasks which will be introduced in Section 3.2.2. For each batch
batch ⊂ val, a new sample sub-graph 𝑠 is used to compute the soft
labels �̂�OUV

𝑗,𝑖 , �̂�HA
𝑗,𝑖 .

2.3.3. Aggregating prediction outputs
Assume the semi-supervised learning process mentioned in Sec-

tion 2.3.2 trains all models in  = {𝐟𝑗} properly and they generate a
set of well-fit label arrays

{

�̂� 𝑗 ∶=
[

�̂�𝑗,𝑖
]

𝑣𝑖∈

}

𝐟𝑗∈
, where �̂� 𝑗 ∈ [0, 1]20×𝐾

is the predicted label array on the entire dataset  by the model 𝐟𝑗 .
Practice in ensemble learning has shown that a group of trained models
would usually perform better than an individual model and could
yield more reliable predictions (Zhou, 2012). Therefore, this study
considers a soft voting mechanism to conclude the final node labels
�̂� ∶=

[

�̂�𝑖
]

𝑣𝑖∈
, �̂� ∈ [0, 1]20×𝐾 , such that: �̂�𝑖 = (

∑

𝐟𝑗∈ 𝑝𝑗 �̂�𝑗,𝑖)∕(
∑

𝐟𝑗∈ 𝑝𝑗 ),
or in the matrix form, �̂� = (

∑

𝐟𝑗∈ 𝑝𝑗 �̂� 𝑗 )∕(
∑

𝐟𝑗∈ 𝑝𝑗 ), where �̂� is a
weighted average of the label arrays by all models whose column-sum
pertains 2 for each post, and the weight 𝑝𝑗 is the general performance
score (e.g., accuracy, which will be discussed in Section 3.2.2) of model
𝐟𝑗 on validation set.

Furthermore, the confidence of model prediction and the agree-
ment/coherence among the different models also provide information
for the reliability of the predictions (Zhou and Li, 2010). The former
is trivial as the model confidence on all data points 𝜿con ∶=

[

𝜅con
𝑖

]

∈
[0, 1]𝐾×1 could be defined as the sum of top-𝑛 entries of the label
vectors divided by two (since the sum of each label vector �̂�𝑖 is two, as
defined in Eq. (4)). The latter is also trivial when only two models are
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concerned since the agreement of two vectors could be easily computed
with any distance measure (e.g., cosine similarity, Euclidean distance,
Jaccard Index, and/or cross-entropy). When | | > 2, this effectively
ecomes a problem of measuring the general linear dependence of a
roup of vectors composing the array �̂� 𝑖 ∶=

[

�̂�𝑗,𝑖
]

𝐟𝑗∈
, �̂� 𝑖 ∈ [0, 1]20×| |

for each node 𝑣𝑖. Inspired by GeoMatt22 (2020-12-10), this study
omputes the model agreement on all data points 𝜿agr =∶

[

𝜅agr
𝑖

]

∈
[0, 1]𝐾×1 from the first singular value 𝜎𝒁𝑖 ,1 of the centred (subtracted
by row-means) and normalized (divided by vector lengths) label matrix
𝒁 𝑖 ∶=

[

𝒛𝑗,𝑖∕‖𝒛𝑗,𝑖‖
]

𝐟𝑗∈
, 𝒛𝑗,𝑖 = �̂�𝑗,𝑖 −

∑

𝑗 �̂�𝑗,𝑖∕| | based on its Singular
Value Decomposition (SVD) results, so that:

𝜅agr
𝑖 = (𝜎2𝒁𝑖 ,1

− 1)∕(| | − 1). (9)

This is effective since the first several singular values measure how
much variance of the matrix could be explained by its low-rank approx-
imation, which is equivalent to eigenvalues in Principal Component
Analysis (PCA) in statistics. The value of 𝜿agr ranges theoretically from
the largest possible value (i.e., 1) when there are | | completely parallel
vectors in 𝒁 𝑖, to the smallest possible value (i.e., 0) when all vectors
are orthogonal (under the condition that | | < 20).

2.3.4. Spatial diffusion of node labels
In order to map the predicted node labels on the

topological/geographical space, the label array �̂� computed in Sec-
tion 2.3.3 is further aggregated spatially, going one step further than
the research conducted in Liu and De Sabbata (2021), where the labels
of individual post nodes were directly drawn on maps. In Bai et al.
(2022), the mapping relations of the posts to spatial nodes are also
provided. For a city, an undirected weighted graph 𝐺 = (𝑉 ,𝐸,𝑾 )
denotes its geographical representation obtained from Open Street
Map (Boeing, 2017), where 𝑉 =

{

𝜈𝑘
}

, 𝑘 ∈ [0, |𝑉 |) is the node set of
spatial intersections in a walkable network, (𝜈𝑘, 𝜈𝑘′ ) ∈ 𝐸 ⊆ 𝑉 × 𝑉 is a
link marking if two spatial nodes are reachable to each other within
20 min by all means of transportation, and 𝑾 ∶=

[

𝑊𝑘,𝑘′
]

∈ [0, 1]|𝑉 |×|𝑉 |

is a non-negative weighted adjacency matrix whose diagonal entries
𝑊𝑘,𝑘 are all 1, recording the temporal closeness (i.e., the shorter time
it takes to travel, the closer this weight gets to 1) between any pair of
nodes 𝜈𝑘 and 𝜈𝑘′ , where 𝑊𝑘,𝑘′ = 0 when the nodes are not connected
(not reachable within 20 min). Moreover, 𝑩 ∶=

[

𝐵𝑖,𝑘
]

∈ {0, 1}𝐾×|𝑉 |

records the one-hot mapping relation from posts nodes  to spatial
nodes 𝑉 , effectively a binary bi-adjacency matrix of a bipartite graph
 = ( , 𝑉 ,ℰ ,𝑩) connecting both node sets, where (𝑣𝑖, 𝜈𝑘) ∈ ℰ ⊂  × 𝑉
marks the link if a post is located nearby a spatial node. Note that
the following relationship holds according to Bai et al. (2022): 𝑨SPA =
(

𝑩𝑾 𝑩𝖳 > 0
)

= 𝑩 (𝑾 > 0)𝑩𝖳 ∈ {0, 1}𝐾×𝐾 .
Without loss of generality, the processes of spatially aggregating and

diffusing the node labels are visualized in Fig. 3, taking the neighbours
of a generic spatial node 𝜈𝑘 in both the spatial graph 𝐺 as 𝐺(𝜈𝑘) ∶=
{𝜈𝑘′ |(𝜈𝑘, 𝜈𝑘′ ) ∈ 𝐸 or 𝑊𝑘,𝑘′ > 0} ⊂ 𝑉 and in the bipartite graph  as
(𝜈𝑘) ∶= {𝑣𝑖|(𝑣𝑖, 𝜈𝑘) ∈ ℰ or 𝐵𝑖,𝑘 = 1} ⊂  . The procedure takes place
in two consecutive steps:

• Aggregating the predicted soft labels of all the posts nearby a
spatial node �̂� (𝜈𝑘) ∶=

[

�̂�𝑖
]

𝑣𝑖∈(𝜈𝑘)
to get the spatial node label

�̂�𝓎𝓎𝑘 ∈ [0, 1]20×1, forming a 2D array �̂�𝒴𝒴 ∶=
[

�̂�𝓎𝓎𝑘
]

,�̂�𝒴𝒴 ∈ [0, 1]20×|𝑉 |;
• Diffusing the labels of all the spatial nodes to their spatial neigh-

bours �̂�𝒴𝒴𝐺 (𝜈𝑘) ∶=
[

�̂�𝓎𝓎𝑘′
]

𝜈𝑘′∈𝐺 (𝜈𝑘)
based on their proximity itera-

tively, and vice versa, to get the final label 𝓎𝓎𝓎𝑘 ∈ [0, 1]20×1, with
the label array 𝒴𝒴𝒴 ∶=

[

𝓎𝓎𝓎𝑘
]

,𝒴𝒴𝒴 ∈ [0, 1]20×|𝑉 |.

For the first step, the aggregation process should consider not only
the respective values of the neighbouring labels, but also their impor-
tance (how dominant is the value compared to all the other nodes),
prediction confidence (how confident are models predicting the label
vectors containing this value) and prediction agreement (how reliable is
this value). As it highly resembles the graph pooling operations in GNN,
140
inspirations have been taken from literature (Li et al., 2015; Lee et al.,
2019; Knyazev et al., 2019; Ma and Tang, 2021) to use an attention-
based computation on each label category channel (as one instance
among the 11 OUV or 9 HA categories) �̂�𝐶 ∶= �̂� 𝖳𝒆𝐶 , �̂�𝐶 ∈ [0, 1]𝐾×1 to
filter and summarize the labels, where 𝒆𝐶 ∈ {0, 1}20×1 is a one-hot unit
vector only marking its 𝐶th entry as 1. The attention value 𝒔𝐶 ∈ [0, 1]𝐾×1

of all nodes 𝑣𝑖 for any label category channel 𝐶 could be computed as:

𝒔𝐶 =
exp

(

�̂�𝐶 ⊙ (𝜿con)1∕𝜙 ⊙ (𝜿agr)1∕𝛾
)

𝟏𝖳𝐾×1exp
(

�̂�𝐶 ⊙ (𝜿con)1∕𝜙 ⊙ (𝜿agr)1∕𝛾
)
, (10)

here 𝜿con and 𝜿agr are model-level confidence and agreement scores
n each node computed in Section 2.3.3, 𝜙, 𝛾 ∈ R are respectively
arameters to adjust the contribution of confidence and agreement
n the attention computation, such that when they get larger, high
alues of 𝜿 will be pushed closer to 1, ⊙ is an element-wise Hadamard
ultiplication of vectors and arrays, and 𝟏𝐾×1 is a 𝐾-dimensional vector

f all 1s. Note that 𝒔𝐶 is a stochastic vector over all the nodes.
Concatenating vectors 𝒔𝖳𝐶 for all category channels vertically to-

ether, an attention-based weight matrix 𝑺 ∈ [0, 1]20×𝐾 is obtained.
his is then used as the weight of label array �̂�𝒴𝒴 during the aggregation
peration:

̂ ′
∶=

⎡

⎢

⎢

⎢

⎣

�̂�𝒴𝒴
OUV
11×|𝑉 |

�̂�𝒴𝒴
HA
9×|𝑉 |

⎤

⎥

⎥

⎥

⎦

=
((

𝑺 ⊙ �̂�
)

𝑩
)

⊘ (𝑺𝑩) ,

̂ =

⎡

⎢

⎢

⎢

⎣

�̂�𝒴𝒴
OUV

⊘
(

𝟏11×1𝟏𝖳11×1�̂�𝒴𝒴
OUV)

�̂�𝒴𝒴
HA

⊘
(

𝟏9×1𝟏𝖳9×1�̂�𝒴𝒴
HA)

⎤

⎥

⎥

⎥

⎦

(11)

here ⊘ is the element-wise Hadamard division of two arrays, and the
utcome of any spatial node �̂�𝓎𝓎𝑘 is effectively a special form of weighted-
verage of the label vectors of all its neighbours �̂� (𝜈𝑘), scaled dif-
erently by the attention matrix 𝑺 on each label category channel 𝐶.
imilar to �̂� , the array �̂�𝒴𝒴 is also a stack of two column-stochastic arrays
or the OUV and HA labels, respectively.

Once the initial spatial node labels �̂�𝒴𝒴 are computed, they could
e used as the input state of an iterative diffusion process at the
econd step, during which each spatial node obtains information from
ts spatial neighbours and updates its own label while being reminded
f its original state, until the labels converge at a steady state. This
rocess resembles the graph filtering operation in GNN (Hamilton et al.,
017; Ma and Tang, 2021; Wu et al., 2022). For each spatial node 𝜈𝑘,
ts initial label is �̂�𝓎𝓎(0)

𝑘 = �̂�𝓎𝓎𝑘. Assume the label is �̂�𝓎𝓎(𝑡)
𝑘 at the 𝑡th iteration,

hen its next state after a diffusion step could be described as:

̂ (𝑡+1)𝑘 = (1 − 𝛼)�̂�𝓎𝓎𝑘 + 𝛼

∑

𝜈𝑘′∈𝐺 (𝜈𝑘) 𝑊𝑘,𝑘′�̂�𝓎𝓎
(𝑡)
𝑘′

∑

𝜈𝑘′∈𝐺 (𝜈𝑘) 𝑊𝑘,𝑘′
, (12)

or in its matrix form:

�̂�
(𝑡+1)

= (1 − 𝛼)�̂�𝒴𝒴 + 𝛼�̂�𝒴𝒴
(𝑡) (

𝑾𝑫−1) , (13)

where 𝑫 is a diagonal matrix each entry of which records the degree
(row-sum or column-sum) of the weighted symmetrical matrix 𝑾 ,
𝑾𝑫−1 is the column-normalized stochastic matrix of 𝑾 , �̂�𝒴𝒴

(𝑡)
∶=

[

�̂�(𝑡)𝑘
]

∈ [0, 1]20×|𝑉 | is the label array at the 𝑡th iteration, and 𝛼 ∈ [0, 1)
is a parameter controlling the importance of neighbouring nodes in
the diffusion process. Even though label array �̂�𝒴𝒴 only needs to be
computed once needless of iterating, the rules described in Eqs. (12)
and (13) enforce the spatial nodes to remember its original state at
each iteration step, which could be effectively understood as that the
spatial node 𝜈𝑘 is pulling information both from its spatial neighbours
𝐺(𝜈𝑘) (the second term in the Equations) and from its bipartite post
neighbours (𝜈𝑘) (the first term in the Equations) simultaneously on
two respective graphs 𝐺 and .
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𝒴𝒴

𝓎𝓎

𝒴𝒴
Fig. 3. The conceptually visualized semi-supervised learning, aggregation, and diffusion processes of node labels on a Post-level Attributed Multi-Graph (blue), a Post-Spatial
Bipartite Graph (purple), and a Spatial Graph (red). Post nodes are represented with cylinders and spatial nodes with circles. (a) All posts are connected with temporal, spatial,
or social links in a partially labelled attributed multi-graph, where each node has a complete feature array 𝒙𝑖 and only some nodes have initial labels 𝒚𝑖; (b) An estimated label
vector �̂�𝑖 is obtained for each post node with semi-supervised learning; (c) All posts neighbouring the spatial nodes 𝜈𝑘 are labelled with �̂�  (𝜈𝑘 ); (d) Each spatial node aggregates
(a single-sided process) the labels of neighbouring post nodes in the bipartite graph; (e) The initial label for each spatial node �̂�𝓎𝓎(0)

𝑘 = �̂�𝓎𝓎𝑘 is obtained; (f) Each spatial node diffuses
(a double-sided process) the labels of neighbouring spatial nodes in the spatial graph; (g) An intermediate state at step 𝑡 of label diffusion on the spatial graph to obtain the label
vector �̂�𝓎𝓎(𝑡)

𝑘 ; (h) The steady state when the spatial node label vector 𝓎𝓎𝓎𝑘 converges. Note the iterative processes of (f) and (g) can be skipped by direct algebraic calculation in (h).
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
𝓎𝓎
For the steady state, the following equations hold:

𝒴 = (1 − 𝛼)�̂�𝒴𝒴 + 𝛼𝒴𝒴𝒴
(

𝑾𝑫−1) , (14)

𝒴
(

𝑰 − 𝛼𝑾𝑫−1) = (1 − 𝛼)�̂�𝒴𝒴 , (15)

therefore, 𝒴𝒴𝒴 = (1 − 𝛼)�̂�𝒴𝒴
(

𝑰 − 𝛼𝑾𝑫−1)−1 . (16)

For each row 𝓎𝓎𝓎𝖳
𝐶 ∈ [0, 1]1×|𝑉 | of 𝒴𝒴𝒴 marking the distribution of one label

category channel, the following also holds:

𝓎𝖳
𝐶 = (1 − 𝛼)�̂�𝓎𝓎𝖳

𝐶
(

𝑰 − 𝛼𝑾𝑫−1)−1 , (17)

where �̂�𝓎𝓎𝖳
𝐶 ∶= 𝒆𝖳𝐶�̂�𝒴𝒴 , �̂�𝓎𝓎𝖳

𝐶 ∈ [0, 1]1×|𝑉 | is the 𝐶th row of initial label array
�̂� . Note that the final array 𝒴𝒴𝒴 is no longer a stack of two column-
stochastic arrays respectively for OUV and HA labels since the sum of
the ‘‘labels’’ of each spatial node can fluctuate around two, depending
on the significance of the spatial nodes for each category channel. Also
141
note that in the following equation:

𝓎𝐶 =
(

�̂�𝓎𝓎𝖳
𝐶 (1 − 𝛼)

(

𝑰 − 𝛼𝑾𝑫−1)−1
)𝖳

=
(

(1 − 𝛼)
(

𝑰 − 𝛼𝑾𝑫−1)−1
)𝖳

�̂�𝓎𝓎𝐶 ,

(18)

the first component is clearly related to the generalized Katz Central-
ity (Benzi and Klymko, 2014; Zhan et al., 2017):

𝐶Katz = 𝛽
(

𝑰 − 𝛼𝑨𝖳
)−1 𝟏, (19)

where the bias constant 𝛽 is replaced with a constrained 1−𝛼. Eq. (19)
performs one more step of summation of Eq. (18) to obtain a cen-
trality value. In other words, the calculation here uses an intermedi-
ate component of Katz centrality computation to weight the spatial
labels (Nourian, 2016; Nourian et al., 2016; Zhan et al., 2017).
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When 𝛼 = 0, no diffusion happens and the label vectors remain
he same in all the steps. For Eqs. (16) and (17) to be solvable, the
arameter 𝛼 has to be chosen so that it is smaller than the reciprocal
f the absolute value of the largest eigenvalue of 𝑾𝑫−1, i.e. 1∕|𝜆|,
imilar to the attenuation value for Katz Centrality computation. If
his largest value is chosen, Eq. (19) becomes a standard eigenvector
entrality (Gould, 1967; Bonacich, 1972). Moreover, by adjusting the
ocal diffusion rule in Eqs. (12) and (13), the computation could be
asily adjusted to other variants of spectral-based centrality such as
ageRank (Page et al., 1999) and standard Katz Centrality (Katz, 1953).
ote that the term �̂�𝓎𝓎(𝑡)

𝑘 denoting the last state of the nodes are not
ncluded in Eqs. (12) and (13). Appendix C will prove that adding such
term would end up calculating the same result in Eqs. (16) and (17)
nder certain constraints.

. Experiments

.1. Selected models and baselines

As described in Section 2.3.2, a group of models in a candidate set
will be trained on the datasets, and the best-performing model 𝐟𝑗 of

ach type will be selected to output the model-specific predictions �̂� 𝑗
o be further aggregated. To make the model ensemble various enough
or its best effect (Zhou, 2012), the following diverse model types that
re shown to be effective in literature are illustratively used:

andom classifier using prior distributions

• RDC - A Random Dummy Classifier baseline disregarding input
features that generates random outputs based on the category dis-
tribution (prior) in the training set as shown in Table 1 (Baumer
et al., 2015).

raph-free classifiers using multi-modal features

• MLP - Multi-Layer Perceptron Classifiers with visual and textual
features (Gardner and Dorling, 1998).

omogeneous-graph GNN classifiers

• GCN - The Graph Convolution Network with initial residual con-
nections and identity mapping (GCNII) proposed by Chen et al.
(2020) as an extension for the vanilla GCN proposed by Kipf and
Welling (2016).

• GAT - The Graph Attention Network proposed by Velickovic et al.
(2017) with attention mechanism.

• GSA - Graph Sample and Aggregate (GraphSAGE) models pro-
posed by Hamilton et al. (2017), which is especially effective for
inductive learning, where knowledge learnt on one [sub-]graph is
generalized across other unseen [sub-]graphs.

eterogeneous-graph GNN classifiers

• HGSA - The heterogeneous GNN that handles each type of links
separately with a different GraphSAGE sub-model, where results
are aggregated when multiple types of links point to the same
destination node (Zhang et al., 2019a).

• HGT - The Heterogeneous Graph Transformer proposed by Hu
et al. (2020) that incorporates each type of links with an attention-
based Transformer module (Vaswani et al., 2017).

During initial trials on the model structures, adding a linear layer
n most graph-based models (except for GCN and GSA) and concate-
ating its output with that of the graph filters was found to boost the
lassification performance on VEN dataset. This is probably because
he three types of links in VEN, i.e., the temporal, social, and spatial
onnections of the posts are all weak relations so that concatenating
he neighbour features with the learnt feature of the node itself could
vercome possible ‘‘over-smoothing’’ problem on these GNN, where
ndividual features of all the nodes are forgotten and replaced by a
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niversal aggregated one (Li et al., 2018). Also note that the Relational
raph Convolution Networks (Schlichtkrull et al., 2018) are not used
s candidate models, as they assume that there only exists at most one
ype of relations between any two nodes, which is not the case in VEN,
s two posts can be taken by the same person (socially similar) at the
ame place (spatially similar) in the same week (temporally similar).

.2. Model training processes

.2.1. Sub-sampling of graphs
The NeighborLoader in PyTorch Geometric (PyG) library (Fey

nd Lenssen, 2019), which is based on the Neighbour Sampler intro-
uced by Hamilton et al. (2017), is used to generate sub-graphs 𝑠 for

all graph-based classifiers. A mini-batch of 32 post nodes are used as
the input nodes batch for all sorts of subsets in train,val,test, and
unlab. To make the GNN models compatible, for Homogeneous-graph
GNN Classifiers (GCN, GAT, GSA), 75 neighbours are sampled for each
node for two iterations, and for heterogeneous-graph GNN Classifiers
(HGSA, HGT), 25 neighbours are sampled for each node and link type
for two iterations. This effectively reduces the size of sub-graphs: the
total number of links from the order of 1 × 106 in VEN and 1 × 108 in
VEN-XL all to the order of 1 × 105 in the sub-graphs. This is especially
desirable for datasets at scales such as VEN-XL for it to fit in computer
memory during training and inference.

3.2.2. Evaluation metrics
Cross-Entropy of the soft labels are used as the loss functions

𝓁V,𝓁A for both OUV and HA classifications, while the parameter 𝜔V/A
mentioned in Eq. (4) is set to 1 for simplicity during training.

For OUV classification, Top-1 Accuracy (𝑝OUV(1)), Top-𝑛 Accuracy
(𝑝OUV(n)), and Order-𝑛 Jaccard Index (𝑝OUV(nJ)) are used as general
evaluation metrics, while for HA classification, only Top-1 Accuracy
(𝑝HA(1)) is used, since HA categories were assumed to be more precise
in Bai et al. (2022). Let topk(𝒗, 𝑛) denote a function returning an
ordered set containing the indices of the top-𝑛 entries of a generic
vector 𝒗, then the evaluation metrics on any subset * ∈ {val,test}
by model 𝐟𝑗 can be respectively described as:

𝑝OUV(1)
*,𝑗 =

∑

𝑣𝑖∈*∩V+,A−

(

topk(�̂�OUV
𝑗,𝑖 , 1) = topk(𝒚OUV

𝑖 , 1)
)

|

|

|

* ∩ V+,A−
|

|

|

(20)

OUV(n)
*,𝑗 =

∑

𝑣𝑖∈*∩V+,A−

(

topk(�̂�OUV
𝑗,𝑖 , 1) ∈ topk(𝒚OUV

𝑖 , 𝑛)
)

|

|

|

* ∩ V+,A−
|

|

|

(21)

OUV(nJ)
*,𝑗 =

∑

𝑣𝑖∈*∩V+,A−

|

|

|

|

(

�̂�OUV
𝑗,𝑖 > 1

𝑛+1

)

⋀

(

𝒚OUV
𝑖 > 1

𝑛+1

)

|

|

|

|

|

|

|

|

(

�̂�OUV
𝑗,𝑖 > 1

𝑛+1

)

⋁

(

𝒚OUV
𝑖 > 1

𝑛+1

)

|

|

|

|

|

|

|

* ∩ V+,A−
|

|

|

(22)

HA(1)
*,𝑗 =

∑

𝑣𝑖∈*∩V−,A+

(

topk(�̂�HA
𝑗,𝑖 , 1) = topk(𝒚HA

𝑖 , 1)
)

|

|

|

* ∩ V−,A+
|

|

|

, (23)

where Eq. (22) computes the Intersection over Union (Jaccard Index)
of two sets of indices pointing to vector entries with values larger than
a threshold (e.g., when 𝑛 = 3, the computation is about logits larger
han .25), being an effective way of evaluating soft label classification.

Furthermore, the per-class metrics of precision, recall, F1 score
(harmonic average of precision and recall), and confusion matrix are
used to inspect the model performance on each OUV and HA category
channel. Moreover, since VEN and VEN-XL are unbalanced datasets as
mentioned in Section 2.2 where some small classes only exist in top-𝑛
rather than top-1 labels, they are never counted in per-class metrics
calculation as ‘‘true-positive’’ instances. As an explorative treatment,
top-𝑛 per-class metrics are computed with the Algorithm 1, where the
predicted and ‘‘ground-truth’’ top-𝑛 classes are permuted to obtain 𝑛2
confusion matrices, which are further summed and normalized. Note
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the diagonal entries of normalized confusion matrix �̃� are effectively
top-𝑛 F1 scores of top-𝑛 precision and recall. A similar explanation
applies to the off-diagonal entries.

Algorithm 1: Computing Top-𝑛 Per-Class Metrics
Data: Number of Classes 𝑁 , 1 ≤ 𝑛 ≤ 𝑁 , a 𝑁 ×𝐾 Label Array 𝒀 ,

a 𝑁 ×𝐾 Predicted Label Array �̂� , Standard Confusion
Matrix Function of Index Arrays ConfMat(𝒅, �̂�)

Result: Normalised Top-𝑛 Confusion Matrix �̃� , Top-𝑛 Precision
𝒑, Top-𝑛 Recall 𝒓, Top-𝑛 F1 Score 𝒇

1 𝜖 ← 0.0000001;
2 𝑖, 𝑗, 𝑙, 𝑚 ← 0;
3 𝑴 , �̃� ← 𝑁 ×𝑁 arrays of 0s;
4 𝑫, �̂� ← 𝐾 × 𝑛 arrays of 0s;
5 𝐯,𝒑, 𝒓,𝒇 ← 𝑁 × 1 arrays of 0s;
6 𝐝, �̂� ← 𝐾 × 1 arrays of 0s;
7 𝑫 ← topk(𝒀 , 𝑛);
8 �̂� ← topk(�̂� , 𝑛); /Indices of top-𝑛 entries
9 for 𝑖 ∈ [0, 𝑛) do
10 𝒅 ← 𝑫[∶, 𝑖]; /Indices of 𝑖th largest entries
11 for 𝑗 ∈ [0, 𝑛) do
12 �̂� ← �̂�[∶, 𝑗];
13 𝑴 ← 𝑴 + ConfMat(𝒅, �̂�);
14 end
15 end
16 𝒗 = 𝑴 .diagonal(); /The diagonal entries
17 for 𝑙 ∈ [0, 𝑁) do
18 𝒑[𝑙] ← 𝒗[𝑙]∕(𝑴[𝑙, ∶].sum() − (𝑛 − 1) × 𝒗[𝑙] + 𝜖);
19 𝒓[𝑙] ← 𝒗[𝑙]∕(𝑴[∶, 𝑙].sum() − (𝑛 − 1) × 𝒗[𝑙] + 𝜖);
20 𝒇 [𝑙] ← 2 × 𝒑[𝑙] × 𝒓[𝑙]∕(𝒑[𝑙] + 𝒓[𝑙] + 𝜖);
21 for 𝑚 ∈ [0, 𝑁) do
22 �̃�[𝑙, 𝑚] = 2 ×𝑴[𝑙, 𝑚]∕(𝑴[𝑙, ∶].sum() +

𝑴[∶, 𝑚].sum() − 2 × (𝑛 − 1) ×𝑴[𝑙, 𝑚] + 𝜖);
23 end
24 end

3.2.3. Implementations of experiments
As briefly described in Section 2.3.2, the training procedure con-

sists of the following steps: (1) for each model type, hyper-parameter
searching was performed on sampled sub-graphs of VEN for 300–1000
epochs of training on train with grid search in small ranges, where
arly-stopping was implemented based on the overall performance
n validation set val; (2) the hyper-parameter configuration of the
elected best models are used to re-train model checkpoints to be stored
nd used for inference; (3) the stored models are evaluated with metrics
entioned in Section 3.2.2 on both validation set val and test set

test with 10 runs of different random seeds since some GPU-based
models do not generate exactly same outcomes given a fix random
seed; (4) once the overall performance of a model type is acceptable,
it is used to predict the final label arrays �̂� 𝑗 on the entire dataset 
to be further aggregated; (5) Instead of repeating the same training
process for VEN-XL, the model checkpoints obtained in step 2 are
directly evaluated with train, val and test of VEN-XL (all practically
test sets) and used to predict label arrays since it is assumed that the
model checkpoints are generalizable in inductive learning. All models
are implemented using building blocks provided by PyTorch Geometric
(PyG) library. The datasets are structured and stored respectively as
Data and HeteroData classes in PyG for different model types. More
details of the training settings can be found in Appendix A.

To aggregate the predicted label arrays and perform SVD for the
agreement score 𝜿agr, PyTorch (Paszke et al., 2019) is used. The sum of
Top-1 HA Accuracy and Order-3 OUV Jaccard Index on both validation
and test sets are used as the weight 𝑝 for aggregation. To compute the
143

𝑗

confidence score 𝜿con, the top-4 entries of the aggregated label array �̂�
are used. For simplicity, parameters 𝜙, 𝛾 in Eq. (10) are both set to 2
to compute the attention array 𝑺. As for the spatial diffusion process,
the parameter 𝛼 ∈

[

0,min(1∕|𝜆|, 1)) is tested with 10 different values
evenly dividing its theoretical lower and upper bounds (smaller than 1
for Eq. (13) to be meaningful) to test its effect on the distribution of
the final label array 𝒴𝒴𝒴 on the spatial network.

3.3. Interpretation and visualization

3.3.1. Sensitivity on alternative conditions
To reflect on the assumption that graph-based models can better

deal with semi-supervised learning tasks with a large proportion of
missing features and/or labels, the trained model checkpoints are di-
rectly evaluated on an altered validation set val where the visual or
textual features of the mini-batches are masked and clipped to 0, while
all the other nodes in the sampled graphs 𝑠 are intact.

The usefulness of three link types {𝑨TEM,𝑨SPA,𝑨SOC} are also exper-
imented. For homogeneous graph models, the simple composed links
𝑨 are replaced by each sub-link type to sample the sub-graphs for
evaluation on val in mini-batches. For heterogeneous graph models,
only one link type is kept or masked during sub-graph sampling,
yielding six different alternative performance scores on val.

As an alternative to the original graph links provided by Bai et al.
2022), a feature-based k-Nearest Neighbour (kNN) graph structure
s also tested for homogeneous graph models. Since textual features
ave missing values, only visual features 𝑿vis are used to compute an
djacency matrix 𝑨kNN ∈ {0, 1}𝐾×𝐾 , where each entry 𝐴kNN

𝑖,𝑖′ = 1 only if
the post node 𝑣𝑖′ is within the 3 nearest neighbours of 𝑣𝑖 based on cosine
similarity. The kNN graph structure is computed with the knn_graph
unction of PyG library.

.3.2. Interpreting the association of input features
For the final post-level label array �̂� and the initial spatial-level

label array �̂�𝒴𝒴 before diffusion, rectangular co-occurrence matrices 𝑶 ∈
N11×9 of top-3 OUV and top-1 HA categories are computed, where each
matrix entry is normalized by dividing the total number of examples
used for computation. When computing 𝑶 for post-level label �̂� , only
the posts whose sum of confidence score 𝜿con and agreement score 𝜿agr

were above the 25% quantile are considered. These matrices can be
used to explain the association of OUV and HA categories as well as
their general distributions. When two categories from OUV and HA
have high co-occurrence, they could be well-associated, informative for
further heritage study investigations.

Furthermore, GNNExplainer (Ying et al., 2019) is illustratively used
for GAT and GSA on train,val,test to compute the relative importance
of all visual and textual features for each OUV and HA category, among
which 473 features out of 1753 are more explainable with physical
meanings, e.g., scene categories (Zhou et al., 2017), SUN attribute
categories (Patterson et al., 2014), number of faces (Schroff et al.,
2015), and origin of languages. For all nodes considered, GNNExplainer
predicted the relative importance of all features for classifying each
node in sampled sub-graph mini-batches for 200 epochs. The explain-
able features mentioned above that entered the top-250 rankings by
each node are counted for each OUV and HA category. A bipartite
graph connecting the features with the categories is visualized in Gephi
with Force Atlas algorithm (Bastian et al., 2009; Jacomy et al., 2014),
which could be considered as an interpretable lexicon of the cultural
significance categories.

3.3.3. Statistical tests and spatial mapping
𝑇 -Tests and Analysis of Variance (ANOVA) are conducted on the dif-

ference of model performance, confidence scores, and agreement scores
between datasets VEN and VEN-XL and among subsets train,val,test,

unlab to check the coherence and consistency of trained models. All
tatistical tests are performed with Pingouin library (Vallat, 2018).
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Table 3
The performance (%) of each model type in VEN dataset on validation and test sets as mean±standard deviation, computed using the stored model checkpoints with ten runs of
evaluation with different random seeds. The best two models on each metric are marked in bold.

Model 𝑝OUV(1)
val 𝑝OUV(1)

test 𝑝OUV(3)
val 𝑝OUV(3)

test 𝑝OUV(3J)
val 𝑝OUV(3J)

test 𝑝HA(1)
val 𝑝HA(1)

test

RDC 18.79 ± 3.12 18.75 ± 3.08 57.14 ± 2.19 56.46 ± 3.69 21.92 ± 1.16 22.67 ± 1.85 17.56 ± 1.67 18.09 ± 1.15

MLPa 80.79 ± 0.00 80.21 ± 0.00 99.51 ± 0.00 99.48 ± 0.00 75.79 ± 0.00 74.13 ± 0.00 98.98 ± 0.00 98.21 ± 0.00
GCN-kNNa 74.38 ± 0.00 72.92 ± 0.00 99.51 ± 0.00 98.44 ± 0.00 69.21 ± 0.00 68.40 ± 0.00 91.87 ± 0.00 97.38 ± 0.00
GAT 80.39 ± 0.43 82.55 ± 0.42 99.51 ± 0.00 99.48 ± 0.00 76.32 ± 0.21 76.11 ± 0.29 98.07 ± 0.10 97.38 ± 0.08
GSA 80.69 ± 0.72 79.06 ± 0.65 99.51 ± 0.15 99.48 ± 0.00 77.17 ± 0.38 75.48 ± 0.49 95.71 ± 0.21 97.08 ± 0.22
HGSA 84.73 ± 1.14 77.86 ± 0.35 99.11 ± 0.20 99.11 ± 0.33 77.33 ± 0.60 71.74 ± 0.42 96.63 ± 0.24 95.65 ± 0.30
HGTa 79.31 ± 0.00 78.65 ± 0.00 98.03 ± 0.00 99.48 ± 0.00 73.81 ± 0.00 74.05 ± 0.00 96.95 ± 0.00 96.42 ± 0.00

Aggregated 84.23 81.77 99.01 100.00 76.77 76.30 97.56 98.21

aDeterministic outputs on GPU by the stored model checkpoint with different random seeds.
Table 4
The performance (%) of each model type in VEN-XL dataset on train, validation, and test sets, computed directly using the stored model checkpoints trained on VEN as inductive
learning setting. The best two models on each metric are marked in bold. OUV selection criteria are shortened as ‘‘V’’, and Heritage Attributes as ‘‘A’’.

Model 𝑝V(1)
train 𝑝V(1)

val 𝑝V(1)
test 𝑝V(3)

train 𝑝V(3)
val 𝑝V(3)

test 𝑝V(3J)
train 𝑝V(3J)

val 𝑝V(3J)
test 𝑝A(1)

train 𝑝A(1)
val 𝑝A(1)

test

MLP 79.16 80.53 80.52 98.67 98.70 98.86 74.42 75.25 75.22 91.58 96.86 96.79
GCN-kNN 76.01 75.54 76.43 96.80 96.67 96.53 70.65 71.65 71.67 85.93 91.41 91.24
GAT 80.04 80.88 80.90 98.47 98.72 98.61 74.09 73.50 73.44 93.32 96.28 96.01
GSA 75.92 78.19 78.21 98.44 98.69 98.37 72.73 75.55 75.28 90.09 94.69 94.10
HGSA 77.12 78.81 78.48 98.49 98.41 98.41 70.63 70.53 69.85 90.66 95.10 94.62
HGT 77.58 78.34 78.92 97.95 98.04 98.20 72.66 72.48 72.39 91.36 95.40 95.25

Aggregated 80.54 81.49 81.81 98.67 98.77 98.83 75.93 76.57 76.45 91.62 96.54 96.11
For each category channel of the final spatial label array 𝓎𝓎𝓎𝐶 with
ach value of 𝛼 as in Eq. (17), the global Moran’s 𝐼 is computed as
he spatial auto-correlation measure (Moran, 1950; Rogerson and Sun,
001; Rogerson, 2021) of each OUV and HA category, showing the
ffect of spatial diffusion on the final label distribution, such that:

𝐶 =
|𝑉 |(𝓎𝓎𝓎𝐶 − �̄�𝐶𝟏)𝖳𝑾 (𝓎𝓎𝓎𝐶 − �̄�𝐶𝟏)

𝟏𝖳𝑾 𝟏 × (𝓎𝓎𝓎𝐶 − �̄�𝐶𝟏)𝖳(𝓎𝓎𝓎𝐶 − �̄�𝐶𝟏)
, (24)

where 𝟏 is a |𝑉 |-dimensional vector of all 1s, �̄�𝐶 is the mean of vector
𝓎𝐶 , and 𝑾 is the spatial closeness matrix mentioned in Section 2.3.4,
thus not a conventional weight matrix with zero diagonal entries (Chen,
2021).

The spatial clustering effect of hot spots (clusters of high values) of
each category channel is found with the computation of local Moran’s 𝐼
and the simulated 𝑝 values based on random re-assignment of values on
the spatial nodes (Anselin, 1995; Rogerson and Sun, 2001), such that:

𝑰𝐶 = (𝓎𝓎𝓎𝐶 − �̄�𝐶𝟏)⊙𝑾 (𝓎𝓎𝓎𝐶 − �̄�𝐶𝟏). (25)

The spatial statistics global and local Moran’s 𝐼 are computed using
the ESDA: Exploratory Spatial Data Analysis tool of PySAL library (Rey
and Anselin, 2007) with doubly-standardized weight transformation
together with 9999 permutations to generate simulated distributions
for estimating two-tailed 𝑝 values with Bonferroni correction (Vander-
Weele and Mathur, 2019), where all the other parameters are kept as
default. This computation would return the same results as implement-
ing Eqs. (24) and (25). Afterward, the values of OUV and HA categories
on spatial nodes are mapped using QGIS (QGIS Development Team,
2009).

4. Results

4.1. Classification performance

The classification performance of all the models is shown in Table 3
for VEN and in Table 4 for VEN-XL, while detailed performance curves
of each model checkpoint during training can be found in Fig. A.1. The
selected candidate models all performed reasonably well, as they all
appeared in the best two instances at least once among the evaluation
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metrics on VEN, far exceeding the random classifier RDC. Note that
only GCN selected is based on kNN graph structure mentioned in
Section 3.3.1, since it performed better as will be shown in Fig. 7. Since
different random seeds would change the configuration of sampled
sub-graphs and the group of neighbours a node can learn from, the
classification performance can be affected. However, except for the top-
1 OUV accuracy for HGSA model, other variances are generally small.
Furthermore, as the goal of this study is not to select the best model
architecture, but to have stable and reliable performance, no single
model was selected as the ‘‘final’’ one to predict labels. Rather, the
aggregated prediction of all models was used in further steps. In VEN,
aggregated prediction performed well in all evaluation metrics, either
being among the best two models or performing considerably to the
best ones. Yet in VEN-XL where models were directly evaluated without
further training or fine-tuning, the aggregated prediction performed
best for all metrics in all subsets. It is remarkable that GAT performed
arguably the best among the individual models both in VEN and VEN-
XL, suggesting that it has decent generalizability. Note the general
performance of selected models including the aggregated prediction on
all evaluation metrics dropped significantly from VEN to VEN-XL on
their respective validation and test sets according to one-sided paired
𝑇 -Test, 𝑡(55) = 4.517, 𝑝 < .0001, yet the effect size of this drop is
minimum (Cohen’s 𝑑=0.096), suggesting that the knowledge learned on
the small VEN dataset during training has been successfully transferred
and generalized to the large unseen VEN-XL dataset.

The per-class metrics of OUV and HA categories by the aggregated
prediction array �̂� on both datasets can be seen in Tables 5 and
6, respectively. For most cultural OUV selection criteria except for
Criterion (v) about Land-use and almost all HA categories except for
Artificial Products, the aggregated prediction performed reasonably
well in both VEN used for training, and VEN-XL completely new to the
models. The poor performance of OUV Criteria (v), (viii), (ix) and HA
category Artificial Products is clearly related to their scarce presence
in the training set of VEN shown in Table 1, where the models had
to learn the key features of a category using less than 10 examples.
Specifically, even though there are a few training data labelled as Cri-
teria (v)(ix)(x), no data from validation and test sets are labelled with

them, thus resulting blanks (‘–’) in Table 5. Future data augmentation is
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Fig. 4. The normalized top-1 and top-𝑛 confusion-matrix heatmaps of OUV selection criteria and Heritage Attributes classification of the aggregated prediction on both VEN and
VEN-XL datasets. Note that these confusion matrices are not stochastic, and the entries represent the extent of confusion, where the diagonal entries are F1 scores in Tables 5 and
6.
Fig. 5. The distribution of the confidence score 𝜿con and the agreement score 𝜿agr on both VEN (light blue) and VEN-XL (dark blue) datasets, both as density-based histograms.
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
expected to teach the models specifically on these scarce classes. Under
the same condition of scarcity, the prediction on Criterion (x) - Bio-
diversity, Urban Scenery, and Gastronomy performed remarkably well,
suggesting that these classes are probably more clearly separated from
the others in the feature space, easy for models to learn even with few-
shot learning. The top-𝑛 per-class metrics proposed in Algorithm 1 is
especially useful to evaluate scarce classes, as they may be absent as
top-1 yet appear as top-𝑛 classes in validation and test sets, which can
be seen in the cases of Criteria (v), (viii), (x) for VEN in Table 5. Such
metrics are arguably stricter than standard per-class metrics in the sense
that it evaluates the overlap of all top-𝑛 predictions with top-𝑛 labels
(only when they are all the same, the metrics get to their theoretical
maximum of 1), which could be seen as an extension of top-𝑛 accuracy
with soft labels.

Moreover, the top-𝑛 per-class metrics allow a deeper observation of
the confusion among the classes, as shown in Fig. 4. While Criterion
(v) - Land Use is absent in standard OUV confusion matrices (for the
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same reason mentioned above that no data in validation and test sets
of VEN has a top-1 label of it), the values in top-𝑛 confusion matrices
give a hint on how other classes are confused and thus related with it:
posts about land-use in Venice also concern with the influence of Venice
to the world and its special architectural style near the canals. Posts
concerning Criteria (iii), (iv), and (vi) are easily confused with each
other, meaning that when people post about Venice on Flickr, themes
about testimony of the past, architectural typology and the association
of architectural and urban elements with human activity usually come
together. The same goes for Criteria (vii) and (x) about natural beauty
of the city and the living animals and plants indicating bio-diversity.
For HA, Artifact Products can be confused with Gastronomy and Peo-
ple’s Activity, which also makes sense as all three topics usually depict
human and human-related objects. Such associations will be further
elaborated in Section 4.3.

The confidence score 𝜿con and the agreement score 𝜿agr mentioned
in Section 2.3.3 have similar distributions for VEN and VEN-XL datasets
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Fig. 6. The performance of all selected model checkpoints on the evaluation metrics when masking visual or textual features of mini-batches. The performance of the prior-based
random classifier RDC in Table 3 is marked with dashed lines.

Fig. 7. The relative performance change of homogeneous and heterogeneous graph models directly evaluated on sub-graphs with one or two of the link types in {𝑨TEM ,𝑨SPA ,𝑨SOC},
compared to the original composed links 𝑨. The models with kNN links 𝑨kNN were trained separately.
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Fig. 8. The normalized co-occurrence matrix heatmaps 𝑶 of the OUV and HA categories in post-level label array �̂� and spatial-level label array �̂�𝒴𝒴 in both VEN and VEN-XL
datasets.
Table 5
The per-class performance metrics of OUV Selection Criteria classes in VEN and VEN-XL datasets. When no correct predictions were made for a class, the score would be 0.00;
yet when no examples of a class were available, the score is marked as ‘‘–’’. The class ‘‘Others’’ is omitted since no examples were assigned to it.

Metrics Precision Recall F1 Top-3 Precision Top-3 Recall Top-3 F1

Criterion (i) - Masterpiece 0.94 | 0.87 0.89 | 0.79 0.92 | 0.82 0.86 | 0.64 0.81 | 0.64 0.84 | 0.64
Criterion (ii) - Influence 0.76 | 0.59 0.65 | 0.87 0.70 | 0.70 0.63 | 0.27 0.53 | 0.74 0.58 | 0.39
Criterion (iii) - Testimony 0.68 | 0.69 0.80 | 0.79 0.74 | 0.74 0.73 | 0.93 0.61 | 0.74 0.66 | 0.83
Criterion (iv) - Typology 0.88 | 0.70 0.79 | 0.76 0.83 | 0.73 0.65 | 0.75 0.76 | 0.64 0.70 | 0.69
Criterion (v) - Land-use – | 0.00 – | 0.00 – | 0.00 0.11 | 0.03 1.00 | 0.38 0.20 | 0.06
Criterion (vi) - Association 0.78 | 0.94 0.88 | 0.82 0.82 | 0.87 0.63 | 0.89 0.75 | 0.76 0.68 | 0.82
Criterion (vii) - Natural Beauty 1.00 | 0.16 1.00 | 0.55 1.00 | 0.24 0.25 | 0.17 1.00 | 0.94 0.40 | 0.28
Criterion (viii) - Geological Process – | 0.00 – | 0.00 – | 0.00 0.00 | 0.00 0.00 | 0.00 0.00 | 0.00
Criterion (ix) - Ecological Process – | 0.00 – | 0.00 – | 0.00 – | 0.00 – | 0.00 – | 0.00
Criterion (x) - Bio-diversity – | 0.66 – | 0.73 – | 0.69 0.00 | 0.39 0.00 | 1.00 0.00 | 0.56
Table 6
The per-class performance metrics of heritage attributes classes in VEN and VEN-XL
datasets.

Metrics Precision Recall F1

Monument and buildings 0.99 | 0.98 0.99 | 0.98 0.99 | 0.98
Building elements 1.00 | 0.98 0.98 | 0.96 0.99 | 0.97
Urban form elements 0.99 | 0.99 0.98 | 0.97 0.98 | 0.98
Urban Scenery 0.91 | 0.74 1.00 | 1.00 0.95 | 0.85
Natural features and landscape scenery 0.99 | 0.99 0.97 | 0.99 0.98 | 0.99
Interior scenery 0.95 | 0.90 1.00 | 0.96 0.97 | 0.93
People’s activity and association 0.96 | 0.99 1.00 | 0.88 0.98 | 0.93
Gastronomy 0.95 | 0.92 0.82 | 0.83 0.88 | 0.87
Artifact products 0.29 | 0.08 0.67 | 0.93 0.40 | 0.15
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as visualized in Fig. 5. Two-way ANOVA 𝐹 -Tests on the level of
different datasets and on the level of zoomed-in subsets train,val,test,
and unlab is showed in Table 7. All effects are statistically significant,
yet only the main effect of subset has large effect sizes 𝜂2, and the
main effect of the dataset and the interaction effect are all minimum,
which can also be seen with Cohen’s 𝑑 computed with independent
𝑇 -Tests with Welch’s correction. The very small effect sizes on the
level of dataset indicate that the significant drops of both scores from
VEN to VEN-XL are mainly caused by the large sample size in VEN-XL,
suggesting that the models function consistently and coherently in both
datasets. Post hoc comparisons using the Tukey HSD test indicated that
the scores in train are always significantly higher than val, and test,
and the scores in unlab are always significantly lower than all the
others with large effect size, while there is no significant difference
between  and  , as can be seen in Table B.1 of Appendix B. This
val test
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V
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Table 7
Means, Standard Deviations, and Two-Way ANOVA Statistics on the Confidence and Agreement scores. An additional Independent 𝑇 -Test with Welch’s correction is also performed
on the level of two datasets.

Score VEN VEN-XL ANOVA

M SD M SD Effect df 𝐹 p 𝜂2

Confidence score 𝜿con

–Training set train 0.795 0.042 0.744 0.076 Dataset 1 59.938 <.0001 .0004
–Validation set val 0.666 0.076 0.663 0.080 Subset 3 17,336.251 <.0001 .3827
–Test set test 0.667 0.077 0.664 0.080 Dataset ×Subset 3 32.388 <.0001 .0012
–Unlabelled set unlab 0.573 0.084 0.563 0.083 Residual 83,906
(Overall) 0.644 0.105 0.638 0.102 𝑡(3158.402) = 2.910, 𝑝 = .004, Cohen’s 𝑑=0.056
Agreement score 𝜿agr

–Training set train 0.741 0.033 0.664 0.099 Dataset 1 110.854 <.0001 .0008
–Validation set val 0.604 0.110 0.589 0.115 Subset 3 16,195.095 <.0001 .3662
–Test set test 0.604 0.111 0.589 0.116 Dataset ×Subset 3 27.723 <.0001 .0001
–Unlabelled set unlab 0.444 0.129 0.427 0.129 Residual 83,906
(Overall) 0.556 0.152 0.541 0.149 𝑡(3160.154) = 5.235, 𝑝 < .0001, Cohen’s 𝑑=0.100
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again shows the consistency and coherence of the model performance.
When further aggregating the labels into spatial nodes, those posts
with high prediction confidence and agreement (thus are more reliable)
contribute more to attention score computation. Note the scores on the
training set gets closer to the validation and test sets in VEN-XL than in
EN with lower means and larger standard deviations. This is probably
ecause the models are not trained on VEN-XL, and the training set,

therefore, becomes another [easier] validation/test set, as pointed out
in Section 3.2.3.

4.2. Robustness of models

Fig. 6 shows the performance of selected models while masking the
visual or textual features of the sub-sampled validation mini-batches.
Masking visual features significantly lowers the HA scores, and masking
textual features significantly lowers the OUV scores. This is a natural
and consistent behaviour considering how those labels were originally
derived: in Bai et al. (2022), HA labels were generated using images
only and OUV labels were generated using texts only. In this study,
however, the models have access to both textual and visual features
when making classifications on both HA and OUV categories. GCN-
kNN was the most robust model against the masking of visual features
since the kNN graph structure 𝑨kNN was computed before masking,
unconsciously leaking the association information of visually similar
images (and possibly their HA labels) to the models being trained. All
graph-based models performed better than the graph-free MLP at HA
classification while masking visual features, whereas the homogeneous
models remained better than random classifier RDC. For OUV classifica-
tion, Order-3 Jaccard Index of all models became extremely vulnerable
and got far worse than RDC after masking textual features, since the
requirement of being larger than 1∕(𝑛 + 1) in Eq. (22) cannot be easily
fulfilled when models get uncertain of their predictions. Top-3 OUV
Accuracy shows that almost all graph-based models (except for HGT)
performed better than MLP (which was also better than RDC) while
masking textual features, implying that those models managed to learn
the missing textual information of a post from its neighbours, which
is only possible on graphs. However, such an effect is not obvious for
Top-1 OUV Accuracy, where most models performed only slightly better
than RDC.

Fig. 7 shows the relative performance change of all graph-based
models using different graph structures, compared to the original links.
GCN trained on kNN graph 𝑨kNN performed significantly better than
the original links in all metrics, while GAT and GSA performed slightly
worse on kNN graph, suggesting the necessity of using GCN-kNN as the
selected candidate model in Tables 3 and 4. Changing graph structure
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only slightly lowers the performance on GAT and GSA, while not c
affecting HGT at all. This seems to suggest that these models work as
long as there is some graph structure marking the relationship of data
points, indifferent of the type of links. Meanwhile, GCN and HGSA are
more dependent on the links used for inference.

The various behaviours imply that the selected models are divergent
enough, suggesting that aggregating the prediction results to form
an ensemble is both necessary and beneficial. The discussion on the
complex effects of the model performance, however, falls out of the
scope of this paper and invites further investigations in future studies.

4.3. Association of features and labels

Fig. 8 shows the co-occurrence matrices of OUV and HA categories
as heatmaps, where frequent OUV-HA pairs imply the association of
abstract OUV selection criteria and substantial Heritage Attributes. The
four matrices on both post-level labels �̂� and spatial-level labels �̂�𝒴𝒴 in
both VEN and VEN-XL datasets are similar to each other. The spatial-
evel distribution on VEN-XL is the most sparse (and concentrated)
mong the four matrices where most OUV-HA pairs focused on the large
lasses, i.e., Criteria (iii) and (vi) for OUV and Urban Form Element for
A. A similar yet more extreme pattern can be observed in Fig. B.1

n Appendix B when the parameter 𝛼 gets larger, pushing the diffused
patial nodes label array 𝒴𝒴𝒴 to a uniform-like distribution, suggesting
ossible ‘‘over-smoothing’’. A few OUV-HA pairs always stand out
s associated categories in those co-occurrence matrices: (1) As the
ost common HA category, the Urban Form Elements always associate

trongly with Criteria (iii), (iv) and (vi), suggesting that when people
ost about testimony of past, architecture type, and human-life-related
raditions, they are usually immersed in the urban context of streets
nd squares; (2) The second largest HA category about People’s Activity
lso associate strongly with Criteria (iii) and (vi), since they have
bvious connections with human; (3) As expected, the most associated
UV category with Monuments and Building is Criterion (iv) about
rchitecture typology, and that with Building Element is Criterion (iii)
bout testimony for a [possibly lost] tradition; (4) The most unexpected
ssociations are the ones for Natural Features and Landscape Scenery,
here the most relevant Criterion (vii) about natural beauty is always
resent but not in a dominant position, which has also been taken by
riterion (iii) and (vi). The pattern of OUV and HA category distribu-
ion will be further dis-aggregated and mapped spatially in Section 4.4
or detailed inspection.

Fig. 9 visualizes the explainable features that are shown to be
mportant for classifying the nodes into each OUV and HA category,
ffectively forming a lexicon of features for the categories as a bi-
artite graph. The contribution of features is interrelated to OUV/HA

ategories. For example, the recognized scene of ‘‘Canals in Urban
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Fig. 9. The bipartite graph of feature nodes and OUV/HA category nodes showing the relative importance for explainable features while classifying the nodes belonging to each
OUV and HA category. The larger a feature node is, the more this feature appeared in the top-250 important features while classifying a node based on GNNExplainer. The edge
weights show the number of times the features contributed to the categories. Only nodes with a larger weighted degree of 8 are shown. Red lines are associations for OUV classes
and blue lines for HA. Sub-figures b-e show ego graphs (a sub-graph of the entire lexicon in sub-figure a) around a specific feature or category node. ‘‘SCE’’ denotes scene category
within Zhou et al. (2017); ‘‘SUN’’ denotes SUN attribute category in Patterson and Hays (2012); ‘‘LANG’’ denotes the detected language and ‘‘FACE’’ denotes face recognition
results from Bai et al. (2022). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 10. The change of global Moran’s 𝐼 of each OUV and HA category when the diffusion parameter 𝛼 changes in VEN and VEN-XL. A simulated distribution of expected values
of 𝐼 based on 9999 permutations is used to estimate the 𝑝 values.
Environment’’ and the SUN attribute of ‘‘Open Area’’ from an image
both contribute generally to almost all OUV/HA categories, especially
on Criteria (iii)(vi) and ‘‘Urban Form Element’’, while ‘‘Open Area’’ has
less to do with ‘‘Interior Scenery’’, ‘‘Building Elements’’, and ‘‘People’s
Activity and Association’’. While HA category ‘‘Interior Scenery’’ could
be inferred with a limited range of features such as ‘‘Enclosed Area’’
and ‘‘Arch’’, OUV Criterion (vi) could be inferred from a large variety
of visual and textual features, depending on the type of human activity
taking place. The face recognition and language detection results ap-
pear to contribute universally to the classification of most categories,
which could be possibly explained that the presence of human faces
and the original languages of posts provide additional information that
could not be inferred from features extracted with scene recognition
models originally trained with images with few people and language
models trained with English texts. However, among all visual and
textual features, explainable ones are usually less informative than the
higher-level hidden features, as can be seen in Fig. B.2. More concrete
investigations are invited to explain this complex pattern.

4.4. Mapping of heritage cultural significance

Fig. 10 demonstrates that the global Moran’s 𝐼 for OUV and HA
categories gradually increase as the diffusion parameter 𝛼 ascends. For
most categories in VEN and all in VEN-XL, a spatial auto-correlation
is significant after Bonferroni correction (𝑝 < .025∕20) even before
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diffusion compared to the permutated distributions, confirming the
First Law of Geography. For smaller 𝛼 values, the increases in Moran’s 𝐼
are not drastic, yet effectively further decrease the simulated 𝑝 values.
The largest value of 𝛼 = 0.99 yields extreme 𝐼 values larger than
1 in VEN. This suggests that choosing a relatively small value for 𝛼
could enhance the spatial pattern of the categories without disturbing
their distributions too much. Note the expected value (mean) of 𝐼
according to simulation is not the conventional −1∕(𝑁 − 1), since the
weight matrix 𝑾 used here has non-zero diagonal entries and is not
row-standardized. However, Fig. B.3 shows a similar pattern with the
conventional weight matrix for computing Moran’s 𝐼 . The following
sections will use 𝛼 = 0.3 for demonstrative purposes of exploratory
spatial data analysis. The distribution of spatial node labels 𝒴𝒴𝒴 in Fig. 11
also demonstrates a consistent pattern in VEN and VEN-XL: (1) five
OUV and HA categories are relatively more dominant than the others;
(2) the confidence of OUV labels for spatial nodes are generally lower
than HA labels since OUV categories have to be sometimes inferred
without textual information; (3) whereas the less dominant categories
have lower means and quantile values, the ‘‘outliers’’ point to the
exceptional spatial nodes representing specific OUV and HA categories.
It further shows that although none of Criteria (vii) - (x) are inscribed
with Venice in WHL, scarce cases related to Criteria (vii) and (x) can
still be found.
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Fig. 11. The box plots of each OUV and HA category demonstrating the distributions of spatial node labels 𝒴𝒴𝒴 in both VEN and VEN-XL datasets.
Fig. 12 demonstrates the final maps of OUV and HA categories
identified from Flickr showing their spatial distributions and auto-
correlation patterns, together with illustrative examples. The magni-
tude of HA categories is generally higher than OUV, as also pointed out
in Fig. 11. Almost all categories display spatial patterns of ‘‘hotspots’’
of high values appearing at nearby places, justified with significant
local Moran’s 𝑰 . Some categories are spread all over Venice, e.g., OUV
Criterion (iii) about Testimony and HA Urban Form Elements, due to
their universal nature, while others are much more concentrated at ded-
icated spots, e.g., OUV Criterion (iv) about Architecture Typology and
HA People’s Activity and Associations. Even though some categories
are less present with far more limited range, e.g., OUV Criterion (v)
about Land-Use and HA Artifact Product, the methodology does manage
to find relevant spatial spots with posts of images and/or comments
related to the topic. The OUV-HA pairs generally believed to associate
with each other, such as Criterion (iv) about Architecture Typology and
HA Monuments and Buildings, Criterion (vi) about Human Association
and HA People’s Activity and Associations, and Criterion (vii) about
Natural Beauty and HA Natural Features and Landscape Scenery, partly
overlap with each other, yet not totally identical, showing the nuances
of the concepts reflected in social media posts. Interestingly, the hotspot
visualization and illustrated examples prove that Venice is more than
conventionally popular destinations such as the Piazza San Marco
and Ponte di Rialto. Other places including churches, piazza, campo,
gardens, exhibition venues, and even normal streets are also attracting
people and making them realize the beauty of the city with different
focal points. Further visualizations, comparisons, and discussions of the
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spatial mapping of OUV and HA categories identified with the proposed
methodology can be found in Appendix B with Figs. B.4 till B.7.

5. Discussion

5.1. Documenting knowledge for heritage studies

The initial motivation for conducting this research is to propose a
‘‘knowledge documentation and mapping tool of cultural and natural
heritage characteristics’’, especially the heritage values and attributes,
for the ‘‘recognition of cultural significance and diversity’’, in support
of the HUL approach (UNESCO, 2011). Instead of actively engaging the
civil society to contribute to the narratives with their knowledge and
values a city they live in or visit conveys to them, this study makes use
of the existing information on social media with a real-world dataset
to make exploratory analyses. The term ‘‘exploratory’’ is crucial for
interpreting the findings and applying the methodology in practice.
It functions as a complementary tool to help heritage managers and
authorities explore the voices of the public on social media, either
to confirm or to challenge/ adjust their hypotheses over the spatial
distribution of the cultural significance in a city. For example, one
could be affirmative ahead of time that tourists are over-crowded in
only a few popular spots in Venice such as San Marco and Rialto, and
that the beauties hidden in the other places are easily over-looked.
However, the mapping practice in Fig. 12 suggests that Flickr users are
indeed exploring a broad range of places all over the island, attracted
by different types of cultural significance reflecting various heritage
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Fig. 12. The geographical distribution of OUV and HA categories in VEN-XL based on the spatial diffusion of labels. The nodes with high ranges of value for each category under
equal-interval division are visualized as circles, the size of which demonstrates the number of posts distributed near the spatial node, while those nodes with a significant local
Moran’s 𝐼 are shown with dashed borders. Three demonstrative photos and one comment from ‘‘hotspot’’ areas of categories are given below each map.
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values and attributes. Heritage experts and practitioners could inspect
the social media posts located nearby unexpected places revealed with
cultural significance to get inspiration for further planning actions in
pursuit of social inclusion (Waterton et al., 2006; Bai et al., 2021b).

In order to fully reflect the need for inclusive heritage manage-
ment processes, further studies are needed to: (1) quantitatively and
qualitatively collect ideas from broader communities, especially from
those who do not use social media, for a fair comparison to justify the
representativeness of similar studies; (2) apply the same methodology
and test the models in a wider selection of case studies in different
geographical and topological contexts, as to evaluate the generalizabil-
ity of the proposed workflow; (3) update the OUV selection criteria
and Heritage Attributes label categories with other frameworks, tailor-
made for the research interests and objectives in their own usage
scenarios. Furthermore, UNESCO Statements of OUV are assumed to
include elements from both heritage values and attributes. This study
completes one side of the puzzle of analysing the association between
OUV Selection Criteria and Heritage Attributes and further mapping
them spatially. Future studies could complete the other end by employ-
ing analyses and mapping practices under the classification framework
of Heritage Values (Pereira Roders, 2007; Tarrafa Silva and Pereira
Roders, 2010; Foroughi et al., 2022).

5.2. A mapping tool for urban explorations

Nevertheless, as a mapping tool in full mathematical details, the
application scenarios of this study could go beyond heritage studies.
In principle, given a back-end spatial network, the mathematical con-
structs of attention-based information aggregation and graph diffusion
processes described in Section 2.3.4 could also be fed with any sort of
input feature array obtained from posts instead of only the output labels
to be aggregated and mapped on spatial nodes. For example, one could
map the SUN attribute feature of ‘‘biking’’ or ‘‘socializing’’ to explore
he activities distributed in a city or map the number and proportion
f faces in the posted images to observe the crowdedness, or even map
ome low-level visual features to mine the patterns of architectural
tyle (Sun et al., 2022). In this sense, the proposed methodology could
e generalized in applications of measuring safety (by diffusing crime
ate), vitality (by mapping diversity of human activity), and popularity
f urban spaces (by plotting the crowdedness), where it diffuses any
ort of human-generated information onto a spatial network with inher-
nt connectivity patterns. It is clearly related to the location-led place
rofiling approach in Lai (2019), whereas the categories in this study
o beyond the text-only clustering of urban activities.

When making spatial statistical inferences, like other similar spatial
nalyses, the result is dependent on how the spatial connectivity and
eights are measured. An interesting alternative could be aggregating

he posts on regular spatial grids of different resolutions and using
ueen/rook-based contiguity as weight matrix to perform the diffu-
ion (Anselin, 2003; Rogerson, 2021). As such, the label information
ill be rasterized and can be easily overlayed and collated in GIS
latforms with other global and local datasets (Esch et al., 2017;
ekker, 2020). Moreover, the diffusion-mapping process proposed by
his paper can be seen as an alternative and supplement to the con-
entional kernel-density heatmaps, which is further elaborated upon in
ppendix B.

Even though there are originally three types of graph links in
eri-Graphs (Bai et al., 2022), this study only discovers the map-
ing, aggregation, and diffusion on the spatial-level nodes for prag-
atic reasons, since spatial mapping is the most desired option. How-

ver, other than diffusing spatial-level node labels, mapping the foci
nd interests to temporal nodes (time periods in history) and so-
ial nodes (groups of social media users) that are derivable from
TEM,𝑨SOC can also answer interesting research questions. For in-

tance, other than the spatial bipartite relation 𝑩 mentioned in Sec-
TEM
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ion 2.3.4, the temporal bipartite relation 𝑩 (mapping the posts to m
the unique sorted weekly timestamps) and the tri-diagonal temporal
adjacency matrix 𝑾 TEM (recording the consecutive patterns of the

eekly timestamps) can be used to substitute the aggregation compu-
ation in Eq. (11) and the diffusion computation in Eq. (16). Here a
imilar relationship also holds according to Bai et al. (2022): 𝑨TEM =
𝑩TEM𝑾 TEM𝑩TEM𝖳 > 0

)

= 𝑩TEM (

𝑾 TEM > 0
)

𝑩TEM𝖳 ∈ {0, 1}𝐾×𝐾 . Ev-
ry other module of the methodological framework visualized in Fig. 1
s still valid, except that the aggregation and diffusion would be con-
ucted on the temporal-level graph. Analogue to the 2-dimensional
apping of spatial labels presented in this study, 1-dimensional map-
ing of temporal labels could result in attributed timelines showing
he development of different label and/or feature categories. Similar
apping computations can be conducted for the social graph (social
etwork of users on social media). These effects will be discovered in
ollow-up studies in various use cases.

.3. A machine learning application

It is worth noting that the labels generated in VEN and VEN-
L datasets were originally not annotated by humans, but rather by
few ML models, or more specifically, MLP models as connectors

etween hidden features and output soft-label vectors (Bai et al., 2022).
herefore, using more complex graph-based GNN models in this study
o replicate labels generated by simple MLP seems a reversed knowl-
dge distillation process (i.e., confident students teaching a group of
eachers) (Gou et al., 2021). It has also been shown in the most recent
iterature that simple MLPs using a Bag of Words could outperform
ost graph-based models in text classification tasks (Galke and Scherp,
022). This trend is again visible here for some of the metrics in
ables 3 and 4. However, this paper also shows that GNN models
ave other benefits in terms of inductive learning and missing input
ata, as demonstrated in Fig. 6. Considering that the pseudo-labels of
raining and validation sets came from data-points of high prediction
onfidence (with high top-𝑛 prediction logits) and consistency (with
imilar prediction results by different trained models), the philosophy
ehind the training process in this paper also resembles the self-training
trategy, where the originally unlabelled samples that end up with top
rediction confidence in one round of training are added to the next
ound as labelled ones (Li et al., 2018; Sun et al., 2020; Wang et al.,
022b). The indications of such similarities mentioned above to the
ethodology and results are, however, out of the scope of this paper.

The classification performance can be further improved by adding
umans in the loop with active learning (Prince, 2004). An important
hallenge given by the Heri-Graphs dataset that is not yet solved in
his study is the imbalance of categories and the extreme sparsity in
ome small classes. This is a pragmatic difficulty since Heri-Graphs
ere originally created with real-world social media data for an ap-
lication in heritage studies and did not enforce the categories to be
alanced (Bai et al., 2022). However, future studies could implement
ata augmentation on the small classes in the unbalanced training data
o further improve the classification performance. Few-shot learning
nd Zero-shot learning techniques can also be implemented (Sung et al.,
018). Further specific investigations are also invited to discover the ef-
ect of different graph structures, e.g., the original weighted adjacency
atrices instead of binary ones, for the training and diffusion processes.

While applying the obtained model from this study to other case
tudy cities in the world, such as Amsterdam and Suzhou also collected
y Bai et al. (2022), two options could be considered, following the con-
entional GNN terminology of transductive and inductive learning (Kipf
nd Welling, 2016; Yang et al., 2016; Hamilton et al., 2017; Velickovic
t al., 2017). By stacking the graphs of different datasets together
efore sampling sub-graphs, the pre-trained models could be used to
ine-tune the new models while the test data could be seen together
ith training data, entailing a transductive learning setting. On the

ontrary, directly applying the trained model here to other cases would

ean that the new test data are totally unobserved during training,
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entailing an inductive learning setting. Researchers are welcome to
explore the advantages and drawbacks of either option according to
their own application scenarios.

5.4. Related works about the workflow

The proposed workflow in Fig. 1 takes inspiration from many dif-
ferent fields.

The first main component, i.e., semi-supervised learning of multiple
models (Section 2.3.2), was the initial motivation of Graph Neural
Networks (Kipf and Welling, 2016) and has been a topic extensively
studied in computer science, with or without a graph structure (Blum
and Mitchell, 1998; Zhou and Li, 2010; Yang et al., 2016; Hamilton
et al., 2017; Velickovic et al., 2017; Li et al., 2018; Ma and Tang, 2021).
The extra complexity of this study from a real-world dataset is that
the semi-supervised learning process needs to react to two modalities
(visual and textual, among which the textual features might be missing)
and perform well in two classification tasks (OUV and HA) with a multi-
graph structure (composed of spatial, temporal, and social links). The
most closely relevant study in the literature is Liu and De Sabbata
(2021), which did not include the other two components, as already
mentioned in Section 1.

The second main component, i.e., aggregating model predictions
(Section 2.3.3), leverages the concept from Ensemble Learning
(Schapire and Singer, 1998; Zhou, 2012; Sagi and Rokach, 2018).
The approach of computing an aggregated prediction vector as a
weighted average of multiple models is similar to the ‘‘soft voting’’
mechanism (Zhou, 2012). Outside the field of computer science, aggre-
gating the opinions of multiple actors based on their agreement and
confidence is also an active topic in decision science (Stone, 1961;
Budescu and Rantilla, 2000; Budescu and Yu, 2007). However, it is
a technical innovation in this study to assign a class-level agreement
vector to each aggregated prediction by computing SVD on the matrices
composed of the original predictions of models in the ensemble, which
is informative for evaluating the effect of aggregation.

The third main component, i.e., aggregating and diffusing post-level
labels onto spatial graphs (Section 2.3.4), contains the most method-
ological innovations of the proposed workflow. As already pointed out
in Section 2.3.4, the processes of aggregating and diffusing informa-
tion on graphs resemble the operations of graph pooling and graph
filtering, respectively (Ma and Tang, 2021), thus the Eqs. (10) and
(12) can be formally similar to the ones in Graph Neural Network
literature (Velickovic et al., 2017; Lee et al., 2019; Knyazev et al.,
2019). However, they are for different purposes: instead of computing
intermediate representations for the training loop, in this paper, these
Equations are used to summarize the post-level information and assign
it to spatial nodes, which were initially unlabelled in nature. The
exchange of label information on bipartite graphs as shown in Eq. (11)
also makes it different from the Label Propagation Algorithm (Zhu and
Ghahramani, 2002; Huang et al., 2020; Wang and Leskovec, 2021),
albeit the latter approach has the same spirit of diffusing soft labels
based on the connectivity of nodes. Even though plenty of studies
attempted to draw the label categories of social media posts on spatial
maps, the majority of them either directly plotted the posts as uncon-
nected data points (Huang et al., 2019; Liu and De Sabbata, 2021),
or provided only the predominant categories or word-clouds for each
detected/predefined cluster (Hu et al., 2015; Lai et al., 2017; Ginzarly
et al., 2019), or created a kernel-density heatmap to show the distribu-
tion without a mathematical expression for the spatial nodes (Lansley
and Longley, 2016; Bekker, 2020; Kang et al., 2021). The proposed
method has the benefit of keeping a soft label structure (as probability
distribution) for each discrete spatial unit (street intersections), which
is also algebraically derivable. Further advantages of the proposed
mapping process with label diffusion will be elaborated with Figs. B.4,
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B.5, and associative discussions in Appendix B.
Interestingly, even though the process of aggregating and diffusing
labels is rare in spatial mapping, an essentially similar approach can
be found on social networks for developing recommendation systems,
where information is diffused on a tripartite graph of user-image-
tag (Mao et al., 2016; Zhang et al., 2017; Wang et al., 2018), which
could be regarded an analogue of the space-post-label triplet in this
study. Furthermore, an interesting connection can also be found in
a few recent studies with label diffusion processes during semantic
segmentation on point clouds (Mascaro et al., 2021; Deng et al., 2022;
Liao et al., 2022) and in a study predicting the effect of drug-disease
association using diffusion on a bipartite graph (Xie et al., 2021).

Despite all the resemblances mentioned above, an additional inno-
vation in this study is to bring all the components from different fields
together in a holistic workflow and adapt them accordingly to solve a
real-world research problem: mapping cultural significance categories
obtained from social media platforms. To the best of the authors’
knowledge, this study is the first to combine all these aspects with
interdisciplinary knowledge, especially as the label category of interest
is a unique example from the field of heritage studies, dominated by
expert-based qualitative approach.

6. Conclusions

This paper proposes a workflow to obtain social perception maps
concerning the cultural significance of places located in an urban
spatial network using social media information. Several graph neural
network models are trained with semi-supervised learning on attributed
graph datasets with visual and textual nodal features of user-generated
posts, effective on various evaluation metrics. The predicted post-level
soft labels are aggregated considering the confidence and agreement
of models, which are further aggregated and diffused on a back-end
spatial network to obtain spatial-level labels. The distributions of spa-
tial labels on heritage-related cultural significance categories are tested
with spatial statistics and mapped with examples. The entire workflow
is mathematically explained in detail and tested with the case study of
Venice, shown to provide reasonable maps of cultural significance. The
workflow can also be applied to other cities worldwide as a knowledge
documentation tool collecting the voices of communities posting on the
internet, with the ultimate goal of promoting socially inclusive heritage
management processes, as suggested by the UNESCO Historic Urban
Landscape approach. Moreover, the proposed methodology of diffusing
human-generated location-based information onto the spatial network
also has the potential for broader use scenarios in different domains of
urban studies.
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Appendix A. Implementation details of models

For all models, Adam (Kingma and Ba, 2017) with L2 regularization of 2e-4 is used as the optimizer. The hyper-parameter tuning, model training,
and inference on VEN are performed on NVIDIA GeForce RTX 3060 GPU, and the inference on VEN-XL is performed on Intel Core i7-12700KF
CPU since it is too large to fit in GPU. Hyper-parameter tuning is performed in a small range with grid-search. The detail of training, the resource
occupancy, and the inference time are given respectively in the following sections and in Table A.1. The training curves of the models for all four
main evaluation metrics mentioned in Section 3.2.2 during training are visualized in Fig. A.1.

Fig. A.1. The training curves of the stored model checkpoints on the four main evaluation metrics for OUV and HA classification tasks. The dashed curves in orange show the
performance of models on training set for each epoch, and the continuous curves in blue show the performance on validation set. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)

Table A.1
The training resource occupancy, the model checkpoint size, and inference time (per each mini-batch) of each type of models.

Model Number of epochs at
early-stopping

Model size Training time Inference time GPU
(VEN)

Inference time CPU
(VEN-XL)

MLP 126/300 2.1 MB 0.02 s 0.02 s 0.33 s
GCN-kNN 207/500 115.2 MB 0.02 s 0.01 s 0.05 s
GAT 442/1000 6.0 MB 0.05 s 0.03 s 4.18 s
GSA 170/300 13.6 MB 0.09 s 0.06 s 13.54 s
HGSA 300/300 1.6 MB 0.03 s 0.03 s 3.39 s
HGT 300/300 0.6 MB 0.04 s 0.02 s 1.33 s

RDC No hyperparameter is tuned for the random classifier. The random choice function of Numpy library is used to generate top-3 OUV and top-1
HA predictions for each data sample based on the initial prior distribution of classes.

MLP The training takes 300 epochs with early-stopping criterion of 30 epochs. The hyper-parameters being tuned include learning rate in {.01,
.001, .0005}, drop out rate in {.1, .2, .5}, number of hidden layers in {2, 3, 5}, and the size of hidden layers in {32, 64, 128, 256, 512}. The final
selected model has a learning rate of .001, dropout rate of .1, and 3 hidden layers each with a size of 256.

GCN The training takes 500 epochs with early-stopping criterion of 100 epochs. The models use the initial residual connection alpha of 0.5,
parameter to compute the strength of identity mapping theta of 1.0, and do not enable shared weights between the smoothed representation and
the initial residuals. The hyper-parameters being tuned include learning rate in {.01, .001, .0001}, drop out rate in {.1, .2, .5}, number of hidden
layers in {3, 6, 9}, and the size of hidden layers in {128, 256, 512, 1024, 2048}. The final selected model has a learning rate of .0001, dropout
rate of .1, and 3 hidden layers each with a size of 2048. Furthermore, it turned out that the models using kNN links rather than the original graph
structure perform better, therefore the same searched hyper-parameters are used to re-train a model checkpoint with kNN links as the final model.

GAT The training takes 1000 epochs with early-stopping criterion of 100 epochs. The models have two hidden GAT layers while the second one
only has one attention head. The output of a linear hidden layer is concatenated with output of GAT filters before the final output layer. The
hyper-parameters being tuned include learning rate in {.01, .001, .0001}, drop out rate in {.1, .3, .6}, number of attention heads for the first GAT
layer in {2, 5, 8}, and the size of hidden layers in {32, 64, 128, 256, 512}. The final selected model has a learning rate of .0001, dropout rate of
.1, 2 attention heads, and hidden layer size of 256.
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GSA The training takes 300 epochs with early-stopping criterion of 30 epochs. The hyper-parameters being tuned include learning rate in {.01,
.001, .0001}, drop out rate in {.1, .3, .5}, number of hidden layers in {2, 3, 5}, and the size of hidden layers in {32, 64, 128, 256, 512}. The final
selected model has a learning rate of .0001, dropout rate of .1, and 5 hidden layers each with a size of 512.

HGSA The training takes 300 epochs with early-stopping criterion of 100 epochs. The output of a linear hidden layer is concatenated with output
of Hetero GSA filters before the final output layer. The hyper-parameters being tuned include learning rate in {.01, .001, .0001}, number of hidden
layers in {2, 3, 5}, and the size of hidden layers in {32, 64, 128, 256, 512}. The final selected model has a learning rate of .0001, and 3 hidden
layers each with a size of 32.

HGT The training takes 300 epochs with early-stopping criterion of 100 epochs. The output of a linear hidden layer is concatenated with output
of HGT before the final output layer. The hyper-parameters being tuned include learning rate in {.01, .001, .0005, .0001}, number of attention
heads in {2, 4}, way of grouping attention heads in {sum, mean}, number of hidden layers in {2, 3, 5}, and the size of hidden layers in {32, 64,
128, 256}. The final selected model has a learning rate of .0005, 2 attention heads, grouping method of mean, and 3 hidden layers each with a
size of 32.

Appendix B. Extended results

Table B.1 shows the post hoc comparison of the four different subsets train,val,test, and unlab on their values of the confidence score 𝜿con

and the agreement score 𝜿agr, following the two-way ANOVA in Section 4.1. The difference between val and test is always insignificant, while
all the other groups of comparisons have a significant difference with either moderate or very large effect sizes.

Table B.1
The post hoc comparison of the main effect of four different subsets for the confidence score 𝜿con and the agreement score 𝜿agr using the Tukey HSD Test.

Score Group A Group B M(Group A) M(Group B) 𝛥(M) T Tukey p Cohen’s d

Confidence score 𝜿con Training set train Validation set val 0.746 0.663 0.083 89.315 <.0001 1.027
Training set train Test set test 0.746 0.664 0.082 88.638 <.0001 1.019
Training set train Unlabelled set unlab 0.746 0.564 0.182 210.015 <.0001 2.266
Validation set val Test set test 0.663 0.664 −0.001 −0.792 .858 −0.008
Validation set val Unlabelled set unlab 0.663 0.564 0.099 137.655 <.0001 1.239
Test set val Unlabelled set unlab 0.664 0.564 0.100 138.521 <.0001 1.247

Agreement score 𝜿agr Training set train Validation set val 0.666 0.590 0.076 55.832 <.0001 0.642
Training set train Test set test 0.666 0.590 0.076 55.805 <.0001 0.642
Training set train Unlabelled set unlab 0.666 0.427 0.238 186.453 <.0001 2.012
Validation set val Test set test 0.590 0.590 0.000 −0.032 .999 −0.000
Validation set val Unlabelled set unlab 0.590 0.427 0.162 152.187 <.0001 1.370
Test set val Unlabelled set unlab 0.590 0.427 0.162 152.187 <.0001 1.370

Fig. B.1. The change of normalized co-occurrence matrices 𝑶 of the OUV and HA categories in spatial level label array 𝒴𝒴𝒴 in both VEN and VEN-XL datasets, as the scaling
parameter 𝛼 changes.

Fig. B.1 shows the effect of 𝛼 on the distribution of OUV and HA categories in the final diffused spatial label arrays 𝒴𝒴𝒴 . As 𝛼 gets larger and
closer to its theoretical maximum of min(1, 1∕𝜆), the spatial labels get more to the extreme where all the labels are dominated only by the large
classes. This is similar to the problem of ‘‘over-smoothing’’ in GNN literature (Li et al., 2018).
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Fig. B.2. The scatter plots of all the 10-quantile values for the relative importance of all visual and textual features while classifying each node in train ,val ,test in GAT and GSA
models, computed with GNNExplainer. The explainable visual features are with the indices of 512–981. The red lines and their shadows mark the means and standard deviations
of the relative importance by the top-250th feature.

Fig. B.3. The change of global Moran’s 𝐼 in VEN with conventional row-standardized weight matrix only having zero diagonal entries. The Moran’s 𝐼 are generally smaller than
in Fig. 10 since the self-correlations are not considered. For most categories, the spatial correlation is already significant without diffusion. For smaller 𝛼, the deviation of Moran’s
𝐼 is also smaller while significantly dropping the 𝑝 values. Note the expected 𝐼 value gets to the conventional scale of −1∕(𝑁 − 1).

Computing the relative importance of all features while classifying each OUV/HA category using GNNExplainer will generate a soft mask vector
for each node. Fig. B.2 plots all the 10-quantile values (similar to the median at the 50% partition, yet showing all values at the 10%, 20%, . . . ,
90% partitions) of the soft mask values of each feature among all considered nodes, respectively using trained GAT and GSA as the base model.
The distribution of the features shows that the relative importance computed by GNNExplainer on the explainable features is far less than that on
the hidden features. How to explain and/or interpret those ‘‘non-explainable’’ hidden features would be an interesting future research direction.
Inspecting the visualized distributions, that of GAT is slightly different from GSA in the sense that the hidden visual features (with the indices of
0–511, i.e., the left part of the images) are given higher relative importance in GSA. Furthermore, the red lines indicating the threshold of entering
the top-250 entries for all the nodes imply that the two models work very differently using the information of all features. GAT has a lower top-250
threshold with a far wider confidence interval than GSA, suggesting that GAT uses very different numbers of features to predict the nodes, while
the thresholds and thus the number of features being used in GSA are relatively more stable.

Fig. B.3 demonstrates a similar change pattern of Moran’s 𝐼 as in Fig. 10 with conventional definition of weight matrix:

𝐼𝐶 =
(𝓎𝓎𝓎𝐶 − �̄�𝐶𝟏)𝖳�̃� (𝓎𝓎𝓎𝐶 − �̄�𝐶𝟏)
(𝓎𝓎𝓎𝐶 − �̄�𝐶𝟏)𝖳(𝓎𝓎𝓎𝐶 − �̄�𝐶𝟏)

, (B.1)

where the diagonal entries of �̃� are all 0 and the row-sums of the matrix are all 1. Since a few spatial nodes in 𝑉 (20 in VEN and 27 in VEN-XL)
were isolated without any neighbours, rendering the row-standardization operation invalid, these nodes are omitted from the computation.

Figs. B.4 and B.5 respectively plot the distribution of high values on spatial nodes level for each OUV and HA category in VEN and VEN-XL
datasets, and the high values on post levels overlapping with a kernel-density heatmap in VEN dataset only. A relatively stable pattern could be
observed in the sense that the ‘‘hotspots’’ in VEN are generally detectable in VEN-XL, but not vice versa. In a few cases such as the HA category
of Interior Scene, some significant clusters in VEN are diluted and no longer visible in VEN-XL with possibly more diverse post topics concerning
OUV and HA. In general, the distribution in VEN-XL with more posts as data samples can be regarded as more reliable.
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Fig. B.4. Comparison of the geographical distribution of post-level and spatial-level OUV node labels in VEN and spatial-level OUV labels in VEN-XL datasets. Post-level labels are
accompanied by a kernel-density heatmap.

Note the methodology proposed in this study can be seen as an alternative and/or supplement to the conventional kernel-density heatmap
weighted by the value in each channel. Figs. B.4 and B.5 also show the similarity and difference between the two methods in the case of VEN
dataset. Generally, the hotspots are distributed in similar locations with both methods, since a spatial node can only be assigned high values when
nearby posts also have high values consistently. However, the method proposed also considers confidence and agreement as crucial weighting
parameters, preventing the risk in heatmaps that a very large number of medium-low values will also result in an overall hotspot in almost all
categories, which is obvious in the case of San Marco square. Another benefit of the proposed method is that it is more specific and discretized
than the kernel-density heatmap, yet more general and aggregated than mapping individual posts. The former is beneficial since it can point to
certain places (street intersections) instead of only a broad region while tracing the posts as demonstrated in Fig. 12, easier for targeting useful
information. The latter is beneficial since the method will not be too sensitive to individual posts while losing the main points. Furthermore, the
proposed method performs aggregation on a fixed number of spatial nodes (a maximum of 5848 in Venice), easier for human comprehension,
especially when the number of posts at hand grows to a larger scale, as demonstrated in Fig. B.6 where the top-right subplot mapping all the posts
collected in Venice gets too crowded with points. However, Fig. B.6 also showcases another drawback of the dataset provided by Bai et al. (2022),
that the spatial nodes only consisted of the ones on the main island and omitted places such as Giudecca island and San Giorgio Maggiore, pulling
the posts on those places as well as on the canals to their nearest walkable spatial nodes on the southern harbour areas. This may have partially
influenced the results of spatial distribution of categories such as OUV Criterion (vi) about Association and HA Natural Features and Landscape
Scenery. This issue could be fixed in future studies by updating the assignment matrix 𝑩 and spatial weight matrix 𝑾 .

Additionally, Fig. B.7 visualizes some typical posts of each OUV and HA category irrespective of their geographical locations, which can also
be beneficial information for heritage scholars.
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Fig. B.5. Comparison of the geographical distribution of post-level and spatial-level HA node labels in VEN and spatial-level HA labels in VEN-XL datasets. Post-level labels are
accompanied by a kernel-density heatmap.

Fig. B.6. Top: the dis-aggregated distribution of all the geo-tagged posts in both VEN and VEN-XL datasets; Bottom: the number of posts distributed nearby each spatial node.
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𝒴𝒴
Fig. B.7. Post-level demonstrations of images and/or comments that have the largest logits for OUV and HA categories. For each category, six typical images and one comment
are visualized, both are mostly among top-10 entries. The corresponding image to the comment is highlighted with a blue frame. No images from HA category People’s Activities
and Association are shown since the typical images always have a large portion of human faces on them. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

Appendix C. Proof of equivalence

In this section, we will show that adding the last state of a node �̂�𝒴𝒴
(𝑡) to the calculation of its current state during the diffusion process is

equivalent to what has been proposed in Eqs. (12) and (13) for computing the steady-state 𝒴𝒴𝒴 .

Proof. By adding the term of the last state of a node itself, Eq. (12) could be adapted as:

�̂�(𝑡+1)
𝑘 = 𝛼1�̂�𝓎𝓎

(𝑡)
𝑘 + 𝛼2�̂�𝓎𝓎𝑘 + 𝛼3

∑

𝜈𝑘′∈𝐺 (𝜈𝑘) 𝑊𝑘,𝑘′�̂�𝓎𝓎
(𝑡)
𝑘′

∑

𝜈𝑘′∈𝐺 (𝜈𝑘) 𝑊𝑘,𝑘′
, (C.1)

or in its matrix form:

�̂�
(𝑡+1)

= 𝛼1�̂�𝒴𝒴
(𝑡)

+ 𝛼2�̂�𝒴𝒴 + 𝛼3�̂�𝒴𝒴
(𝑡) (

𝑾𝑫−1) , (C.2)

where 𝛼1, 𝛼2, 𝛼2 ∈ [0, 1], 𝛼1 + 𝛼2 + 𝛼3 = 1 are parameters balancing the importance of the last state of a node, the initial state of a node, and the last
state of its neighbouring nodes. Then the steady state could be written as:

𝒴 = 𝛼1𝒴𝒴𝒴 + 𝛼2�̂�𝒴𝒴 + 𝛼3𝒴𝒴𝒴
(

𝑾𝑫−1) , (C.3)

𝒴
(

(1 − 𝛼1)𝑰 − 𝛼3𝑾𝑫−1) = 𝛼2�̂�𝒴𝒴 , (C.4)

therefore, 𝒴𝒴𝒴 =
𝛼2

𝛼2 + 𝛼3
�̂�𝒴𝒴

(

𝑰 −
𝛼3

𝛼2 + 𝛼3
𝑾𝑫−1

)−1
, (C.5)

substituting the number 𝛼3∕(𝛼2 + 𝛼3) ∈ (0, 1] with another parameter 𝛼0 ∈ (0, 1], then Eq. (C.5) could be written as:

𝒴 = (1 − 𝛼0)�̂�𝒴𝒴
(

𝑰 − 𝛼0𝑾𝑫−1)−1 , (C.6)

exactly the same as Eq. (16). Here the parameter 𝛼0 represents the relative importance of the last state of the neighbouring nodes of a node and
its initial state, conceptually consistent with the original 𝛼 mentioned in Section 2.3.4. □

It is worth noting that the diffusion chain presented here employs a Markov transition probability matrix but it is not a Markov Chain in its
entirety because it is not a memory-less machine; in fact, the initial state contributes to the direction of the steady state vectors. Note by putting
𝛼2 equal to zero we can turn this chain into a Markov Chain, in which case the 𝓎𝓎𝓎 ends up being an eigenvector centrality array.

Appendix D. Nomenclature

In this section, all the mathematical notations used in this paper will be listed in Table D.1.
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Table D.1
The nomenclature of mathematical notations used in this paper in alphabetic order.

Symbol Data Type/Shape Description

𝑨 Matrix of Boolean
𝑨 ∶= (𝑨TEM > 0)

⋁

(𝑨SPA > 0)
⋁

(𝑨SOC > 0) ∈ {0, 1}𝐾×𝐾
The adjacency matrix of all post nodes in the set  that have at least one link
connecting them as a composed simple graph.

𝑨(∗) Matrix of Boolean 𝑨(∗) ∶=
[

𝐴(∗)
𝑖,𝑖′

]

𝐾×𝐾
∈ {0, 1}𝐾×𝐾 ,

𝑨(∗) ∈ {𝑨TEM ,𝑨SPA ,𝑨SOC}

The adjacency matrix of each of the three sub-graphs (∗) of the multi-graph , ‘‘(*)’’
represents one of the link types in {TEM, SPA, SOC}.

𝑨𝑠 ,𝑨(∗)
𝑠 Matrix of Boolean 𝑨𝑠 ,𝑨(∗)

𝑠 ∈ {0, 1}|𝑠 |×|𝑠 | The sampled adjacency matrix in sub-graph 𝑠 for model training and inference.
𝑨kNN Matrix of Boolean 𝑨kNN ∶=

[

𝐴kNN
𝑖,𝑖′

]

∈ {0, 1}𝐾×𝐾 The adjacency matrix of the k-Nearest Neighbour graph computed with visual features
of posts.

𝛼, 𝛼1 , 𝛼2 , 𝛼3 Scalar Values 𝛼, 𝛼1 , 𝛼2 , 𝛼3 ∈ [0, 1] The parameters adjusting the relative importance of neighbours in diffusion process.
 Bipartite Graph  = ( , 𝑉 ,ℰ ,𝑩) The bipartite graph of postal nodes  and spatial nodes 𝑉 with matrix 𝑩 and edges ℰ .
𝑩 Matrix of Boolean 𝑩 ∶=

[

𝐵𝑖,𝑘
]

∈ {0, 1}𝐾×|𝑉 | The bi-adjacency matrix of postal nodes  and spatial nodes 𝑉 .
𝛽 Scalar Value The attenuation parameter for the computation of Katz centrality.
𝐶 Integer Indices 𝐶 ∈ {1, 2,… , 20} ⊂ N The index of the OUV and HA label category channels.
𝑫 Matrix of Floats 𝑫 ∈ R|𝑉 |×|𝑉 |

+ A diagonal matrix where each entry records the weighted degree of graph 𝐺.
𝒆𝐶 1D Array of Boolean 𝒆𝐶 ∈ {0, 1}20×1 A one-hot unit vector marking the 𝐶th entry as 1.
 A set of objects  = {𝐟𝑗}, 𝑗 ∈ [0, | |) The set of candidate MLP or GNN models to be trained.
 Multi-Graph  = ( , {TEM , SPA , SOC}) The graph with temporal, spatial, and social links  (∗) among post nodes set  .
′ Undirected Simple Graph ′ = ( , ) The simple composed graph of the multi-graph  with the same node set  .
𝑠 Undirected Multi-Graph or Simple Graph,

𝑠 = (𝑠 , {TEM
𝑠 , SPA

𝑠 , SOC
𝑠 }) or 𝑠 = (𝑠 , 𝑠)

The sub-graphs sampled from the original graph  or ′ to train the models and make
inference.

𝐺 Undirected Weighted Graph 𝐺 = (𝑉 ,𝐸,𝑾 ) The backend geographical representation of the city as a spatial network.
𝛾, 𝜙 Scalar parameters 𝛾, 𝜙 ∈ R The parameters to adjust the relative contribution of agreement and confidence scores

in the computation of attention values 𝑺.
𝑖, 𝑖′ Integer Indices 𝑖, 𝑖′ ∈ {0, 1, 2,… , 𝐾 − 1} ⊂ N The index of samples in the dataset.
𝐼𝐶 Scalar Value of Float The global Moran’s 𝐼 computed for the 𝐶th label channel.
𝑰𝐶 1D Array of Float 𝑰𝐶 ∈ R|𝑉 |×1 The local Moran’s 𝐼 on all spatial nodes computed for the 𝐶th label channel.
𝑗 Integer Indices 𝑗 ∈ {0, 1, 2,… , | | − 1} ⊂ N The index of candidate models to be trained.
𝑘, 𝑘′ Integer Indices 𝑗 ∈ {0, 1, 2,… , |𝑉 | − 1} ⊂ N The index of spatial nodes in the spatial network.
𝐾 Integer The sample size (number of posts).
𝜿con ,𝜿agr 1D Array of Floats 𝜿con ,𝜿agr ∈ [0, 1]𝐾×1 The prediction confidence and agreement value of the models in  for all the posts.
𝓁OUV ,𝓁HA Function returning Scalar Values Topic-specific evaluation metrics for OUV and HA classification tasks.
train ,

V∕A
val Function returning Scalar Values The loss function of a training batch and the entire validation sets.

𝜆 Scalar Value The largest eigenvalue of the matrix 𝑾𝑫−1

 ,𝐺 Function returning a set of nodes The function returning the neighbours of a spatial node 𝜈𝑘 in either the bipartite graph
 as a set of postal nodes or the spatial network 𝐺 as a set of spatial nodes.

𝜔𝑉 ∕𝐴 Scalar parameter The relative importance of OUV and HA performance during training.
𝑝𝑗 , 𝑝

V∕A(⋅)
∗,𝑗 Scalar Values 𝑝𝑗 = 𝑝OUV(nJ)val,j + 𝑝HA(1)val,j + 𝑝OUV(nJ)test,j + 𝑝HA(1)test,j ∈

R+ , 𝑝OUV(1)∗,j , 𝑝OUV(n)∗,j , 𝑝OUV(nJ)∗,j , 𝑝HA(1)∗,j ∈ [0, 1]

The value of a specific evaluation metric (top-1 accuracy, top-𝑛 accuracy, order-𝑛
Jaccard Index) in the validation or test set for OUV or HA categories by the model 𝐟𝑗 .

𝒔𝐶 1D Array of Floats 𝒔𝐶 ∈ [0, 1]𝐾×1 The vector of attention values of all post nodes in  of the label channel 𝐶.
𝑺 2D Array of Floats 𝑺 ∈ [0, 1]20×𝐾 The matrix of attention values of all post nodes in  of all label channels.
𝜎𝒁 𝑖 ,1 Scalar Value The first singular value computed with SVD on the matrix 𝒁 𝑖.
𝜣𝑗 Array of Floats The model parameter by the candidate model 𝐟𝑗 .
 A set of nodes  = {𝑣𝑖}, 𝑖 ∈ [0, 𝐾) The set of all nodes of posts in the graph .
batch A set of nodes batch ⊂ train ,val ,test The set of post nodes as mini-batches used for model training and inference.
tex± A set of nodes tex+ ,tex− ⊂  The set of post nodes with or without textual features.
train ,val, test ,unlab A set of nodes train ,val ,test ,unlab ⊂  The set of post nodes respectively in the training set, validation set, test set, or

unlabelled set.
V±,A± A set of nodes V+,A+ ,V+,A− ,V−,A+ ,V−,A− ⊂  The set of post nodes respectively with or without OUV or HA labels initially.
𝑉 A set of nodes 𝑉 =

{

𝜈𝑘
}

, 𝑘 ∈ [0, |𝑉 |) The set of all spatial nodes of street intersections in the spatial network 𝐺.
𝑾 Matrix of Float 𝑾 ∶= [𝑊𝑘,𝑘′ ] ∈ [0, 1]|𝑉 |×|𝑉 | The weighted adjacency matrix marking the temporal closeness of spatial nodes.
𝑿 2D Array of Floats 𝑿 ∶=

[

𝒙𝑖
]

𝑖∈[0,𝐾) ∈ R1753×𝐾 The visual and textual representation features of a post.
𝑿𝑠 2D Array of Floats 𝑿𝑠 ∈ R1753×|𝑠 | The sampled input visual and textual features of nodes in sub-graph 𝑠 used for model

training and inference.
𝑿 tex 2D Array of Floats 𝑿 tex ∈ R771×𝐾 The textual representation features of a post.
𝑿vis 2D Array of Floats 𝑿vis ∈ R982×𝐾 The visual representation features of a post.
𝒚HA
𝑖 , 𝒚OUV

𝑖 1D Arrays of Floats 𝒚HA
𝑖 ∈ [0, 1]9×1 , 𝒚OUV

𝑖 ∈ [0, 1]11×1 The HA and OUV labels of the node 𝑣𝑖 if not empty
�̂�𝑗,𝑖 , �̂�

HA
𝑗,𝑖 , �̂�

OUV
𝑗,𝑖 1D Arrays of Floats

�̂�𝑗,𝑖 ∈ [0, 1]20×1 �̂�HA
𝑗,𝑖 ∈ [0, 1]9×1 , �̂�OUV

𝑗,𝑖 ∈ [0, 1]11×1
The predicted HA and OUV labels of the node 𝑣𝑖 by the candidate model 𝐟𝑗

�̂�𝐶 1D Array of Floats �̂�𝐶 ∶= �̂� 𝖳𝒆𝐶 ∈ [0, 1]𝐾×1 The labels of all post nodes in  for the 𝐶th label channel.
𝒀 V±,A± 2D Arrays of Floats or Empty Array The ‘‘ground-truth’’ soft label arrays of post nodes respectively with or without OUV or

HA labels initially.
�̂� 2D Array of Floats �̂� ∶=

[

�̂�𝑖
]

𝑣𝑖∈
∈ [0, 1]20×𝐾 The aggregated label array from �̂� 𝑗 for all the posts by all the models in  .

�̂� 𝑖 2D Array of Floats �̂� 𝑖 ∶=
[

�̂�𝑗,𝑖
]

𝐟𝑖∈
∈ [0, 1]20×| | The predicted label array for the post 𝑣𝑖 by all the models in  .

�̂� 𝑗 2D Array of Floats �̂� 𝑗 ∶=
[

�̂�𝑗,𝑖
]

𝑣𝑖∈
∈ [0, 1]20×𝐾 The predicted label array for all the posts in  by the model 𝐟𝑗 .

�̂�𝓎𝓎𝐶 1D Array of Floats �̂�𝓎𝓎𝐶 ∶= �̂�𝒴𝒴
𝖳
𝒆𝐶 ∈ [0, 1]|𝑉 |×1 The initial soft label value on all spatial nodes in the 𝐶th label channel.

𝓎𝓎𝓎𝐶 1D Array of Floats 𝓎𝓎𝓎𝐶 ∈ [0, 1]|𝑉 |×1 The final soft label value on all spatial nodes in the 𝐶th label channel after diffusion.
�̂�𝒴𝒴 2D Array of Floats �̂�𝒴𝒴 ∶=

[

�̂�𝓎𝓎𝑘
]

∈ [0, 1]20×|𝑉 | The aggregated spatial label array for spatial nodes from their nearby posts.
�̂�𝒴𝒴

(𝑡)
2D Array of Floats �̂�𝒴𝒴

(𝑡)
∶=

[

�̂�𝓎𝓎(𝑡)
𝑘

]

∈ [0, 1]20×|𝑉 | The diffused spatial label array for spatial nodes from their neighbours at the 𝑡th
iteration, where �̂�𝒴𝒴

(0)
= �̂�𝒴𝒴 .

𝒴𝒴𝒴 2D Array of Floats 𝒴𝒴𝒴 ∶=
[

𝓎𝓎𝓎𝑘
]

∈ [0, 1]20×|𝑉 | The diffused final spatial label array for spatial nodes from their spatial neighbours.
𝒛HA𝑗,𝑖 , 𝒛

OUV
𝑗,𝑖 1D Arrays of Floats 𝒛HA𝑗,𝑖 ∈ R9×1 , 𝒛OUV𝑗,𝑖 ∈ R11×1 The hidden layer outputs by model 𝐟𝑗 corresponding to HA and OUV label channels

𝒁 𝑖 Matrix of Floats 𝒁 𝑖 ∈ [−1, 1]20×| | The centred and normalized label matrix calculated from �̂� 𝑖 for SVD computation.
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