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ABSTRACT 

Traffic congestion is a major recurring problem faced in many countries in the world 

due to increased urbanization and availability of affordable vehicles. Congestion 

problem can be dealt with in a number of ways – Increasing the capacity of the roads, 

promoting alternate modes of transportation or making efficient use of the existing 

infrastructure. Among these, the most feasible option is to improve the usage of 

existing roads. Adjustment of the green time in signals to allow more vehicles to cross 

the intersection has been the widely accepted method for solving congestion problem. 

Green time essentially dictates the time during which vehicles are allowed to cross an 

intersection, thereby avoiding conflicting movements of vehicles and improving 

safety at an intersection.  

Conventional and traditional traffic signal control methods have shown limited 

success in optimizing the timings in signals due of the lack of accurate mathematical 

models of traffic flow at an intersection and uncertainties associated with the traffic 

data. Traffic flow refers to the number of vehicles crossing an intersection every hour. 

The traffic environment is dynamic and traffic signal timings at one intersection 

influences the traffic flow rate at the connected intersection. This necessitates the use 

of hybrid computational intelligent models to predict the traffic flow and influence of 

the neighbouring intersection signals on the green signal timings. Increased 

communication overheads, reliability issues, data mining, and real-time control 

requirements limits the use of centralized traffic signal controls. These limitations are 

overcome by distributed traffic signal controls. However, a major disadvantage with 

distributed signal control is the partial view of each computing entity involved in the 

calculation of green time at an intersection. In order to improve the global view, 

communication and learning capabilities needs to be incorporated in the computing 
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entity to create a model of the neighbouring computing entities. Multi-agent systems 

provide such an distributed architecture with learning and communication capabilities. 

In this dissertation, a distributed multi-agent architecture capable of learning from the 

traffic environment and communicating with the neighbouring intersections is 

developed. Four computational intelligent decision systems with different internal 

architectures were developed. First two approaches were offline trained methods 

using deductive reasoning. The third approach was based on online batch learning 

method to co-evolve the membership functions and rule base in type-2 fuzzy decision 

system. The fourth decision system developed is an online shared reward Q-learning 

based neuro-type2 fuzzy network.  

Performance of the proposed multi-agent based traffic signal controls for different 

traffic simulation scenarios were evaluated using a simulated urban road traffic 

network  of Singapore. Comparative analysis performed over the benchmark traffic 

signal controls – Hierarchical Multi-agent Systems (HMS) and GLIDE (Green Link 

Determine) indicated considerable improvement in travel time delay and mean speed 

of vehicles when using proposed multi-agent based traffic signal control methods.  
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CHAPTER 1 

INTRODUCTION 

 

Traffic congestion is a major recurring problem faced in many countries due to the 

increased level of urbanization and the availability of cheaper vehicles. One of the 

options to reduce congestion is to construct newer infrastructure to accommodate the 

increased vehicle count. However, it is highly infeasible in developing countries 

where space is a major constraint. Second most feasible option is improving the usage 

of the existing roads through optimization of traffic signal timings. This can alleviate 

the congestion levels experienced at intersections by evenly distributing the travel 

delay among all the vehicles, thereby reducing the travel time of vehicles inside the 

road network and providing a temporal separation for vehicles with right of way in a 

link.  

Traffic signal controls the movement of traffic by adjusting the split of each phase 

assigned in a total cycle time and by modifying the offset. Split refers to the total time 

allocated to each phase in a cycle, right of way refers to the lanes with green signal 

and allowable movement during a specific phase, and offset is the time lag between 

the start of green time for successive intersections, which is required to ensure a free 

flow of vehicles (progression) with minimum wait time along a specific direction. The 

breakdown of a three-phase cycle at an intersection is shown in Figure 1.1 to elucidate 

the terms split, phase, cycle length, offset, progression and right of way.  
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Figure 1.1. Typical three phase traffic signal cycle time indicating phase splits and 

right of way 

Traffic signal timing optimization or split adjustment to change the green time of a 

phase maximizes the throughput of the vehicles at the controlled intersection and 

helps in maintaining the degree of saturation of all the links connected to the 

intersection without compromising the safety of vehicles inside the road network. 

Computing an optimal value of green time in a phase is an extremely complex task as 

the signal timings at the intersection affects the traffic flow in the connected 

intersections. 

Early traffic signal control schemes were typically designed for isolated intersections, 

as these form the basic components of road traffic network and can be easily 

modelled.  Based on the type of control used, the traffic signal controls can be 

classified into three types: 

 Pre-timed or Fixed control 

 Traffic responsive Control 

 Traffic adaptive control 
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One of the first mathematical models  developed for calculating the green time with 

an objective to reduce the average delay experienced by vehicles inside a road 

network was proposed in [1] and formed the basis for the fixed time traffic signal 

controls. The green time of each phase in a signal was calculated offline using 

historical traffic flow pattern collected from the urban arterial roads. The designed 

traffic controller was not capable of handling any sudden variations in the traffic from 

the pattern used to calculate the green time. Further, offline estimation methods are 

prone to losses when switching between signal plans, especially with rapid traffic 

changes.  

In order to overcome these limitations, traffic responsive methods that changes the 

signal timings based on the traffic experienced at the intersection were introduced. 

Though these signal controls improved the traffic congestion over fixed time signal 

controls, lack of ability to foresee the traffic condition, faulty sensors, and 

environmental conditions affect its performance.  

Traffic adaptive methods are intelligent traffic signal control methods with an ability 

to predict the traffic flow and adjust the timings online. Based on the type of 

architecture used, the traffic adaptive methods can be classified into two types. 

 Centralized control 

 Semi-distributed control 

 Distributed Control 

  Centralized traffic signal controls determine the network wide signal timings at a 

central location. The traffic data collected from each intersection is sent to a central 

server that compute the timings required at each intersection for the specific traffic 
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flow experienced at the intersection. Centralized traffic controls require large amount 

of traffic data to be communicated from the intersection to the control centre. This 

increases the communication overhead to a large extent. Further, raw data sent from 

the intersection needs to be sorted and ordered according to the phase timing 

calculation thereby increasing the computational overhead. The performance is also 

affected because of the traffic data loss and addition of noise to the data. 

 Semi-distributed traffic signal controls improved the reliability of the traffic signal 

controls by using hierarchical structure. Though the communication cost is lesser than 

in centralized control, the cost is still substantially high. With increase in the traffic 

network size, the control becomes complex and difficult to handle. 

In distributed traffic signal controls, traffic signal at each intersection needs to be 

controlled by a computing entity. The signal timings for the intersection are computed 

autonomously using the local data collected from the sensors connected to the 

intersection. However, the restricted view of the sensors limits the traffic view 

available to each computing entity. In order to improve the global traffic view and 

improve the performance of the signal control, the controls need to learn, 

communicate, and adapt dynamically. This requirement is satisfied by the multi-agent 

systems with hybrid computational intelligent decision systems with communication 

capabilities. Computational intelligent methods are required as only approximate 

mathematical models of traffic flow at an arterial intersection are available. 

1.1. BRIEF OVERVIEW OF MULTI-AGENT SYSTEMS 

An agent can be viewed as a self-contained, concurrently executing thread of control 

that encapsulates some state, and communicates with its environment, and possibly 
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other agents through some sort of message passing [2] between agents. Agent-based 

systems offer advantages where independently developed components must 

interoperate in a heterogeneous environment, e.g., the internet. Agent-based systems 

are increasingly applied in a wide range of areas including telecommunications, BPM 

(Business process modelling), computer games, distributed system control and robotic 

systems. The significant advantage of the agent system in contrast to simple 

distributed problem solving is that the environment is an integral part of the agent. 

Multi-Agent Systems(MAS) is a branch of distributed artificial intelligence that 

emphasizes the joint behaviour of agents with some degree of autonomy and  

complexities arising from their interactions. Multi-agent systems allow the sub-

problems of a constraint satisfaction problem to be subcontracted to different problem 

solving agents with their own individual interests and goals. This increases the speed 

of operation, creates  parallelism, and reduces the risk of system collapse due to single 

point failure. Though generalized multi-agent platform could be used for solving 

different problems, it is a common practise to design a tailor made multi-agent 

architecture according to the application. Multi-agent systems are able to 

synergistically combine the various computational intelligent  techniques for attaining 

a superior performance by  combining the advantages of various techniques into a 

single framework. MAS also provides extra degree of freedom to model the behaviour 

of the system to be as competitive or coordinating, with each method having its own 

merits and demerits. 
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1.2. MAIN OBJECTIVES OF THE RESEARCH 

The main objective of this dissertation is to develop a new distributed, multiple 

interacting autonomous agent based traffic signal control architecture to provide 

effective traffic signal optimization strategies for online optimization of the signal 

timings for arterial road traffic network. 

The objective is also to develop an effective distributed online and batch learning 

method for optimization of the signal phase timings and rule base adaptation by 

integrating well-known computational intelligent techniques in the agent decision 

system.  In doing so, this dissertation also seeks to create useful generalized multi-

agent systems for solving problems similar to the distributed traffic signal control.    

Apart from the objectives related to MAS and traffic signal control, this dissertation 

also seeks to develop an efficient computational intelligent method of type-reduction 

to  reduce the complexity associated with type-2 fuzzy inference mechanism. 

1.3. MAIN CONTRIBUTIONS  

The main contributions of this research are in the conceptualization, development and 

application of a distributed multi-agent architecture to urban traffic signal timing 

optimization problem. The significant contributions in the design front are as follows. 

 The development of a generalized distributed multi-agent framework with 

hybrid computational intelligent decision making capabilities for 

homogeneous agent structure. 
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 The development of deductive reasoning method for the construction of 

membership functions, rule base of type-2 fuzzy sets and calculating the 

level of cooperation required between agents. 

 The development of cooperation strategies in multi-agent system through 

internal belief model by incorporating communicated neighbour agent 

status information. 

 The development of symbiotic evolutionary learning method for 

coevolving membership functions and rule base for the type-2 fuzzy 

decision system. 

 The development of modified Q-learning technique with shared reward 

values for solving distributed urban traffic signal control problem. 

 The development and relocation of the modified type-reducer using neural 

networks to reduce the computational complexity associated with sorting 

and defuzzification process in interval type-2 fuzzy sets. 

 The development of traffic simulation scenarios to test the reliability and 

responsiveness of the developed traffic signal controls. 

The developed multi agent decision system produced promising results from 

experiments conducted on simulated road traffic network for different traffic 

simulation scenarios.  
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1.4. STRUCTURE OF DISSERTATION 

The dissertation consists of eight chapters, and is organized as follows: 

Chapter 1 gives a brief introduction of the background on traffic control problem, 

multi-agent system, the research objectives and the main contributions. 

Chapter 2 provides a detailed discussion on distributed multi agent system. It provides 

a classification of the multi agent system based on the overall agent architecture.  The 

merits and demerits of the various architectures are discussed followed by a 

description of the communication and coordination techniques used in multi agent 

systems. It also provides a brief overview of the learning techniques used for evolving 

the agents to better adapt to the changes in environment. 

Chapter 3 describes the various problems associated with urban traffic signal control 

and some of the promising solution to these problems. A brief overview of the various 

traffic signal timing optimization methods and their workings are presented.  The 

benchmark traffic signal optimization methods (Hierarchical multi agent 

system(HMS) and Green link determining system (GLIDE)) used for validating the 

proposed agent based traffic control system are discussed. 

Chapter 4 introduces the proposed distributed multi agent architecture for urban 

traffic signal timing optimization. The internal structure of the agents and the 

functionality of each block in an agent are discussed in detail. 

Chapter 5 introduces four different types of decision systems used in the proposed  

multi-agent based traffic signal control. A brief overview of the type-2 fuzzy sets and 
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symbiotic evolutionary genetic algorithm are presented. Design of the decision system 

based on deductive reasoning, symbiotic evolutionary learning, and Q-learning 

method is presented in detail. The advantages and disadvantages of the proposed 

decision systems are highlighted. 

Chapter 6 describes in detail, the modelling of a large, complex urban traffic network, 

Central Business District of Singapore using PARAMICS modeller software. Details 

of creating the origin-destination matrix used for trip assignment and routing of 

vehicles inside the simulated road network using the data collected is presented. This 

chapter provides details of using profile editor to create the traffic release pattern for 

simulation runs. It also details the performance metrics used to evaluate the 

performance of the proposed multi-agent systems. 

Chapter 7 details the various simulation scenarios used to test the proposed multi 

agent systems. The travel time delay and speed of vehicles inside the road network for 

various traffic scenarios using different multi-agent decision control strategies are 

compared. A detailed analysis of the results and the improvements achieved using 

proposed signal controls over benchmark traffic controllers are presented. 

Chapter 8 concludes the thesis and provides recommendations for future research 

work. 
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CHAPTER 2 

DISTRIBUTED MULTI-AGENT SYSTEMS 

In the previous chapter, a brief introduction of the traffic signal timing optimization 

problem and suitability of distributed control methods in solving the problem was 

presented. In order to construct an efficient distributed autonomous multi-agent traffic 

signal control system with all the required  functionalities, it is essential to identify the 

proper architecture, communication protocol, coordination mechanism and learning to 

be used. 

This chapter provides a detailed review of distributed multi-agent systems, and their 

architecture, taxonomy, decision making , communication requirements, coordination 

techniques, and learning methods. This forms the basis for proper design, 

conceptualisation and implementation of multi-agent systems for real world 

applications. This chapter also discusses in detail the advantages and disadvantages of 

various multi-agent architectures, their implementation methodologies, and highlights 

the significant contributions made by researchers in this field. 

2.1 NOTION OF MULTI-AGENT SYSTEMS 

Distributed artificial intelligence (DAI) is a subfield of Artificial Intelligence [3] that 

has gained considerable importance due to its ability to solve complex real-world 

problems. The primary focus of research in the field of distributed artificial 

intelligence have been in three different areas. These are parallel AI, Distributed 

problem solving (DPS) and Multi-agent systems (MAS). Parallel AI primarily refers 
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to methodologies used to facilitate classical AI [4-10]techniques applied to distributed 

hardware architectures like multiprocessor or cluster based computing. 

The main aim of parallel AI is to develop parallel computer architectures, languages 

and algorithms to increase the speed of operation. Parallel AI is primarily directed 

towards solving the performance problems of AI systems and not with the conceptual 

advances in understanding the nature of reasoning and intelligent behaviour among 

group of agents. Distributed problem solving is similar to parallel AI but considers 

methodologies of solving a problem by sharing the resources and knowledge between 

large number of cooperating modules known as “Computing entity”. In distributed 

problem solving,  communication between computing entities, quantity of information 

shared are predetermined and embedded in design of the computing entity. 

Distributed problem solving is rigid due to the embedded strategies and consequently 

offers little or no flexibility. 

In contrast to distributed problem solving, Multi-agent systems (MAS) [11-13] deal 

with the behaviour of computing entities available to solve a given problem. Multi-

agent research is concerned with coordinating intelligent behaviour among all agents– 

methodology to coordinate the knowledge, goals, skills and plans jointly to solve a 

problem.  In a multi-agent system each computing entity is referred to as an agent. 

MAS can be defined as a network of individual agents that share knowledge and 

communicate with each other in order to solve a problem that is beyond the scope of a 

single agent. It is imperative to understand the characteristics of the individual agent 

or computing entity to distinguish a simple distributed system from a multi-agent 

system. 
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A system with one agent is usually referred to as conventional artificial intelligence 

technique and a system with multiple agents are called as artificial society. Since 

distributed systems involve multiple agents, the main issues and the foundations of 

distributed artificial intelligence are the organisation, co-ordination, and co-

operation[14] between the agents.  

Multi-agent systems are at the confluence of a wide variety of research disciplines and 

technologies, notably artificial intelligence, object-oriented programming, human-

computer interfaces, and networking[15, 16] . Some of the technologies that have 

influenced the development of multi-agent systems are as follows  

 Database and knowledge-base technology 

 Concurrent computing 

 Cognitive sciences 

 Computational linguistics 

 Econometric models 

 Biological immune systems 

As a result of the existence of such a diversity of contribution, the agents and the 

multi-agent systems paradigm are diluted in a multitude of perspectives. Researchers 

in the field of artificial intelligence have so far failed to agree on a consensus 

definition of the word "Agent". The first and foremost reason for this is the 

universality of the word “Agent”. It cannot be owned by a single community. 

Secondly, the agents can be present in many physical forms, from robots to computer 

networks. Thirdly, the application domain of the agent is vastly varied and is 
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impossible to generalize. Researchers have used terms like softbots (software agents), 

knowbots (Knowledge agents), taskbots (task-based agents) based on the application 

domain where the agents are employed [17]. The most agreed definition of agent is 

that of Russell and Norvig. They define an agent as a flexible autonomous entity 

capable of perceiving the environment through the sensors connected to it. The agents 

act on the environment through actuators. The definition provided does not cover the 

entire range of characteristics that an agent should possess. Sycara [15] presented 

some of the most important characteristics that define an agent and are as follows. 

 Situatedness: This refers to the interaction of an agent with the environment 

through the use of sensors, and the resultant actions of the actuators. 

Environment in which an agent is present is an integral part of its design. All 

of the inputs are received directly as a consequence of the agents interactions 

with its environment. The agent's directly act upon the environment through 

the actuators and do not serve merely as a meta level advisor. This attribute 

differentiates agent systems from expert systems, where the decision making 

node or entity suggests changes through a middle agent without directly 

influencing the environment.  

 Autonomy: This can be defined as the ability of an agent to choose its actions 

independently without external intervention by other agents in the network (in 

case of multi-agent systems) or human interference. These attribute protect the 

internal states of an agent from external influence. It also isolates an agent 

from instability caused by external disturbances. 
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 Inferential capability: The ability of an agent to work on abstract goal 

specifications such as deducing an observation by information generalization. 

This could be done by mining relevant information from the available data.  

 Responsiveness: The ability to perceive the condition of an environment and 

respond to it in a timely fashion to take account of any changes in the 

environment. This latter property is of critical importance in real-time 

applications. 

 Pro-activeness: Agents must exhibit a good response to opportunistic 

behaviour. This is to improve the actions that are goal-directed rather than 

only being responsive to a specific change in the environment. Agents must 

have the ability to adapt to any changes in the dynamic environment. 

 Social behaviour: Even though the agent‟s decision must be free from external 

intervention, it must still be able to interact with external sources when the 

need arises, to achieve a specific goal. It must also be able to share this 

knowledge and help other agents (MAS) solve a specific problem. That is, 

agents must be able to learn from the experience of other communicating 

entities which may be human, other agents in the network, or statistical 

controllers.  

Apart from the above mentioned properties, some of the other important 

characteristics are mobility, temporal continuity, veracity, collaborative behaviour and 

rationality.  If the agent can satisfy only some of the above mentioned properties like 

autonomy, social ability, reactivity and pro-activeness, the agent is said to exhibit a 

weak notion of agency[18]. 
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For an agent to have a strong notion of agency, in addition to the above properties, the 

agent is required to conceptualise or implement concepts that are more applicable to 

human like knowledge, belief, intention, obligation or emotion. Another way of 

giving agents human-like attributes is to represent them visually as animated 

characters in applications involving human machine interactions. Strong notion of 

agency tends to be the intersection of all the aspects of different fields that influence 

the multi-agent systems. 
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Figure 2.1. Typical building blocks of an autonomous agent 

It is however extremely difficult to characterize agents based only on these properties. 

The characterization of an agent must also be based on the complexity involved in the 

design, the performed function, and the rationality exhibited. A typical building block 

of an autonomous agent is shown in Figure 2.1. 

2.1.1 Multi-agent System 

A Multi-Agent System (MAS) is an extension of the basic agent technology. 

Definition of multi-agent system can be obtained by the extension of the definition of 

distributed problem solvers [19] and can be defined as a loosely coupled network of 

autonomous agents that work together as a society aiming at solving problems that 



16 
 

would generally be beyond the problem solving capability of an individual agent.  

According to [20], the characteristics of a multi-agent systems are: 

 Each agent has incomplete information or capabilities for solving the overall 

problem to be tackled by the system and thus has a very limited viewpoint. 

 Lack of global control  - The behaviour of the system is influenced by the 

collective behaviour of individual agents actions and their experiences. 

 Decentralization of resources. 

Multi-agent systems have been widely adopted in many application domains because 

of the benefits it offers. Some of the advantages of using MAS technology in large 

systems [21] are the following: 

 An increase in the speed and efficiency of operation due to parallel 

computation and asynchronous operation. 

 A graceful degradation of the system when one or more of the agents fail. It 

thereby increases the reliability and robustness of the system. 

 Scalability and flexibility- Agents can be introduced dynamically into the 

environment. 

 Reduced cost- This is because individual agents cost much less than a 

centralized architecture. 

 Reusability - Agents have a modular structure and hence can be easily reused 

without major modifications in other systems or upgraded more easily than a 

monolithic system. 
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Though multi-agent systems have features that are more beneficial than single agent 

systems, they also present some critical challenges. Some of the challenges are 

highlighted in the following section. 

 Environment: In a multi-agent system, the action of an agent not only modifies 

its own environment but also that of its neighbours. This necessitates that each 

agent must predict the action of the other agents, in order to decide the optimal 

action that would be goal directed. This type of concurrent learning could 

result in non-stable behaviour and can possibly cause chaos. The problem is 

further complicated if the environment is dynamic. In such conditions, each 

agent needs to differentiate between the effects caused due to actions of other 

agents and variations in the environment. 

 Perception: In a distributed multi-agent system, the agents are scattered all 

over the environment. Each agent has a limited sensing capability because of 

the limited range and coverage of the sensors connected to it. This limits the 

view available to each of the agents‟ in the environment. Therefore decisions 

based on the partial observations made by each of the agents‟ could be sub-

optimal, which in turn affects the global objective. 

 Abstraction: In agent system, it is assumed that an agent knows its entire 

action space and mapping of the state space to action space could be 

performed by the experience gained by each agent. In MAS, every agent does 

not experience all of the states. To create a map, it must be able to learn from 

the experience of other agents with similar capabilities or decision making 

powers. In the case of cooperating agents with similar goals, this can be done 

by creating communication channel between the agents. In case of competing 
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agents it is not possible to share the information as each of the agent tries to 

increase its own chance of winning. It is therefore essential to quantify how 

much of the local information and the capabilities of other agent must be 

known to create an improved modelling of the environment. 

 Conflict resolution: Conflicts stem from the lack of global view available to 

each of the agent. An action selected by an agent to modify a specific internal 

state may be ineffective for another agent. Under these circumstances, 

information on the constraints, action preferences and goal priorities of agents 

must be shared to improve cooperation. A major problem is knowing when to 

communicate this information and to which of the agents.  

 Inference: In a single agent system, inference could be easily drawn by 

mapping the State Space to the Action Space based on trial and error methods. 

However in MAS, this is difficult as the environment is being modified by 

multiple agents that may or may not be interacting with each other. Further, 

MAS may consist of heterogeneous agents, that is agents having different 

goals and capabilities. Instead of exhibiting a cooperative behaviour, the 

agents might be competing with each other for a resource. This necessitates 

identifying a suitable inference mechanism according to the capabilities of 

each agent to achieve global optimal solution. 

It is not necessary to use multi-agent systems for all applications. Some specific 

application domains which may require interaction with different people or 

organizations  having conflicting or common goals can utilize the advantages 

presented by MAS in its design.  
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2.2 CLASSIFICATION OF MULTI-AGENT SYSTEM 

Classification of MAS is a difficult task as it can be done based on several different 

attributes such as Architecture [22], Learning [23-25], Communication [22], 

Coordination [26]. A general classification encompassing most of these features is 

shown in Figure 2.2.  

2.2.1 Agent Taxonomy 

Based on the internal architecture of the individual agents in a multi-agent system, it 

may be classified into two types: 

 Homogeneous structure 

 Heterogeneous structure 

1) Homogeneous structure 

In a homogeneous architecture, all agents in the multi-agent system have similar 

internal architecture. Internal architecture refers to the local goals, sensor capabilities, 

internal states, inference mechanism and possible action states [27]. The difference 

between the agents is its physical location and the part of the environment where the 

specified action is implemented. Each agent receives its inputs from different parts of 

the environment. There may be overlap in the sensor inputs received. In a typical 

distributed environment, overlap of sensory inputs is rarely present [28].  

2) Heterogeneous structure 

In a heterogeneous architecture, the agents may differ in their ability, structure, or 

functionality [29]. Based on the dynamics of the environment and the location of the 

particular agent, the actions chosen by an agent may differ [30]from the agent located 
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in a different part with the same functionality. Heterogeneous architecture helps in 

modelling applications much closer to real-world [31]. Each agent can have different 

local goals that may contradict the objective of other agents. A typical example of this 

can be seen in the Predator-Prey game [31]. Here both the prey and the predator can 

be modelled as agents. The objectives of the prey and predator agents are likely to be 

in direct contradiction to one other.  
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Figure 2.2 . Classification of a multi agent system based on the use of different 

attributes 

2.3 OVERALL AGENT ORGANIZATION 

Classification of the multi-agent system based on the organisational paradigm gives a 

great insight of the strengths and weaknesses of the various types of agent 

organizations. Based on the organisation structure, the multi-agent system can be 

classified into four major categories, namely 

 Hierarchical 
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 Holonic 

 Coalitions 

 Teams 

2.3.1 Hierarchical organization 

Hierarchical Organization [32] is one of the earliest organizational design in multi-

agent systems. Hierarchical architecture has been applied to a large number of 

distributed problems. In the hierarchical agent architecture, the agents are arranged in 

a typical tree like structure. The agents at different levels on the tree structure have 

different levels of autonomy. The data from the lower levels of hierarchy typically 

flow upwards to agents with a higher hierarchy. The control signal or supervisory 

signals flow from higher to a lower level of hierarchy [33]. Figure 2.3 shows a typical 

Three Hierarchical Multi-Agent Architecture. The flow of control signals is from a 

higher to lower priority agents.  

According to the distribution of  control between the agents, hierarchical architecture 

can be further classified as being a simple or uniform hierarchy.  

Simple Hierarchy: In a simple hierarchy [34], the decision making authority is 

bestowed to a single agent at the highest level of the hierarchy. The problem with a 

simple hierarchy is that a single point failure of the agent in the highest hierarchy may 

cause the entire system to fail.  

Uniform Hierarchy: In a uniform hierarchy, the authority is distributed among the 

various agents in order to increase the efficiency and fault tolerance in the event of a 

single or multi-point failures. Decisions are made only by agents with appropriate 
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amount of information. These decisions are sent up the hierarchy only where there is a 

conflict of interest between agents at different levels of hierarchy. 

 [33] provides an example of a uniform hierarchical multi-agent system applied to an 

urban traffic signal control problem. The objective is to provide a  distributed control 

and computation of traffic signal timings. This is to reduce the total delay time 

experienced by vehicles in a road network. In [32],a three level hierarchical multi-

agent system (HMS) was developed. The agents at the lowest level of hierarchy is the 

intersection agents. Each signal is modelled as an agent and decide their actions 

autonomously. The zonal agents are one level above the intersections agents in the 

hierarchy and communicates with a group of intersections. Zonal agents in turn 

communicate with a central supervisory Regional agent, which occupies the top 

position in the hierarchy.  The intersection decides the optimal green time. This is 

based on the local information collected at each of the intersections. The agents at the 

higher level of the hierarchy modify decision of the lower hierarchical agents if there 

is a conflict of interest or the overall delay experienced by a group of intersections 

increases due to a selected action.  Here, the overall control is uniformly distributed 

among the agents. Disadvantage with uniform hierarchy, is the amount and the type of 

information to be transmitted to the agents at higher level of hierarchy. This is a non-

trivial problem which gets complicated as the network size increases.  
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Figure 2.3.   A Hierarchical Agent Architecture 



24 
 

2.3.2  Holonic agent organization 

A 'Holon' is a stable and coherent  or fractal structure that consists of several 'holons' 

as its sub-structure and is itself a part of a larger framework. The concept of a holon 

was proposed by Arthur Koestler [35] to explain the social behaviour of biological 

species. However, the hierarchical structure of the holon and its interactions have 

been used to model large organizational behaviours in manufacturing and business 

domains [36-38]. 

In a holonic multi-agent system, an agent that appears as a single entity may be 

composed of many sub-agents  bound together by commitments. The sub-agents are 

not bound by any hard constraints or pre-defined rules but through commitments. 

These refer to the relationships agreed to by all of the participating agents inside the 

holon.  

Each holon appoints or selects a Head Agent that can communicate with the 

environment or with other agents located in the environment. Selection of the head 

agent is usually based on the resource availability, communication capability and the 

internal architecture of each agent. In a homogeneous multi-agent system, the 

selection can be random and a rotation policy  similar to the policy used in distributed 

wireless sensor networks is employed. In the heterogeneous architecture, head 

selection is based on the capability of each agent. The holons formed may group 

further in accordance to benefits foreseen in forming a coherent structure. They form 

Superholons. Figure 2.4.  shows a Superholon formed by grouping two holons. 

Agents A1 and A4 are the heads of the holons and communicate with agent A7, which 

is the head of the superholon. The architecture appears to be similar to that of 
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hierarchical organization. However in holonic architecture, cross tree interactions and 

overlapping group formations are allowed.  

The superiority of holonic multi-agent organization and the performance 

improvements achieved while using holonic group was demonstrated in [38]. The 

abstraction in the internal working structure of holons provides an increased degree of 

freedom in selecting the behaviour. A major disadvantage [39] is the lack of a model 

or knowledge of the internal architecture of the holons. This makes it difficult for 

other agents to predict the resulting actions of the holons .   
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Figure 2.4. An example of Superholon with Nested Holons resembling the 

Hierarchical MAS 

2.3.3 Coalitions 

In coalition architecture, a group of agents come together for a short time to increase 

the utility or performance of the individual agents in a group. The coalition ceases to 

exist when the performance goal is achieved. Figure 2.5. shows a typical coalition 

multi-agent system. The agents forming the coalition may have either a uniform or a 

hierarchical architecture. Even when using a uniform architecture, it is possible to 

have a leading agent to act as a representative of the coalition group. The overlap of 
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agents among coalition groups is allowed as this increases the common knowledge 

within the coalition group and helps in the construction of belief model. However the 

presence of overlapping agents increases the complexity in computation of the 

negotiation strategy. Coalition architecture is difficult to maintain in a dynamic 

environment due to the shift in the performance of coalition group. It may be 

necessary to regroup agents in order to maximize the system performance.  

Theoretically, forming a single group consisting of all the agents in the environment 

will maximize the performance of the system. This is because each agent has access 

to all the information and resources necessary to calculate the conditions for optimal 

action. It is practically not feasible to form such a coalition due to constraints on the 

communication and resources.  

The number of coalition groups created must be minimized in order to reduce the cost 

associated with creating and dissolving a coalition group. The group formation may 

be pre-defined based on a threshold set for performance measure or alternatively 

could be evolved online. 

In [40], a coalition multi-agent architecture for urban traffic signal control was 

developed. Each intersection was modelled as an agent with capability to decide the 

optimal green time required for that intersection. A distributed neuro-fuzzy inference 

engine was used to compute the level of cooperation required and the members of the 

dynamically formed coalition group. 

The coalition groups reorganize and regroup dynamically with respect to the changing 

traffic input pattern. Disadvantage is the increased computational complexity involved 

in creating ensembles or coalition groups. The coalition MAS may have a better short 

term performance than other agent architectures [41]. 
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Figure 2.5.  Coalition multi agent architecture using overlapping groups 

2.3.4 Teams 

Team MAS architecture [42] is similar to coalition architecture in design except that 

the agents in a team work together to increase the overall performance of the group 

rather than each working as individual agents. The interactions between agents within 

a team can be quite arbitrary, and the goals or the roles assigned to each of the agents 

can vary with time based on improvements resulting from the team performance. 

Reference [43] deals with a team based multi-agent architecture having a  partially 

observable environment. In other words, teams that cannot communicate with each 

other has been proposed for the Arthur's bar problem. Each team decides on whether 

to attend a bar or not by means of predictions based on the previous behavioural 

pattern and the crowd level experienced which is the reward or the utility received 

associated with the specific period of time. Based on the observations made in [43], it 

can be concluded that a large team size is not beneficial under all conditions. 



28 
 

Consequently some compromise must be made between the amount of information, 

number of agents in the team and the learning capabilities of the agents.  

Large teams offer better visibility of the environment and larger amount of relevant 

information. However, learning or incorporating the experiences of individual agents 

into a single framework team is affected. A smaller team size offers faster learning 

possibilities but result in sub-optimal performance due to a limited view of  the 

environment. Tradeoffs between learning and performance need to be made in the 

selection of the optimal team size. This increases the computational cost much greater 

than that experienced in coalition multi-agent system architecture. Figure 2.6. shows a 

typical team based on architecture with partial view. The team 1 and 3 can see each 

other but not teams 2 ,4 and vice versa. The internal behaviour of the agents and their 

roles are arbitrary and vary with teams even in  homogeneous agent structure. 
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Figure 2.6. Team based multi agent architecture with a partial view of the other teams 

Variations and constraints on aspects of the four agent architecture mentioned earlier 

in this chapter can form other architectures such as federations, societies and 

congregations. Most of these architectures are inspired by behavioural patterns in 
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governments, institutions and large industrial organizations. A detailed description of 

these architectures, their formation and characteristics may be found in [42]. 

2.4 COMMUNICATION IN MULTI-AGENT SYSTEMS 

Communication is one of the crucial components in multi-agent systems that needs 

careful consideration. Unnecessary or redundant intra-agent communication can 

increase the cost and cause instability. Communication in a multi-agent system can be 

classified into two types. This is based on the architecture of the agent system and the 

type of information communicated between the agents. In [22], the various issues with 

homogeneous and heterogeneous MAS architecture has been described and 

demonstrated using a predator/prey and robotic soccer games. On the basis of the 

information communication between the agents [44], MAS can classified as local 

communication or message passing and network communication or Blackboard. 

Mobile communication can be categorized into class of local communication.    

2.4.1  Local communication 

Local communication lack memory and intermediate communication media to store 

information and act as a facilitator respectively. The term message passing is used to 

emphasize the direct communication between the agents. Figure 2.7. shows the 

structure of the message passing communication between agents. In this type of 

communication, the information flow is bidirectional. It creates a distributed 

architecture and reduces the bottleneck caused by failure of central agents. This type 

of communication has been used in [33, 45, 46].  
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2.4.2  Blackboards 

Another way of exchanging information between agents is through Blackboards [47]. 

Agent-based blackboards, like federation systems, use grouping to manage the 

interactions between agents. In blackboard communication, a group of agents share a 

data repository used for efficient storage and retrieval of data actively shared between 

the agents. The repository can hold both the design data as well as the control 

knowledge and are accessible to the agents. The type of data that can be accessed by 

an agent can be controlled through the use of a control shell.  This acts as a network 

interface that notifies the agent when relevant data is available in the repository. The 

control shell can be programmed to establish different types of coordination among 

the agents. Neither the agent groups nor the individual agents in the group need to be 

physically located near the blackboards. It is possible to establish communication 

between various groups by remote interface communication. The major issue is the 

loss of critical information due to the failure of blackboards. This could render the 

group of agents useless depending on the information stored in the specific 

blackboard. However, it is possible to establish some redundancy and share resources 

between various blackboards. Figure 2.8a. shows a single blackboard with the group 

of agents associated with it. Figure 2.8b. shows blackboard communication between 

two different agent groups and also the location of facilitator agents in each group. 

Agent 1

Agent 2 Agent 3
 

Figure 2.7. Message Passing Communication between agents 
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Figure 2.8a. Blackboard type communication between agents 
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Figure 2.8b.  Blackboard communication using remote communication between agent 

groups 

2.4.3     Agent Communication Language 

An increase in the number of agents and the heterogeneity of the group necessitates a 

common framework to help in proper interaction and information sharing. This 

common framework is provided by the agent communication languages (ACL). The 

elements that are of prime importance in the design of ACL were highlighted in [48, 

49].  

Agent common language provides the necessary interaction format (Protocol) that can 

be understood by all of the participating agents. The communication language also 
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provides a shared ontology where the message communicated has the same meaning 

in all contexts and allows agent independent semantics. In order to perform the task of 

agents effectively, agents depend heavily on expressive communication with other 

agents to perform the requests, to propagate the information capabilities, and to 

negotiate with other agents. Designing a proper communication language has two 

major problems. 

 Inconsistencies in the use of syntax or vocabulary. Same words could have 

entirely different or even conflicting meanings with respect to different agents 

 Incompatibilities between different programs using different words or 

expressions to convey the same information.  

There are two popular approaches in the design of an agent communication language, 

procedural approach and declarative approach. In Procedural approach, the 

communication between the agents is modelled as sharing of procedural directives. 

Procedural directives could be task specific working instructions or general working 

mechanism of the agent. Scripting languages are commonly used in the procedural 

approach. Some of the most common scripting languages employed are JAVA, TCL, 

Applescript and Telescript.  

The major disadvantage of procedural approach is the necessity of providing 

information on the recipient agent, which in most cases is not known or only partially 

known. In case of making a wrong model assumption, the procedural approach may 

have a destructive effect on the performance of the agents. The second major concern 

is with the merging of shared procedural scripts into a relevant single large executable 

script for the agent. Owing to these disadvantages, the procedural approach is not the 

preferred method for designing agent communication language. 
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In the declarative approach, the agent communication language is designed and based 

on the sharing of declarative statements that specifies definitions, assumptions, 

assertions, axioms etc. For the proper design of an ACL using a declarative approach, 

the declarative statements must be sufficiently expressive to encompass the use of a 

wide-variety of information. This would increase the scope of the agent system and 

also avoid the necessity of using specialized methods to pass certain functions. The 

declarative statements must be short and precise. An increase in the length of the 

declarative statements affects the cost of communication between agents and also 

increases the probability of information corruption. The declarative statements also 

needs to be simple enough to avoid the use of a high level language to code. To meet 

all the above requirements of the declarative approach based ACL, the ARPA 

knowledge sharing effort had devised an agent communication language. 

The ACL designed consists of three parts [49]: A Vocabulary part,  "Inner language"  

and "Outer language". The Inner language is responsible for the translation of the 

communication information into a logical form that is understood by all agents. There 

is still no consensus on a single language and many inner language representations 

like KIF (Knowledge Interchange Format)[50], KRSL, LOOM are available. The 

linguistic representation created by these inner languages are concise, unambiguous 

and context-dependent. The receivers must derive from them the original logical 

form. For each linguistic representation, ACL maintains a large vocabulary 

repository. A good ACL maintains this repository open-ended so that modifications 

and additions can be made to include increased functionality. The repository must 

also maintain multiple ontology‟s and its usage will depends on the application 

domain.  
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Knowledge Interchange Format [51] is one of the best known inner languages and it is 

an extension of the First-Order Predicate Calculus (FOPC). Some of the information 

that can be encoded using KIF are simple data, constraints, negations, disjunctions, 

rules, meta-level information that aids in the final decision process. It is not possible 

to use just the KIF for information exchange as much implicit information needs to be 

embedded. This is so that the receiving agent can interpret it with a minimal 

knowledge of the sender's structure. This is difficult to achieve as the packet size 

grows with the increase in embedded information. To overcome this bottleneck, a 

high level language that utilizes the inner language as its backbone were introduced. 

These high-level languages make the information exchange independent of the 

content syntax and ontology. One well known Outer language that satisfies this 

category is the KQML (Knowledge Query and Manipulation Language) [52]. A 

typical information exchange between two agents utilizing the KQML and KIF agent 

communication language is as follows. 

   (ask  :Content (geolocation lax(?long ?lat)) 

                  : language KIF 

               :ontology STD_GEO 

             : from location_agent 

          : to  location_server 

             : label Query- "Query identifier") 

           (tell : content "geolocation(lax, [55.33,45.56])" 

          : language standard_prolog 



35 
 

      : ontology STD_GEO) 

The KQML is conceived as both message format and message handling protocol to 

facilitate smooth communication between agents. From the above example provided, 

it can be seen that KQML consists of three layers (Figure 2.9): A communication 

layer which indicates the origin and destination agent information and query label or 

identifier, a message layer that specifies the function to be performed (eg: In the 

example provided, the first agent asks for the geographic location and the second 

agent replies to the query), and a content layer to provide the necessary details to 

perform the specific query.  

Communication layer

Message Layer

Content 

Layer

 

Figure 2.9. KQML - Layered language structure 

In KQML, the communication layer is at a low level and packet oriented. A stream 

oriented approach is yet to be developed. The communication streams could be built 

on TCP/IP, RDP, UDP or any other packet communication media. The content layer 

specifies the language to be employed by the agent. It should be noted that agents can 

use different languages to communicate with each other and interpretation can be 

performed locally using higher level languages.  
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2.5  DECISION MAKING IN MULTI-AGENT SYSTEM 

Multi-agent decision making is different from a simple single agent decision system. 

The uncertainty associated with the effects of a specific action on the environment 

and the dynamic variation in the environment as a result of the action of other agents 

makes multi-agent decision making a difficult task. Usually the decision making in 

MAS is considered as a methodology to find a joint action or the equilibrium point 

which maximizes the reward received by every agent participating in decision making 

process. The decision making in MAS can be typically modelled as a game theoretic 

method. Strategic game is the most simplest form of decision making process.  Here 

every agent chooses its actions at the beginning of the game and the simultaneous 

execution of the chosen action by all agents. 

A strategic game [53] consists of a set of players - in multi-agent scenario, the agents 

are assumed to be the players.  

 For each player, there is a set of actions 

 For each player, the preferences over a set of action profiles 

There is a payoff associated with each of the combination of action values for the 

participating players. The payoff function is assumed to be predefined and known in 

the case of a simple strategic game. It is also assumed that the actions of all agents are 

observable and is a common knowledge available to all agents. A solution to a 

specific game is the prediction of the outcome of the game making the assumption 

that all participating agents are rational. 
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The prisoner's dilemma is a best case for demonstrating the application of game 

theory in decision making involving multiple agents. The prisoner's dilemma problem 

can be states as : 

“Two suspects involved in the same crime are interrogated independently. If both the 

prisoner's confess to the crime, each of them will end up spending three years in 

prison. If only one of the prisoner confesses to the crime, the confessor is free while 

the other person will spend four years in prison. If they both do not confess to the 

crime, each will spend a year in prison.” 

This scenario can be represented as a strategic game. 

 Players  Two suspects involved in the crime 

 Actions  Each agent's set of actions is {Not confess, confess} 

 Preferences Ordering of the action profile for agent 1, from best to worst case 

scenario, is {confess, Not confess}, {Not Confess, Not confess}, {Confess, 

Confess} and {Not confess, Confess}. Similar ordering could be performed by 

agent 2. 

A payoff matrix that represents the particular preferences of the agents needs to be 

created. Simple payoff matrix can be  

u1{Confess, Not confess} =3, 

u1{Not confess, Not confess}=2. 

u1{Confess, Confess}=1, 

u1{Not confess, confess}=0. 
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 Similarly the utility or payoff for agent 2 can be represented as  

u2{Not confess, confess}=3, 

u2(Not confess, Not confess}=2, 

u2{confess, Not confess}=0 

u2{confess, confess}=1. 

The reward or payoff received by each agent for choosing a specific joint action can 

be represented in a matrix format called as payoff matrix table. The problem depicts a 

scenario where the agents can gain if they cooperate with each other but there is also a 

possibility to be free if a confession is made. The particular problem can be 

represented as a payoff matrix as shown in Figure 2.10. In this case it can be seen that 

the solution "Not confess" is strictly dominating. By strictly dominating solution, it 

means that a specific action of an agent always increases the payoff of the agent 

irrespective of the other agents actions.  

 

 

 

 

 

 

Figure 2.10. Payoff matrix for the Prisoner's Dilemma Problem 

 

 

Agent 1 
Not Confess                                      Confess 

 
 
 

Agent 2 

 
Not Confess 
 
 
Confess 

2,2 0,3 

3,0 1,1 
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However, there can be variations to the prisoner's dilemma problem by introducing an 

altruistic preference while still calculating the payoff of the actions. Under this 

circumstance, there is no action strictly dominated by the other. 

2.5.1  Nash equilibrium 

To obtain the best solution based on the constructed payoff matrix, the most common 

method employed is the Nash Equilibrium [54], which can be stated as follows: 

 A Nash Equilibrium is an action profile a* with the property that no player i can do 

better by choosing an action different from a* of i, given that every other player 

adheres to a* of j. 

In the most idealistic conditions, where the components of the game are drawn 

randomly from a collection of populations or agents, a Nash equilibrium corresponds 

to a steady state value. In a strategic game, there always exists a Nash equilibrium but 

it is not necessarily a unique solution.  Examining the payoff matrix in Figure 2.11 

shows that {confess, confess} is the Nash equilibrium for the particular problem. The 

action pair {confess, confess} is a Nash equilibrium because given that agent 2 

chooses to confess, agent 1 is better off choosing confess than Non confess. By a 

similar argument with respect to agent 2 it can be concluded that {confess, confess} is 

a Nash Equilibrium. In particular, the incentive to have a  free ride on confession 

eliminates any possibility of selecting mutually desirable outcome of the type {Not 

Confess, Not Confess}. If the payoff matrix could be modified to add value based on 

the trust or reward to create altruistic behaviour and feeling of indignation, then the 

subtle balance that exists shifts and the problem would have a multiple number of 

Nash equilibrium points as shown in Fig.2.11.   
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Agent 1 
Not Confess                                      Confess 

 
 
 

Agent 2 

 
Not Confess 
 
 
Confess 

2,2 -2,-1 

-1,-2 1,1 

 

Figure 2.11. Modified Payoff matrix for the Prisoner's Dilemma Problem 

In modified prisoner‟s dilemma problem, a single action does not always dominate   

and multiple equilibrium points exist. To obtain a solution for this type of problem,  

coordination between the agents is an essential requirement. 

2.5.2  The Iterated elimination method 

The solution to the Prisoner's dilemma problem can also be obtained by using the 

iterated elimination method [55]. In this method, the strongly dominating actions are 

iteratively eliminated until no more actions are strictly dominating. The iterated 

elimination method assumes that all agents exhibit a rational behaviour and will not 

choose a strictly dominant solution. This method is weaker than the Nash equilibrium 

as it finds the solution by means of a algorithm. Iterated elimination method fails 

when there are no strictly dominant actions available in the solution space. This limits 

the applicability of the method in multi-agent scenario where mostly weakly-

dominant actions  are encountered. 

2.6 COORDINATION IN MULTI-AGENT SYSTEM 

Coordination is the central issue in the design of multi-agent systems. Agents are 

seldom stand-alone systems and usually involve more than one agent working in 

parallel to achieve a common goal. When multiple agents are employed to achieve a 
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goal, it is necessary to coordinate or synchronize their actions to ensure the stability of 

the system. Coordination between agents increases the chances of attaining a optimal 

global solution. In [56], major reasons necessitating coordination between the agents 

were highlighted. The requirements are 

 To prevent chaos and anarchy 

 To meet global constraints 

 To utilize distributed resources, expertise and information 

 To prevent conflicts between agents 

 To improve the overall efficiency of the system 

Coordination can be achieved by applying constraints on the joint action choices of 

each agent or by utilizing the information collated from neighbouring agents. These 

are used to compute the equilibrium action point that could effectively enhance the 

utility of all the participating agents. Applying constraints on the joint actions requires 

an extensive knowledge of the application domain. This may not be readily available. 

It necessitates the selection of the proper action taken by each agent based on the 

equilibrium point computed. However, the payoff matrix necessary to compute the 

utility value of all action choices might be difficult to determine. The dimension of 

the payoff matrix grows exponentially with an increase in the number of agents and 

the available action choices. This may create a bottleneck when computing the 

optimal solution.  

The problem of dimensional explosion can be solved by dividing the game into a 

number of sub-games that can be more effectively solved. A simple mechanism which 
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can  reduce the number of action choices is to apply constraints or assign roles to each 

agent. Once a specific role is assigned, the number of permitted action choices is 

reduced and simplifies the computation of payoff matrix. This approach is of 

particular importance in a distributed coordination mechanism. However, in 

centralized coordination techniques this is not a major concern as it is possible to 

construct belief models for all agents. The payoff matrix can be computed centrally 

and communicated to all of the agents as a shared resource.  

Centralized coordination is adopted from the basic client/server model of 

coordination. Most of the centralized coordination techniques uses blackboards as a 

way in which to exchange information. Master agent schedules of all the connected 

agents are required to read and write information from and to the central information 

repository. Some of the commonly adopted client/server models are KASBAH[57] 

and MAGMA[58]. The model uses a global blackboard to achieve the required 

coordination. Disadvantage in using the centralized coordination is  the disintegration 

of the system due to single point failure of the repository or the mediating agent. 

Further, use of the centralized coordination technique is contradictory to the basic 

assumption of DAI[56].  

2.6.1  Coordination through protocol 

A classic coordination technique among agents in a distributed architecture is through 

the communication protocol. Protocol is usually written in high level language and 

specifies the method of coordination between the agents as a series of task and 

resource allocation methods. The most widely used protocol is the Contract Net 

Protocol [59] which facilitates the use of distributed control for cooperative task 

execution. The protocol specifies the information to be communicated between the 
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agents and the format of information dissemination. A low-level communication 

language such as KIF that can handle the communication streams is assumed to be 

available. The protocol engages in negotiation between the agents to arrive at an 

appropriate solution. The negotiation process must adhere to the following 

characteristics 

 Negotiation is a local process between agents and it involves no central control 

 Two way communication between  all participating agents exists 

 Each agent makes its evaluation based on its own perception of the 

environment 

 The final agreement is made through a mutual selection of the action plan 

Each agent assumes the role of Manager and Contractor as necessary. The manager 

essentially serves to break a larger problem into smaller sub-problems and finds 

contractors that can perform these functions effectively. A contractor can become a 

manager and decompose the sub-problem so as to reduce the computational cost and 

increase efficiency. The manager contracts with a contractor through a process of 

bidding. In the bidding process, the manager specifies the type of resource required 

and a description of the problem to be solved. Agents that are free or idle and have the 

resources required to perform the operation submits a bid indicating their capabilities. 

The manager agent then evaluates the received bids, chooses an appropriate contractor 

agent and awards the contract. In case of non-availability of any suitable contracting 

agent, the manager agent waits for a pre-specified period before rebroadcasting the 

contract to all agents. The contracting agent may negotiate with the manager agent 

seeking an access to a particular resource as a condition before accepting the contract.  
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The FIPA model [60] is the best example of an agent platform that utilizes the 

contract net protocol to achieve coordination in between the agents.  FIPA - 

Foundation for Intelligent Physical Agents is a model developed to standardize agent 

technology. The FIPA has its own ACL (Agent Communication Language) that 

serves as the backbone for the high-level contract net protocol.  

Disadvantage of the protocol based coordination is the assumption of the existence of 

a cooperative agents. The negotiation strategy is passive and does not involve any 

punitive measures to force an agent to adopt a specific strategy. Usually a common 

strategy is achieved through iterative communication, where the negotiation 

parameters are modified progressively to achieve equilibrium. This makes the 

contract net protocol to be communication intensive. 

2.6.2  Coordination via graphs 

Coordination graphs were introduced in [61] to serve as a framework to solve large 

scale distributed coordination problems. In coordination graphs, each problem is sub-

divided into smaller problems that are easier to solve. The main assumption with 

coordination graphs is that the payoffs can be expressed as a linear combination of the 

local payoffs of the sub-game. Based on this assumption, algorithm such as variable 

elimination method can compute the optimal joint actions by iteratively eliminating 

agents and creating new conditional functions that compute the maximal value the 

agent can achieve given the action of other agents on which it depends. The joint 

action choice is only known after the completion of the entire computation process, 

which scales with the increase in agents and available action choices and is of concern 

in time critical processes. An alternate method using max-plus which reduces the 
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computation time required was used in [58]. This was to achieve coordination in 

multi-agent system when applied to urban traffic signal control.  

 2.6.3  Coordination through belief models 

In scenarios where time is of critical importance, coordination through protocols fail 

to succeed when an agent with a specific resource to solve the sub-problem rejects the 

bid. In such scenarios, agents with an internal belief model of the neighbouring agents 

could solve the problem. The internal belief model could be either evolved by 

observing the variation in the dynamics of the environment or developed based on 

heuristic knowledge and domain expertise. When the internal model is evolved, the 

agent has to be intelligent enough to differentiate between the change in its 

environment due to the actions of other agents and natural variations occurring in the 

environment. In [28], a heuristics based belief model has been employed to create 

coordination between agents and to effectively change the green time. In [62], 

evolutionary methods combined with neural networks have been employed to 

dynamically compute the level of cooperation required between the agents. This is 

based on the internal state model of the agents. The internal state model was updated 

using reinforcement learning methods. A disadvantage using the coordination based 

on belief model for the agents is an incorrect model could cause chaos due to the 

actions selected. 

2.7 LEARNING IN MULTI-AGENT SYSTEM 

The learning of an agent can be defined as building or modifying  the belief structure 

based on the knowledge base, input information available and the consequences or 

actions needed to achieve the local goal [63]. Based on the above definition, agent 

learning can be classified into three types. 
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 Active learning 

 Reactive learning 

 Learning based on consequence 

In active and reactive learning, the update of the belief part of the agent is given 

preference over an optimal action selection strategy as a better belief model could 

increase the probability of the selection of an appropriate action. 

2.7.1 Active learning 

Active learning can be described as a process of analysing the observations to create a 

belief or internal model of the corresponding situated agent's environment. The active 

learning process can be performed by using a deductive, inductive or probabilistic 

reasoning approach. 

In the deductive learning approach, the agent draws a deductive inference to explain a 

particular instance or state-action sequence using its knowledge base. Since the result 

learned is implied or deduced from the original knowledge base which already exists, 

the information learnt by each agent is not a new but useful inference. The local goal 

of each agent could form a part of the knowledge base. In the deductive learning 

approach, the uncertainty or the inconsistency associated with the agent knowledge is 

usually disregarded. This makes it not suitable for real-time applications.  

 In inductive learning approach, the agent learns from observations of state-action 

pair. These viewed as the instantiation of some underlying general rules or theories 

without the aid of a teacher or a reference model. Inductive learning is effective when 

the environment can be presented in terms of some generalized statements. Well 
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known inductive learning approaches utilize the correlation between the observations 

and the final action space to create the internal state model of the agent. The 

functionality of inductive learning may be enhanced if the knowledge base is used as 

a supplement to infer the state model. The inductive learning approach suffers at the 

beginning of operation as statistically significant data pertaining to the agent may not 

be available. 

The probabilistic learning approach is based on the assumption that the agent 

knowledge base or the belief model can be represented as probabilities of occurrence 

of events. The agent's observation of the environment is used to predict the internal 

state of the agent. One of the best examples of probabilistic learning is that of the 

Bayesian theorem. According to the Bayesian theorem, the posterior probability of an 

event can be determined by the prior probability of that event and the likelihood of its 

occurrence. The likelihood probability can be calculated based on observations of the 

samples collected from the environment and prior probability can be updated using 

the posterior probability calculated in the previous time step of the learning process. 

In a multi-agent scenario where the action of one agent influences the state of other 

agent,  the application of using the probabilistic learning approach is difficult. This 

stems from the major knowledge requirement of the joint probability of actions and 

state space of different agents. With an increase in the number of agents, it is difficult 

in practice to calculate and infeasible computationally. The other limitation is the 

limited number of the sample observations available to estimate the correct trajectory. 

2.7.2 Reactive learning 

The process of updating a belief without having the actual knowledge of what needs 

to be learnt or observed is called Reactive Learning. This method is particularly useful 
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when the underlying model of the agent or the environment is not clearly known. 

Reactive learning can be seen in agents which utilize connectionist systems such as 

neural networks. Neural networks depend on the mechanism which maps the inputs to 

output data samples using inter-connected computational layers. Learning is 

performed by adjustment of synaptic weights between the layers. In [64], reactive 

multi-agent based feed forward neural networks have been used and its application to 

the identification of non-linear dynamic system  have been demonstrated.  In [65] 

many other reactive learning methods such as accidental learning, go-with-the-flow, 

channel multiplexing and a shopping around approach have been discussed. Most of 

these methods are rarely employed in a real application environment as most of them 

are designed exclusively to a specific application domain. 

2.7.3 Learning based on consequences 

Learning methods presented in the previous sections were concerned with 

understanding  the environment based on the belief model update and analysis of 

patterns in sample observations. This section will deal with the learning methods 

based on the evaluation of the goodness of selected action. This may be performed by  

reinforcement learning methods.  

Reinforcement learning is a way of programming the agents using reward and 

punishment scalar signals without specifying how the task is to be achieved. In 

reinforcement learning, the behaviour of the agent is learnt through trial and error 

interaction with the dynamic environment without an external teacher or supervisor 

that knows the right solution. Conventionally, reinforcement learning methods are 

used when the action space is small and discrete. Recent developments in 

reinforcement learning techniques have made it possible to use the methods in 
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continuous and large state-action space scenarios too. Examples of applications using 

reinforcement learning techniques in reactive agents are given in [66, 67].  

In reinforcement learning [68], the agent attempts to maximize the discounted scalar 

reward received from the environment over a finite period of time. To represent this, 

an agent is represented as a Markov Decision Process.  

 A discrete number of states   sS   

 A discrete set of actions  a A   

 State transition probability    p(s ' | s,a)  

 Reward function   R : SXA °   

The reward function can be written as 
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 . The objective is to 

maximize this function for a given policy function. A policy is a mapping from the 

state to the action values. The optimal value of a specific state s can be defined as the 

maximum discounted future reward which is received by following a specific 

stationary policy and can be written as  
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The expectation operator averages the transition values. In a similar manner the Q 

value can be written as 
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The optimal policy can then be determined as arg max of the Q-value. To compute the 

optimal value function and the Q-value, the Bellman equation (2.3) and (2.4) is used. 

The solution to Bellman equation can be obtained by recursively computing the 

values using dynamic programming techniques. However, the transition probability 

values are difficult to obtain. Therefore the solution is obtained iteratively by using 

the temporal difference error between the value of successive iterations as shown in 

(2.5) and (2.6). 
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                  (2.6) 

The solution to (6) is referred to as the q-learning method. The Q-value computed for 

each state action pair is stored in Q-map and is used to update the Q-values. Based on 

the Q-values, the appropriate actions are selected. The major disadvantage is that the 

exploration and exploitation trade-off must be determined. To build an efficient Q-

map, it is essential to compute the Q-values corresponding to all the state-action pair. 

The convergence is guaranteed if all the state-action pairs have been visited infinite 

number of times (theoretical).  

In single agent RL, the convergence and methodologies are well defined and proven. 

In a distributed MAS, the reinforcement learning method faces the problem of 
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combinatorial explosion with increase in the state and action space. Another major 

concern is that the information must be passed between the agents for effective 

learning. In [69], distributed value function based on RL has been described. The 

value functions are shared among the agents thereby increasing the global view 

available to each agent. For effective distributed learning through shared value 

function, all agents must have similar architecture and the inputs and state space are 

similar for all agents. A complete survey of reinforcement learning can be found in 

[70] .  

2.8 SUMMARY 

In this chapter, a detailed survey of the existing agent architectures, taxonomy,  

communication requirements, coordination mechanism, decision making and learning 

in multi-agent systems applied to wide range of applications have been presented. The 

insights derived from the survey of the existing design methodology will be useful in 

conceptualizing and implementing an effective distributed multi-agent system for 

complex urban traffic signal control problem.  
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CHAPTER 3 

REVIEW OF ADVANCED SIGNAL CONTROL 

TECHNIQUES   

In order to construct an efficient distributed multi-agent based traffic signal control 

system, it is essential to review the existing traffic control methods, their advantages 

and disadvantages. This chapter presents a classification of the existing traffic signal 

control methods and provides a detailed review of the working of various existing 

traffic control methods. The chapter also details the working mechanism of the 

benchmark traffic signal controls HMS and GLIDE used for evaluating the 

performance of the proposed multi-agent based traffic signal controls.   

3.1 CLASSIFICATION OF TRAFFIC SIGNAL CONTROL METHODS 

Traffic signal controls can be classified into three types based on the type of 

architecture used to obtain the green time required for each phase in a cycle. 

 Fixed-time control 

 Traffic Actuated control 

 Traffic Adaptive control 

3.1.1 Fixed-time control 

In fixed-time control, the duration and the order of all green phases are pre-fixed. 

Fixed time control assumes that the traffic patterns can be predicted accurately based 
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on historical data. The traffic situation changes over time and usually employs a clock 

to replace one fixed-time control plan with another. As fixed-time controllers do not 

require traffic detectors to be installed at the intersection, the construction cost is 

much lower than with traffic actuated and traffic-adaptive control. The main 

drawback of fixed-time control is that it is not capable of adapting itself to the real 

time traffic patterns as it is based only on historical data. Historical data is often not 

representative of the current situation as: 

 Traffic arrives at the intersection randomly, which makes it impossible to 

predict the traffic demand accurately. 

 Traffic demand changes and shifts over a long period of time leading to 

“aging” of the optimized settings. 

 Traffic demand may change due to drivers‟ response to the new optimized 

signal settings. 

 Events, accidents, and other disturbances may disrupt traffic conditions in a 

non-predictable way. 

In fixed-time control, the signal cycle is divided over the various phases according to 

historical traffic volumes. As a consequence of the time needed to clear the 

intersection when changing phases and for traffic to start-up, a fixed amount of time 

during the signal cycle can be considered lost and cannot be effectively used for 

traffic flow. The amount of time lost (per hour) increases when the duration of the 

signal cycle is chosen shorter. Intersections with a shorter signal cycle therefore 

would have a lower overall capacity. However, longer signal cycles also lead to 
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longer waiting times and longer queues leading to saturation of the links. This 

necessitates fixing the maximum and minimum bounds for green time and cycle 

length. In order to find an optimal value for the cycle and the green durations of the 

separate phases, Webster had derived the formula utilizing the flow rate  experienced 

at each lane of the link. Based on how the green time is computed, the fixed-time 

control can be classified into two types: 

 Progression based methods : Maximizes the bandwidth of the progression – 

PASSER (Progression Analysis and Signal System Evaluation Routine)[71], 

MAXBAND[72] and MULTIBAND[73] 

 Disutility based methods : Minimizes a performance measures like overall 

travel time delay and number of stops – TRANSYT-7F[74] and 

SYNCHRO[75] 

3.1.2 Traffic actuated control 

For vehicle-actuated and traffic-actuated control, detectors are needed to get 

information about the actual traffic situation. The detectors that are used most 

frequently in practice are inductive loop detectors. In order to decide whether it is 

efficient to terminate the green phase, the traffic-actuated controller should be able to 

determine whether the last vehicle of the queue that has build up at the stop line 

during the red phase has passed. This is performed by measuring the gap between the 

vehicles. If the gap between vehicles is larger than a threshold maximum gap, the 

control program decides to terminate the green phase. Additionally many traffic-

actuated controllers also extend the green time to ensure that the green phase is 

terminated  safely and in a comfortable manner. 
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These extensions continue until the intervals between vehicles are long enough for the 

signals to decide that it would be more efficient to terminate the current green phase 

or until a pre-specified maximum green time has been reached. There are four major 

regions that needs to be monitored - Zone 1, Zone 2, Option zone and Comfort zone. 

Zone 1 and 2 are very close to the stop line intersection. Zone 1 is a 3m region close 

to the stop line intersection followed by Zone 2 which extends for a further 20m 

beyond the first vehicle after the Zone 1. Option zone is the overlapping region 

extending beyond zone 2. If the vehicles are present within this region, the green time 

of the phase can be effectively terminated. In this region, the traffic flow is 

considerably slower and varies with traffic conditions. Comfort zone extends beyond 

the option zone where the vehicle flow is steady and is not influenced much unless 

there is a queue build-up. Presence of vehicles in any of these regions can cause the 

extension of the green time. However, the priority is different in each region.   

Coordination between traffic-actuated controllers is achieved on the basis of the same 

principles through which coordination between fixed-time controllers is achieved. In 

order to ensure that traffic-actuated controllers return to the coordinated phase in time 

a mechanism must be in place to force non-coordinated phases to terminate. Two 

types of force-off modes are used : floating and fixed force-offs. The primary 

difference in these modes is in the manner the excess time from one non-coordinated 

phase is used by another non-coordinated phase. The non-coordinated phases can gap 

out if they have detectors and are operated in an actuated manner. A force-off point 

for each non-coordinated phase is the point in the cycle where the respective phase 

must terminate to ensure that the controller returns to the coordinated phase at the 

proper time in the cycle[76]. 
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 Floating force-off : In floating force-off mode, the duration of the non-

coordinated phases is limited to the splits that were programmed in the 

controller. As a consequence floating force-off does not allow for any time 

from phases with excess capacity to be used by a phase with excess demand. 

This means that phases that are allowed to start earlier as a consequence of an 

excess of capacity on phases earlier in the cycle will be forced to terminate 

before their force-off point in the cycle. This results in an early return to the 

coordinated phases. Let us take an example of a four phase signal. If the green 

required for the phase 1 is much lower than the vehicle inflow capacity, the 

green time of phase 1 is terminated after the minimum force-off period and the 

remaining green time available is not available to other phases. The second 

phase starts earlier than the starting period and continues recursively for all the 

phases. The second cycle begins much earlier if there is some amount of green 

time greater than the maximum cycle length allowable. 

 Fixed force-off : Fixed force-off, on the other hand, allows the transfer of 

excess capacity from one phase to a subsequent phase with excess demand. 

This means that phases with excess demand will terminate at the force-off 

point irrespective of when the phase starts. The controller only allows the use 

of excess unused capacity and ensures that coordinated operations are not 

disrupted.  

Some of the advantages and disadvantages of fixed force-off are : 

  Fixed force-off  allows better utilization of the time available from phases 

operating below capacity by phases having excess demand that varies in a 
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cyclic manner. This is the case when phases earlier in the phasing sequence 

operate below capacity more often than phases later in the phasing sequence. 

  Fixed force-off minimizes the early return to coordinated phases, which can 

be helpful in a network that has closely spaced intersections. An early return to 

the coordinated phase at a signal can cause the platoon to start early and reach 

the downstream signal before the onset of the coordinated phase, resulting in 

poor vehicle progression. 

  Fixed force-off minimizes the early return to the coordinated phase, which is 

a major  disadvantage.  Under congested conditions on arterial roads, an early 

return can result in the queue clearance for coordinated phases. Minimizing 

early return to coordinated phases can cause significant disruption to 

coordinated operations and in the dispersion of the platoons. This 

disadvantage can be overcome by adjusting the splits and/or offsets at the 

intersection to minimize disruption. 

Overall, fixed force-off has the potential to improve signal operations by better 

utilization of any  excess capacity. However, fixed force-off will only benefit if the 

phases that are more likely to be below capacity are earlier in the phasing sequence 

and allows the maximum utilization of the maximum available green time.  

3.1.3 Traffic adaptive control 

Traffic load is highly dependent on parameters such as time, day, season, weather, 

and unpredictable situations such as accidents, special events, or construction 

activities. These factors are taken into account by a traffic-adaptive control system, so 
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that bottlenecks and delays can be prevented. Adaptive traffic control systems 

continuously sense and monitor traffic conditions and adjust the timing of traffic 

signals accordingly. Adaptive systems, like SCOOT (Split, Cycle and Offset 

Optimization Technique) and SCATS (Sydney Coordinated Adaptive Traffic 

System), have been around since the mid 70‟s, and have proven their worth in various 

places around the world. Using real-time traffic information, an adaptive system can 

continuously update signal timings to fit the current traffic demand. The aging of 

traffic signal plans, with a gradual degradation of performance as traffic patterns drift 

away from those in place during implementation, is well documented [77]. Many 

agencies have no program for monitoring the applicability of signal timing to the 

current traffic patterns, and it is not uncommon to find agencies that have not re-timed 

their signals in years. The benefits of an adaptive signal control system are apparent, 

since both traffic operations and staff can be made more efficient since a better 

performance can be gained with the same level of effort [78].  

Adaptive traffic control systems are often categorized according to their generation. 

First-generation traffic-adaptive systems employ a library of pre-stored signal control 

plans, which are developed off-line on the basis of historical traffic data. Plans are 

selected on the basis of the time of day and the day of the week, directly by the 

operator, or by matching from an existing library a plan best suitable for recently 

measured traffic conditions. First generation traffic-adaptive systems are often 

referred to as traffic-responsive signal control. A limitation of traffic-responsive 

signal control is that by the time the system responds, the registered traffic conditions 

that triggered the response may have become obsolete or could have varied 

significantly. Second-generation traffic-adaptive systems uses an on-line strategy that 

implements signal timing plans based on real-time surveillance data and predicted 
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values. The optimization process can be repeated every five to fifteen minutes . 

However, to avoid transition disturbances, new timing plans cannot be implemented 

more than once every 10 minutes.  

Third generation traffic-adaptive systems are similar to the second-generation 

systems, but differ with respect to the frequency with which the signal timing plans 

are revised. The third generation of control allows the parameters of the signal plans 

to change continuously in response to real-time measurement of traffic variables, 

which allows for “acyclic” operation. Generally speaking, given time-varying 

unpredictable demand patterns, a traffic-adaptive system should be able to outperform 

a fixed time or actuated system. The margin of improvement demonstrated by a 

traffic-adaptive system over a fixed-time or traffic-actuated system cannot be 

compared easily to that determined for another adaptive system as it is strongly 

related to the network geometry and traffic demand chosen in the benchmark study. 

For a fair comparison, the systems should be benchmarked using the same test 

environment and an equal amount of effort should be put in the optimization of the 

different systems by people that are knowledgeable. The systems described in this 

section are systems from the, proven second generation (SCATS/GLIDE, SCOOT, 

MOTION) and from the, younger, third generation (OPAC, PRODYN, RHODES, 

UTOPIA/SPOT, TUC, HMS). 

3.1.3a SCATS/GLIDE 

SCATS (Sydney Coordinated Adaptive Traffic System) [79] was developed in the 

early 1970‟s by the Roads and Traffic Authority of New South Wales, Australia. The 

system utilizes a distributed, three-level, hierarchical system employing a central 
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computer, regional computers, and local intelligent controllers to perform a large-

scale network control. The regional computer can execute adaptive control strategies 

without any aid from the central computer, which only monitors the system 

performance and equipment status. The control structure enables SCATS to expand 

easily and suitably for controlling any size of traffic area. 

SCATS employs a strategic optimization algorithm and a tactical control technique to 

perform system-wide optimization. The optimization philosophy contains four major 

modules:  

 Cycle length optimizer 

 Split optimizer  

 Internal offset optimizer  

 linking offset optimizer 

SCATS selects combinations of cycle, splits and offset from predetermined sets of 

parameters with few on-line calculations. Maximum freedom consistent with good 

coordination is given to local controllers to act in the traffic-actuated mode. The 

system is designed to automatically calibrate itself on the basis of data received, 

minimizing the need for manual calibration and adjustment. For control purposes, the 

total system is divided into a large number of comparatively small subsystems varying 

from one to ten intersections. As far as possible, the subsystems are chosen so that 

they can be run independently for many traffic conditions. For each subsystem, 

minimum, maximum, and geometrically optimum cycle lengths are specified.  
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To coordinate larger groups of signals, subsystems can link together to form larger 

systems, operating on a common cycle length. Linking plans manage the linking 

between subsystems. When a number of subsystems are linked together, the cycle 

time becomes a linked subsystem with the longest cycle time. The combination of 

subsystem plans, link plans between subsystems, variable cycle length, and variation 

of offsets provides an infinite number of operating plans. Four background plans are 

also stored in the database for each subsystem. The cycle length and the appropriate 

plan are selected independently of each other to meet the traffic demand. For this 

purpose, a number of detectors in the subsystem area are defined as strategic 

detectors; these are stop-line detectors at key intersections. Various system factors are 

calculated from the strategic detector data, which are used to decide whether the 

current cycle and plan should remain the same or be changed. Strategic options, 

minimum delay, minimum stops, or maximum throughput can be selected for the 

operation. These options can be permanent or dynamically changed at threshold levels 

of traffic activity. Four modes of operation are included in SCATS: 

 Masterlink Operation : This is the normal mode of operation which 

provides integrated traffic-responsive operation. There are two levels of 

control in this mode: strategic and tactical. Strategic control determines the 

best signal timings for the areas and subareas, based on average prevailing 

traffic conditions. Tactical control is concerned with the control of the 

individual intersections within the constraints imposed by the strategic 

control. This lower-level control deals with termination of the unnecessary 

green phases when the demand is below the average. The basic traffic 

measurement used by SCATS for strategic control is a measure analogous 
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to the degree of saturation on each approach. This measure is used to 

determine cycle length, splits, and the direction and magnitude of offset.  

 Flexilink Operation : In the event of failure of a regional computer or loss 

of communications, the local controllers can revert to a form of time-based 

coordination. In this mode, adjacent signals are synchronized by reference 

to the power mains frequency or an accurate clock, and signal timing plans 

are selected by time-of-day. The local controller operates under a vehicle-

actuated or a fixed-time control system.  

 Isolated Operation : In this mode, the controller operates under 

independent vehicle actuation or a fixed-time control system.  

 Flash Operation : This is a manual mode in which normal automatic 

operation is overridden. It incorporates flashing yellow display for the 

major approaches and flashing red display for the minor approaches. 

SCATS has also been widely used in several cities in Australia, New Zealand, USA, 

China, Singapore, Philippines, and Ireland. GLIDE (Green Link Determining) is a 

version of SCATS adapted according to the traffic network structure and requirements 

in Singapore. 

3.1.3b SCOOT 

SCOOT (Split, Cycle, and Offset Optimization Technique) [80, 81] was initiated by 

the British Transport and Road Research Laboratory (TRRL) in the 1970‟s, with its 

first commercial system installed in 1980. SCOOT is a centralized system based on a 
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traffic model with an optimization algorithm adapted for on-line application. 

Optimization takes place by incrementally updating a fixed-time plan. The benefit of 

this approach is that changes are gradual. The transition is less disruptive and less 

prone to overreacting than the transition between distinct plans as is typical in a time-

of-day scheme. SCOOT performs optimization at three levels: Split, Cycle and Offset. 

SCOOT measures vehicles with a detector at the upstream location of the stop line.  

SCOOT predicts the number of vehicles arriving at the intersection based on the 

updated flow information collected by the upstream detectors. Difference between the 

predicted arrival count and the actual departure count values gives the number of 

vehicles in queue. The predicted flow profile and traffic count are estimated for each 

cycle from a combination of the vehicles approaching, the time to clear the queue, the 

impact of offset and split adjustment. The split optimizer in SCOOT evaluates the 

projected arrival and departure profiles every second. A few seconds before the 

change of signals, the system adds the delay from all movements that will end or 

begin at that change of signals. This delay is compared with the delay calculated for 

the change of signals occurring either a few seconds earlier or later. The best balance 

of movement that provides the least delay is implemented. 

The offset optimizer operates on each node pair and searches for the best offset timing 

to improve traffic progression on the basis of the cyclic profile. Based on the profile 

measured in the previous cycle, the offset optimizer minimizes the delay for all 

movements of the intersection by incrementing or decrementing the current offset 

with a few seconds. With the offset optimizer in the SCOOT systems, green waves 

can be imposed along the coordinated signal controlled corridor. After this offset 
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adjustment, the split optimizer may further adjust the signal timings based on traffic 

actually approaching the stop line at that time.  

The cycle optimizer looks at the saturation levels of all intersection movements once 

each cycle-control period. At critical intersections with low reserve capacity, the cycle 

optimizer will extend the length of the cycle. It does so in different increments of time 

(e.g., 4, 8, or 16 seconds) depending on the current cycle length. If an intersection is 

operating below capacity, the cycle optimizer will reduce the length of the cycle. 

SCOOT has been widely used in several cities in UK, USA, Canada, China, South 

Africa, Cyprus, Pakistan, United Arab Emirates, Chile, and Spain. 

3.1.3c MOTION 

MOTION (Method for Optimization of Traffic signals In Online-controlled Network) 

[82, 83] is a traffic signal control strategy developed by Siemens, Germany. The 

system operates on three functional levels: on the strategic level, every 5, 10 or 15 

minutes (cycle time, average green time distribution, basic stage sequences and 

network coordination); on the tactical level, every 60 to 90 seconds (cycle, current 

stage sequence); and on the operational level, every second (green time modification). 

Starting with the dominant traffic stream through the network, a grid of green waves 

is constructed, taking into account modelled (or if available, measured) platoons in the 

links. For each intersection, the optimum sequence of stages is identified, and the 

basic split of green times is fixed. 

 Depending on the remaining spare time per intersection, and on the constraints of the 

optimized offsets, a certain amount of bandwidth is available for the subsequent local 

optimization. Optimization normally aims at minimizing delays and stops in the 
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network. In the final step the decision is made to change the signal programs at the 

intersections. To avoid frequent minor changes, changes are only implemented if 

calculation determines a significant improvement in the overall optimization 

objective. Depending on the type of local controller and on the local control method 

used, the signal programs are then converted and implemented. To avoid severe 

disruptions in traffic flow due to the plan switch, a smooth (gliding) transition from 

the running to the new plan is performed. Until the next optimization run of the 

network model, the local controllers operate on their own and modify their plan 

according to the local situation, but always staying within the given bandwidth. 

3.1.3d TUC 

TUC (Traffic-responsive Urban Control) [84] employs a store-and-forward based 

approach to road traffic control, which introduces a model simplification that enables 

the mathematical description of the traffic flow process without the use of discrete 

variables. This opens the way to the application of a number of highly efficient 

optimization and control methods (such as linear programming, quadratic 

programming, nonlinear programming, and multi-variable regulators), which, in turn, 

allow for coordinated control of large-scale networks in real-time, even under 

saturated traffic conditions.  

The critical simplification is introduced when modelling the outflow of a stream 

suggests that there is a continuous (uninterrupted) outflow from each network link (as 

long as there is sufficient demand). The consequences of this simplification are:  
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 The time step t of the discrete-time representation cannot be shorter than the 

cycle time C, hence real-time decisions cannot be taken more frequently than 

at every cycle. 

 The oscillations of vehicle queues in the links due to green/red-commutations 

are not described by the model. 

The effect of offset for consecutive intersections cannot be described by the model. 

Despite these consequences, the appropriate use of store-and-forward models may 

lead to efficient coordinated control strategies for large-scale networks. The three 

main modules of TUC are the split, cycle, and offset control modules that allow for 

real-time control of green times, cycle times and offset. The basic methodology 

employed for split control by TUC is the formulation of the urban traffic control 

problem as a Linear-Quadratic (LQ) optimal control problem based on a store-and-

forward type of mathematical modelling.  

The control objective is to minimize the risk of oversaturation and queue spill-back, 

and this is achieved through the appropriate manipulation of the green splits at 

signalized junctions for given cycle times and offsets. Longer cycle times typically 

increase the capacity of the junction as the proportion of the lost time caused by 

switching signals becomes accordingly smaller. Longer cycle times may however 

increase vehicle delays at under saturated junctions with longer waiting times during 

the red phase. The objective of cycle control is to increase the capacities of the 

junctions as much as necessary to limit the maximum observed saturation level in the 

network.  
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Within TUC this objective is achieved through the application of a simple feedback-

algorithm that uses the maximum observed saturation levels of a pre-specified 

percentage of the network links as the criterion for increase or decrease of the cycle 

time. Offset control is achieved through the application of a decentralized feedback 

control law that modifies the offsets of the main stages of successive junctions along 

arterials, so as to create “green waves” when possible, taking into account the possible 

existence of vehicle queues. To implement a new offset in TUC, a transient cycle time 

is temporarily implemented at all but the first junction along an arterial road. The 

transient cycle time is implemented one single time, after which all the junctions 

along the arterial road are coordinated according to the new offset. 

3.1.3e UTOPIA/SPOT 

UTOPIA/SPOT (Urban Traffic Optimization by Integrated Automation/Signal 

Progression Optimization Technology) [85] is a traffic signal control strategy 

developed by Mizar Automazione in Turin, Italy. UTOPIA/SPOT calculates optimal 

control strategies for subareas of the network, with each subarea having the same 

cycle length. While operating, the system maintains a historical database of measured 

flows, turning percentages, saturation flows, and cycles in use.  

The system utilizes a distributed, two-level, hierarchical system employing a central, 

area-level computer, and intersection, local-level computers to perform large-scale 

network control. SPOT is a fully distributed, traffic-adaptive signal control system, 

which operates by performing a minimization of local factors such as delays, stops, 

excess capacities of links, stops by public or special vehicles, and pedestrian waiting 

times. With each repetition, all SPOT units exchange information on the traffic state 
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and preferential policies with their neighbouring SPOT units. This permits the 

application of look-ahead (each SPOT unit receives realistic arrival predictions from 

upstream intersections) and strong interaction (each controller considers, in the local 

optimization, the adverse effects that it could have on downstream intersections). Data 

is exchanged with neighbouring intersections every few seconds. 

As each SPOT-unit communicates with surrounding units, the system can be 

programmed to prioritize public transport and emergency vehicles by giving early 

warning of these vehicles or by allowing them to be quickly cleared through the 

intersection. SPOT can also prioritize traffic on the basis of adherence to timetables, 

number of passengers, etc. SPOT allows a staged system implementation over time 

starting with a few intersections. It can be implemented without a central computer for 

small systems of typically six intersections or less. However, for larger intersection 

networks, the UTOPIA central PC-based control system should be added. 

At the area level, the UTOPIA-module provides a mechanism to handle critical 

situations in the form of two actions that a signal controller may request of adjacent 

signal controllers. Thus, a controller may cope with congestion by requesting that a 

downstream signal increase throughput or that an upstream controller decrease 

demand. These requests are realized by respectively relaxing or tightening green time 

constraints . For the area level, UTOPIA, the model can:  

 Analyze area-wide traffic data and make predictions for main street flows over 

time 

 Apply its internal macroscopic model to entire area network and traffic counts 
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 Optimize the total travel time with constraints of average speed and saturation 

flows 

 SPOT has been used in several cities in Italy, The Netherlands, USA, Sweden, 

Norway, Finland, Denmark, and the UK.  

3.1.3f OPAC 

The OPAC (Optimized Policies for Adaptive Control) algorithm [86-88] has gone 

through several development cycles ranging from OPAC I through OPAC-VFC. 

OPAC maintains the specified phase order. For uncongested networks, OPAC uses a 

local level of control at the intersection to determine the phase on-line, and a network 

level of control for synchronization, which is provided either by fixed-time plans 

(obtained off-line), or a “virtual fixed cycle”. A virtual fixed cycle is a cycle that 

although fixed between intersections (to enable synchronization), is determined on-

line (hence virtual). Predictions are based on detectors located approximately 10-15 

seconds upstream. After the initial 10-15 seconds, a model predicts traffic patterns 

(typically 60 seconds). 

OPAC breaks the signal optimization problem into sub problems using dynamic 

programming, an approach that leads to a more efficient computation. At the same 

time it determines a virtual cycle. These are implemented for a time-step (roll period) 

of about 2-5 seconds. The length of the virtual cycle is varied according to the needs 

of either the critical intersection or the majority of intersections. The virtual cycle is 

allowed to change by typically one second per cycle. Within this limitation, OPAC 

provides local coordination by considering flows into and out of an intersection in 

selecting its offset and phase lengths. The congestion control process in OPAC 
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generally attempts to maximize throughput, by selecting the phase that will allow the 

maximum number of vehicles to pass the intersection. OPAC does this by considering 

saturation flows and space available to store vehicles on each link. The first step of 

congestion control involves determining the next phase given that there is not a 

critical link that is on the verge of or currently experiencing spill-back. On the basis of 

these calculations, the algorithm determines whether it is necessary to revisit the 

timings at neighbouring intersections in light of throughput constraints that their 

physical queues impose on each other‟s effective service rates.  

OPAC-I assumes an infinite horizon and uses dynamic programming to optimize the 

performance index. OPAC-I cannot be implemented on-line in real-time because of 

the extensive time required to compute the optimal settings. OPAC II used an optimal 

sequential constraint search (OSCO) to calculate the total delay for all possible phase 

switching options. The optimal solution was determined as the phase switching that 

produces the lowest total delay values, and OPAC-II was found to derive solutions 

with performance indexes within 10% of those generated with OPAC-I. Although 

OPAC-II was faster than OPAC-I, it still suffered from the need for vehicle arrival 

information for the entire planning stage, which was 50-100 seconds in length. 

OPAC-III was the first version of OPAC that featured the rolling horizon approach 

and was developed at first for a simple two-phase intersection, but later extended to 

an eight-phase intersection, which allowed phase skipping. OPACVFC added the 

algorithm used to coordinate adjacent signals. 
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3.1.3g PRODYN 

PRODYN (Programmation Dynamique) [89, 90] is a real-time traffic control 

algorithm, which has been developed by the Centre d‟Etudes et de Recherches de 

Toulouse (CERT), France. PRODYN evolves from two stages of development: two-

level hierarchical control (PRODYN-H) and then decentralized control (PRODYN-

D). The former offers the best result; however, its applicability is restricted due to the 

complex computations involved and the network size (limited to about 10 

intersections). The latter, on the other hand, alleviates those limitations. Two 

approaches have been studied for PRODYN-D: no exchange (PRODYN-D1) versus 

exchange (PRODYN-D2) of information between the intersections. At the 

intersection level, the optimization model‟s aim is to minimize delay by using 

improved forward dynamic programming with constraints on maximum and 

minimum greens. 

At the network level, the network coordination optimization is performed by a 

decentralized control structure. The procedure includes: 

 Simulating a specific intersection output for each time step as soon as the 

intersection controller finishes its optimization over the time horizon 

 Sending the simulation output to each downstream intersection controller 

 Using the output message from upstream controllers at the next time step to 

forecast arrivals. 

3.1.3h RHODES 

RHODES (Real-Time, Hierarchical, Optimized, Distributed, and Effective System) 

[91] is a hierarchical control system that uses predictive optimization, allowing 
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intersection and network levels of control. RHODES includes a main controller, a 

platoon simulator (APRES-NET [92]), a section optimizer (REALBAND [93]), an 

individual vehicle simulator (PREDICT [92]), and a local optimizer (COP [94]). 

RHODES requires upstream detectors for each approach to the intersections in the 

network. RHODES also can use stop-line detectors to calibrate saturation flow rates 

and to improve traffic queue estimates. RHODES is entirely based on dynamic 

programming, and it formulates a strategy that makes phase switching decisions based 

on vehicle arrival data. The design of RHODES is based on dividing the traffic 

control problem into sub problems by use of a network hierarchy. The sub problems 

include the network-loading problem, the network flow control problem, and the 

intersection control problem.  

At the top of the hierarchy is the network-loading problem. At this level, link loads 

and the prediction of the trends in the change of loads from real-time data are 

estimated. RHODES uses this information pro-actively to predict future platoon sizes 

near the boundaries of the system. The middle level consists of the network flow 

problem and involves the selection of signal timing to optimize the overall flow of 

vehicles in the network. The decisions are made in this level every 200-300 seconds. 

A platoon prediction logic model called REALBAND is used at this level. Network 

optimization is also established at this level and its results are used as constraints for 

the decision made in the next level. The lowest level of the control strategy is the one 

at the intersection and it is responsible for making the final second-by-second 

decisions regarding traffic signal operation. This level uses two sublevels of logic.  

The first is the Link Flow Prediction Logic which uses data from detectors on the 

approach of each upstream intersection, together with information on the traffic state 
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and planned phase timings for the upstream intersection, to estimate vehicle arrivals at 

the intersection being optimized. The other level is the Controlled Optimization of 

Phases (COP), which uses the information from the network flow problem, in addition 

to the results from the link prediction logic, to determine whether the current phase 

should be extended or terminated. 

3.1.3i Hierarchical multi-agent system (HMS) 

The hierarchical multi-agent signal control model is designed in an hierarchical 

manner to provide different levels of control for the traffic network. The architecture 

consists of three layers  with each layer having a different internal structure and 

composition. The agent in the lowest layer consists of intersection controller agents 

(ICA) that control individual, pre-assigned intersections in the traffic network. The 

middle layer consists of zone controller agents (ZCA) that controls several pre 

assigned ICAs. The highest level consists of one regional controller agent (RCA) 

controls all the ZCAs. 
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Figure 3.1. Architecture of hierarchical multi agent system 

The three-layered multi-agent architecture [45] is shown in Figure 3.1. The problem 

of real-time network-wide signal control is divided into several sub-problems of 

different scales and magnitude. Individual agents from each layer of the multi-agent 

architecture are tasked to manage the respective sub-problems according to their 

position in the hierarchy. Each agent is a concurrent logical process capable of 

querying, directly interacting with the environment (e.g., sensors and agents in the 

lower hierarchy within its control) and making decisions autonomously. The agents in 

each layer decide the appropriate local policies that indicates the green signal timings 

necessary for each phase and levels of cooperation- indicated by cooperative factor 

that they deem appropriate based on the conditions of the intersections, or set of 
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intersections under their jurisdictions. Besides having higher-level traffic network 

parameters as inputs to their decision-making process, the higher-level agents obtain 

the cooperative factors recommended by their lower level agents as inputs too 

(Fig.3.1. shows that the intersection cooperative factors recommended by the lower 

level ICAs are part of the inputs of a ZCA).  

Based on these inputs, the decision-making process of the higher level agents may 

present a set of higher-level policies that are different from those policies 

recommended by their lower level agents or they may choose to follow the lower 

level policies. The policy repository is a dynamic database for storing all the policies 

recommended by the controller agents of all levels at the end of each evaluation 

period. The end of an evaluation period is indicated when all the intersections have 

finished their current signal phases. After each period, the previously recommended 

policies are updated with a new set of policies. The policy repository then performs 

arbitration and conflict resolution for the entire set of recommended polices. 

The arbitration process gives priority to higher-level policies. However, since one of 

the outputs, namely the cooperative factor, of the lower-level agents is a part of the 

inputs to higher-level agents (as mentioned earlier), the lower-level decisions affect 

directly the outcomes of the higher-level agent‟s decision-making process. As such, 

lower-level policies are not completely neglected by the arbitration process. The 

decided final policies for each of the agents in different hierarchy is stored in the 

policy interpreter for future use. The function of the policy interpreter is to translate 

the chosen set of policies into actions, which may result in adjustment of the various 

signal-timing parameters such as phase-length, cycle-time, direction of offset 

coordination, for the affected intersections.  
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Figure 3.2. Internal neuro-fuzzy architecture of the decision module in zonal control 

agent  

Each Intersection Control Agent (ICA) takes in the lane-specific occupancy, flow and 

rate of change of flow of the different intersection approaches as input. The 

occupancy, flow and rate of change of flow are computed from the data collected by 

loop detectors placed at the stop line of the intersection in the lanes with right of way 

during the specific phase in progress. Based on the collected data, green time for a 

specific phase and the intersection cooperation factor is computed. In order to 

quantify the traffic conditions of the intersections in a zone, neuro-fuzzy decision 

module of the ZCA takes in each intersection‟s representative occupancy, flow and 

rate of change of flow as its inputs is shown in Figure 3.2.  
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The fuzzy sets of occupancy, flow and rate of change of traffic volume have three 

linguistic labels, namely high, medium and low to describe the respective degrees of 

membership (Gaussian membership function). Besides these inputs, the ZCA also 

takes in the intersection cooperative factors recommended by the respective ICAs 

under its control (to reflect the level of cooperation each ICA sees fit for its own 

intersection, all of which are within the zone controlled by the ZCA). The antecedents 

of the fuzzy rules are defined by properly linking the nodes in the second layer to 

those in the third layer. The third layer fires each rule based on the T-norm fuzzy 

operation, implemented using the minimum operator. Nodes in the third layer define 

the degree of current traffic loading of the zone (i.e., high, medium and low loads) 

and the level of cooperation needed for the intersections within the zone (i.e., high, 

medium and low degrees of cooperation). The nodes in the fourth layer represent the 

various consequents that correspond to the fuzzy rules in the decision module. 

For the signal policy inference engine, the consequents consist of the various signal 

improvement/control policies. For the cooperation factor inference engine, the 

consequents consist of the various possible levels of cooperation. Since some of the 

fuzzy rules share the same consequent, the S-norm fuzzy operation is used to integrate 

and reduce the number of rules. For this research, the S-norm fuzzy operation is 

implemented using the MAX operator.  

Finally, the fifth layer performs the defuzzification process in order to obtain crisp 

values correspond to the chosen signal policy and cooperative factor (i.e., outputs of 

the neuro-fuzzy decision module for each agent). The architecture of the decision 

module for the ICA and RCA is largely similar to the one described for the ZCA. The 

main difference lies in the inputs and the hierarchical nature of the overall multi-agent 
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architecture. The RCA can overrule the decisions of all agents in the lower level of 

hierarchy than itself. 

The flow of control is from top to down and no sideways communication between 

agents of same hierarchy exists. This effectively reduces the amount of information to 

be communicated between agents. This reduces the effects of information corruption, 

noise addition or the loss of data arising due to communication link failure. However, 

data mining requirements are extremely inflated. It is not an easy task to identify the 

representative input data required by agents in higher level of hierarchy. The 

complexity further increases with growing network size. 

3.2 SUMMARY 

This chapter presented a comprehensive review of the existing traffic signal control 

techniques and highlighted the advantages and disadvantages of the various traffic-

adaptive control strategies. The review clearly indicates the lack of a distributed 

intelligent traffic signal control capable of optimizing the green time minimizing the 

total travel time delay experienced by the vehicles inside the road network. The 

insights that are derived from the previous research works will be useful in designing 

a multi-agent based distributed traffic signal control with effective communication 

and learning capabilities.  

 

 

 



79 
 

CHAPTER 4 

DESIGN OF PROPOSED MULTI-AGENT 

ARCHITECTURE 

In this chapter, the proposed multi-agent architecture is presented in detail.  Based on 

the detailed study of the advantages and disadvantages of the various agent 

architecture presented in Chapter 2, a connected distributed architecture with local 

communication through message passing between agents is proposed. For proper 

functioning of any multi-agent system, it must be designed in  a modular fashion with 

each module performing a specific task. The basic functional aspects that need to be 

present in a multi-agent architecture are identified, and the required interactions with 

different modules within the agent are explained in detail. 

4.1 PROPOSED AGENT ARCHITECTURE 

The proposed multi-agent traffic signal control system is a distributed system with 

autonomous agents capable of interacting with each other and deciding the optimal 

action without an external supervisory system. The overall structure of the proposed 

multi-agent architecture is shown in Figure 4.1. It consists of nine distributed agents 

communicating with their immediate neighbours to perform the desired action. 

 The proposed agent system does not have a specific overall agent management 

structure except for the directory service as all the agents have homogenous structure 

and equal decision making capabilities.  The directory service stores each agent‟s 

attributes, behaviours, information pertaining to the neighbouring intersection, 
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number of links, number of lanes etc. The structure of each individual agent is shown 

in  Figure 4.2. In order to control the traffic flow at urban road network, each 

intersection is controlled by an autonomous agent. 

 Each intersection agent is composed of six modules or functional blocks operating 

concurrently. They are as follows: 

 Data Collection module 

 Communication module 

 Decision module 

 Knowledge base and data repository module 

 Action implementation module 

 Backup module 

 

Figure 4.1. Overall structure of the proposed multi agent architecture 
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Figure 4.2. Internal structure of the proposed multi agent system 

Each module performs a specific task and stores the output in a buffered memory 

thereby creating a concurrent or parallel environment. The architecture and the 

decision system of the individual modules can vary in accordance to the requirements 

of the application. Functionality of each of  the module is described in detail in the 

following sections. 
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4.2 DATA COLLECTION MODULE 

Each agent receives the data required for its functioning from the loop induction 

detectors placed near the stop line of the intersection. A snapshot of the intersection 

showing the induction loop detector is shown in Figure 4.3. 

 

Figure 4.3 Induction loop detectors at intersection 

 

Figure 4.4. Working of Induction loop detectors 

The induction loop detector placed on road detects the presence of a vehicle using the 

change in the magnetic field caused by the metallic parts of the vehicle. Using this 

information, the road side electronic devices can compute the number of vehicles that 

have crossed the intersection, the amount of time a vehicle occupies the link etc. Data 
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collection module interacts with these electronic devices to gather the traffic 

information. The traffic data used by the agent system designed are flow, queue, rate 

of change of flow, and the ratio of green time at neighbouring intersections to 

maximum permissible green time. Not all of the input data is used in the designed 

agent system and the choice of input depends on the decision system employed.   

The flow rate of vehicles in a link is calculated based on the difference between the 

upstream arrival flow rate and downstream departure flow rate for each lane in the 

link. Upstream refers to the intersection that releases the vehicles and downstream is 

the intersection that receives the vehicles. The data is sampled at the frequency of five 

to ten seconds.  

Increasing the sampling frequency would enable collection of large amount of data 

that can be used to construct a realistic traffic arrival distribution and increase the 

possibility of noise compensation by averaging. Mathematically, the flow value 

calculated can be expressed as 

     
       

  
    

      
   

 
   

  
   

   

     
  

    
                                   (4.1) 

where   is the current green time for the phase, n is the number of links having right 

of way during the phase,   is the number of lanes in the link,    is the sampling 

period and,   
      

     are the upstream and downstream vehicle flow rate 

respectively. 

The queue information is calculated as the number of vehicles waiting in lanes which 

had the right of way during the phase that just ended. The queue value gives only the 



84 
 

remaining vehicles count and does not take into consideration the vehicle count added 

after the end of a phase. As it is essential to calculate the green time based on the 

maximum congested lane in a link, the maximum value of queue formed is used as the 

input data. Equation (4.2) shows the mathematical expression for obtaining the 

maximum queue from the links. 

          
      

         
         

      
         

              
   

   
         

                                        (4.2) 

where   is the maximum queue value at an intersection,    
      

        
    

 represents 

the upstream, downstream traffic count and the previous stored queue for the specific 

lane in a link respectively. 

It is assumed that the arrival rate of vehicles can be approximated to a uniform 

distribution, as the average value is calculated from data sampled at high frequency, 

and can adequately compensate queue increase at the end of each phase.  

The rate of change of flow is the other input that is used in few of the proposed agent 

architecture. Rate of change is computed as the difference between the average flow 

value computed at decision time instance   for a specific link and lane to the flow 

used during decision time     . 

                              
   

 
                           (4.3) 

Where       is the rate of change in flow at decision instance  ,   is the number of 

links,    is the number of lanes connected to each link,       and          are the 
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flow values computed at decision time instance   and    . The rate of change in 

flow gives an indication of the variation in vehicle count value and helps in 

differentiating a saturated network from unsaturated one. The sign of the rate of 

change in flow also gives an indication whether the vehicle count has incremented or 

decremented during the evaluation period from the previous one.  

The final input used is the information communicated by the neighbouring 

intersection. Its value is computed as ratio of the green time for a phase in progress at 

the neighbouring intersection to the maximum permissible green time. Usually the 

maximum permissible green time is fixed at forty seconds as given in highway 

capacity manual(HCM). 

4.3 COMMUNICATION MODULE 

The communication module is responsible for multiple functions. The communication 

module interacts with the agent directory service to collect the information regarding 

the agents that are connected to the current agent through incoming and outgoing 

links and their corresponding configuration.  The communication module receives the 

information of neighbour status data or the reward value computed by the 

neighbouring intersection. The communication module follows some of the guidelines 

of FIPA protocol[60] (Foundation for Intelligent Physical Agents). The 

communication is performed as a broadcast. Each agent checks for the agent ID in the 

transmitted information and if it matches the ID of the connected agents (Queried 

from directory service), the information is stored in a buffer with a time stamp for use 

at a later time. 
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The communication module also communicates the state of the traffic of the 

intersection as neighbourhood status data or reward value to the adjacent agents as a 

broadcast.  

The module is responsible for coordination and cooperation between the agents. In 

absence of communication between agents, the limited sensing capability of the 

sensors associated with each agent provides only a partial view of the environment. 

This can cause selection of actions that can produce higher delays in long run because 

of the correlated agent environment. The communication module serves to enhance 

the view of each agent by sharing information with other agents to improve the action 

policy selected to achieve global optimal solution. 

The communication module works in an asynchronous manner therefore necessitating 

the use of buffer memory to store the data that can be used for synchronization of 

information in the later stages in the decision module.  A typical communication 

between the agents is shown in Figure 4.6. The dotted arrows indicate the data 

received by the agent from the agents connected to the incoming links and the solid 

arrows indicate data transmitted to the other agents. Apart from the above mentioned 

functionalities, the communication module also interacts with the directory service to 

receive the information that are essential for computing the green time. This is helpful 

in informing the agents any variations required in the signal plans, phases or reduction 

in the capacity of infrastructure.   
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Figure 4.5. FIPA Query protocol[60] 
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Figure 4.6. Typical communication flow between agents at traffic intersection 

4.4 DECISION MODULE 

The decision module is responsible for computing the optimal value of green time for 

each phase of signal at the intersection. The module uses the information received 

from the data collection module and the communication module to perform its action. 

The decision module could be designed using type-2 fuzzy or neuro-type-2 fuzzy 

system. The details of the proposed decision architecture are provided in Chapter 5. 

4.5 KNOWLEDGE BASE AND DATA REPOSITORY MODULE 

The knowledge base and data repository module is used to store the rule base and the 

data collected from the road networks to design fuzzy decision system and to perform 

online training of the designed decision system. The Knowledge base update is 
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performed if there is any variation in the rule base or at an interval of 30 minutes, 

which is fixed to gather the data. 

The knowledge update is performed in an asynchronous manner. Irrespective of 

whether the decision module is currently executing the decisions chosen or 

performing the computation operation, knowledge update is performed at pre-

specified intervals. The knowledge base is also responsible for storing the signal plan 

calculated using the Webster‟s formula based on the historical traffic flow pattern. in 

case of failure to receive data from the road networks, these signal plans are used by 

the backup module. 

4.6 ACTION IMPLEMENTATION MODULE 

The action implementation module adjusts the green time of the phase in each cycle 

of a traffic signal control at an intersection based on the optimized green time 

computed by the decision making module. The action implementation module ensures 

the completion of all phases in a cycle before adjusting the green time so that vehicles 

in lanes that do not have right of way during a specific phase do not experience delay 

because of extension of the green time. In case of failure of the decision module due 

to certain reasons, the module communicates with the backup module to fetch the 

signal plan according to the timing of the day. In short, the action implementation 

module serves as a main communication interface between the traffic signal and the 

agent. It also allows for a central control to override the signal timings in case of 

emergency situations allowing manual control of the signals. 
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4.7 BACKUP MODULE 

The backup module sets the signal control operation in pre-timed mode in the event of 

input failure for ten consecutive cycles or stationary action policy for twenty 

consecutive cycles.  The backup module queries the knowledge base and data 

repository module for the appropriate signal plans based on the timing of the day. The 

signal plans stored in the knowledge base are computed based on Webster‟s formula.  

Procedure to obtain the lost time and calculation of split timing used in the Webster‟s 

signal time calculation is detailed in [29].  

 The backup system returns control to the agent once changes in the decision value are 

detected. This ensures smooth flow of traffic to the maximum possible extent except 

during network saturation or full capacity flow period, without affecting the network. 

4.8 SUMMARY 

The chapter covered the basic building blocks used to construct the proposed multi-

agent architecture. It also provided a clear overview of the functionality of the 

individual blocks, the flow of control and data communication between modules  and 

the necessity of  modules to cooperate with  other functional blocks to control traffic 

in an urban road network. 
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CHAPTER 5 

DESIGN OF HYBRID INTELLIGENT DECISION 

SYSTEMS 

In this chapter, details of the proposed decision systems design, architecture and their 

construction are discussed in detail. This chapter also presents an overview of type-2 

fuzzy sets, symbiotic evolutionary learning techniques used in this thesis, their 

advantages and its application to urban traffic signal timing optimization problem.   

5.1. OVERVIEW OF TYPE-2 FUZZY SETS 

Fuzzy set theory or fuzzy logic was first proposed by Zadeh in early 1975 [95-97]. It 

was an attempt to represent the uncertainties and vagueness associated with the 

linguistic expressions both quantitatively and qualitatively. The transition from crisp 

set theory to fuzzy theory was to accommodate and exploit the generality of fuzzy 

theory and its ability to replicate the real-world scenario to a large extent.  When there 

is no fuzziness involved in the definition of a particular class or cluster of objects, it 

becomes a simple two-valued characteristic function.  The input or object is assigned 

a crisp value between zero and one if it belongs to the class and zero otherwise. This 

is not true in real-world applications. There is a certain level of abstraction and 

fuzziness associated with the membership values assigned to each input. Fuzzy logic 

is able to provide the abstraction similar to human thinking and account for this 

fuzziness.  
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Figure 5.1. Block diagram of type-2 fuzzy sets 

The preliminary fuzzy systems or type-1 fuzzy systems developed were based on the 

assumption of the availability of a crisp value of membership grade for the entire 

universe of discourse of the input. In many applications, determining a crisp 

membership value is a difficult task as an input could be perceived differently by 

individuals. For example, a traffic flow value of 250veh/hr could be assigned a value 

of 0.7 under class low and the same could be assigned a value of 0.4 by another 

individual. In order to handle such uncertainties in the interpretation, type-2 fuzzy sets 

were introduced. Type-2 fuzzy sets are represented by type-2 membership values that 

are assigned a range of values rather than a crisp value. Based on the discussion, the 

type-2 fuzzy sets can be written mathematically as shown below. 

 (( , ), ( , ) | , [0,1]xA
A x u x u x X u J           (5.1) 

Where 0 ( , ) 1
A

x u  . This definition is particularly different from that of the type-1 

fuzzy sets and can be derived as an extension of type-1 fuzzy sets shown in (5.2).  

 , ( ) |
A

A x x x X                            (5.2) 
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Where 0 ( ) 1
A

x  . A type-2 fuzzy set has an additional dimension associated with 

its membership value ( )A x . In simple words, for a type-1 fuzzy logic, when x x , 

the fuzzy membership function ( )A x has a single crisp value whereas for a type-2 

fuzzy set, ( )A x  would provide multiple values between the lower and upper bounds. 

A diagrammatic representation of type-2 fuzzy membership function is shown in 

Figure 5.2 and 5.3. The membership grade u is a crisp value when 
x

J   
is represented 

in a three dimensional space and 
x

J  is the vertical slice of the membership function 

( , )
A

x u . The secondary membership function for the input x x can be written as in 

( 5.3). 

( , ) ( ) ( ) /

x

xA A

u J

x x u x f u u  



                  ( 5.3) 

Where ( )
x

f u is the amplitude of the secondary membership function and its value 

lies between [0,1] both included. This clearly indicates that there is a secondary value 

associated with ( )
x

f u for each primary grade.  

 

Figure 5.2. Type-1 Gaussian membership function 
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Figure 5.3. Type-2 fuzzy membership function with fixed mean and varying sigma 

values 

The main problem with type-2 fuzzy logic in its generalized form is the amount of 

computation required to convert from type-2 fuzzy  to type-1 fuzzy set before 

computing the crisp output value. The computational complexity is greatly reduced by 

using interval type-2 fuzzy sets[98],  a special form of type-2 sets with the secondary 

membership function value set to unity. This assumption helps in the use of type-2 

fuzzy sets for practical applications to a great extent. As all the input uncertainties are 

not known apriori, it is impossible to associate a proper secondary membership value 

to each input. Therefore the assumption of unity value for secondary membership 

grade while maintaining the property of type-2 fuzzy sets also reduces the 

computational requirements.  Mathematically, interval type-2 fuzzy sets can be 

written as shown in (5.2) by modifying the general expression of type-2 fuzzy sets in 

(5.1). 
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[0,1] [0,1]

1/( , ) 1/ /

x xx X u J x X u J

A x u u x
     

 
 
 
  

           (5.4) 

Where 
x

J is called the primary membership of x. The uncertainty about the fuzzy set 

is conveyed by the union all the primary memberships and is called as footprint of 

uncertainty [99].  

The FOU is bounded by the upper and the lower membership function and can be 

represented as given in (5.5) 

( ) [ ( ), ( )]
A A

x X

FOU A x x 
 

             (5.5) 

In the representation of the type-2 fuzzy sets, integration symbol is often used. This 

does not represent actual mathematical integration but represents continuous universe 

of discourse. For a discrete universe of discourse, summation symbol is used. Most of 

the real world applications, however,  have a continuous universe of discourse, and it 

is a general practise to use the integration symbol. 

The complexity as well as the uniqueness of type-2 fuzzy logic lies in the presence of 

FOU. The footprint of uncertainty is usually obtained by blurring the edges of the 

type-1 fuzzy membership function. It is possible to represent a type-2 fuzzy set using 

a large number of embedded type-1 fuzzy sets. The embedded fuzzy sets are formed 

such that at each input „x’, only a single value of primary membership grade between 

the upper and lower range is used to construct the embedded set.  

These embedded fuzzy sets increase computational requirements. Even if a 

computationally less expensive method like centroid or center of sets methods is used 

to obtain a crisp value, it incurs huge computational burden as it requires computing 
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centroid values of large number of embedded type-1 fuzzy sets to obtain an average 

value. Reduction in the computational requirement has been achieved by using 

different methods like iterative procedure [100], uncertainty bounds [101] method or 

using geometric properties [102] of the membership function. 

5.1.1. Union of fuzzy sets 

Based on the set theoretic operators available, the union operator for type-2 fuzzy can 

be obtained according to the application requirement. T-conorm operator is usually 

used for fuzzy logic. The advantages of using T-conorm operator is given in [103] . 

Usually a maximum function is used for t-conorm operation to obtain the union of 

fuzzy sets. The union of two fuzzy sets is as shown in (5.6) 

1 2

( ) ( ) ( ) /

x x

A z x x

u J w J

x f u g u v


 

              

                 ( ) ( )
A zx x        x X            (5.6) 

Where ...v u w    and  denotes the maximum t-conorm operator. The symbol * 

denotes minimum or product t-norm. The function of the union operator is to 

enumerate all the possible maximum values of the primary membership grades of the 

two sets and extract the minimum of the secondary membership grade.  

5.1.2. Intersection of fuzzy sets 

The set theoretic operator commonly used for performing the intersection operation is 

usually the product t-norm operator. The operation is performed as shown in (5.7).  
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1 2

( ) ( ) ( ) /

x x

A z x x

u J w J

x f u g u v


 

          

( ) ( )
A zx x          x X             (5.7) 

Where ...v u w   and   denotes the product t-norm operator. The meet or 

intersection operator effectively enumerates the minimum value of the primary and 

the secondary membership grades of all the fuzzy sets. 

5.1.3.  Complement of fuzzy sets 

The complement of fuzzy sets is got as the primary membership grade subtracted 

from unity. The representation of the complement operation is as shown in (5.8). 

( ) ( ) /(1 ) ( )
u

x

x AA

u J

x f u u x 


          x X     (5.8) 

Where denotes negation operator. 

5.1.4. Karnik Mendel [KM] algorithm for defuzzification 

For performing defuzzification and to obtain a crisp value as output, different 

methods like centre of sets, centroid, centre-of-sums and height type-reduction can be 

used. Defuzzification in type-2 fuzzy sets requires computing the average value of 

multiple number of centroid values computed for all the probable embedded fuzzy 

sets that can be drawn. This is computationally intensive and prevents the use of type-

2 fuzzy sets in real-world applications. To circumvent this limitation, Karnik and 

Mendel designed an iterative algorithm [100] that can obtain the crisp value in 

maximum of M iterations, where M is the maximum number of rules in the rule base. 
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This is achieved by computing the left and right end points. The end points refers to 

the point where the lower membership values shift to higher membership function 

values and vice versa.    

The KM algorithm for computing    is : 

1. Without any loss of generality, assume the pre-computed value of   
  are 

arranged in ascending order as shown   
    

    
      

 , where   is 

the number of rules 

2. Compute the    as       
   

  
      

  
     by initially setting the right end 

point firing strength as   
             for        and let      

    

3. Find             such that   
    

    
    

4. Compute       
   

  
      

  
     with   

     for     and   
     for 

    and let   
       

5. If   
      

  then go to Step 6 else stop and set   
       

6. Set   
  equal to   

   and return to Step 3. 

The same method is employed to compute the left-end point of the consequent. The 

defuzzified output of an IT2 fuzzy logic system can be calculated as the average of    

and    as shown in (5.9) 

           
       

                       (5.9) 

5.1.5. Geometric defuzzification 

Geometric type-2 fuzzy set can be defined as a collection of polygons in three 

dimensional space with the edges forming the triangle [104]. In geometric 
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defuzzification, the type-reducer and the defuzzifier are combined to form a single 

functional block, thereby reducing the computational requirements associated with the 

type-reducer, and to directly provide the crisp output from the type-2 fuzzy 

consequent sets. Centroid of the geometric type-2 fuzzy consequent can be calculated 

as the center of the geometric shape of the final consequent set obtained using the 

Bentley-Ottman plane sweep algorithm [105] after the calculation of firing levels of 

all the rules. The plane sweep can be performed by ordering the discretized values of 

the coordinate points in the consequent type-2 fuzzy set, and the corresponding 

centroid (5.10) can be calculated by finding the closed polygon formed by the edges 

of the ordered coordinates with the origin . 

  

 

1

1 1 1

0

1

1 1

0

3

n

i i i i i i

i

n

i i i i

i

x x x y x y

centroid

x y x y



  





 



 








   (5.10) 

 

Figure 5.4 shows a consequent type-2 fuzzy set, where the lower and upper 

coordinates are arranged in proper ascending and descending order. The two different 

shaded regions in figure 5.4 indicate the triangle formed by using two adjacent points 

on consequent and the origin to construct the final closed polygon. 

 
 

Figure 5.4.  Ordered coordinates geometric consequent set showing two of the closed 

polygons 
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5.2. APPROPRIATE SITUATIONS FOR APPLYING TYPE-2 FLS 

The most appropriate situations under which Type-2 FLS performs the best are 

highlighted in [106]. They can be summarized as follows: 

 Non-stationary noise associated with the sensor measurements that cannot 

be fully expressed mathematically. 

 A stochastic data generating mechanism that cannot be correctly 

approximated by mathematical distribution functions like Gaussian or 

Poisson distribution. 

 The knowledge base used to construct the rule base for the fuzzy logic 

system is mined from a series of if-then questionnaires put forward to 

experts.   

All these properties are existent in the urban vehicular traffic.  

 The induction loop detectors used are easily affected by the prevalent external 

environmental conditions. This causes loss of data, improper detection of 

vehicles, improper classification of the length of the vehicles thereby leading 

to a calculation that predicts higher vehicle count than the actual value. This 

can be assumed as random noise added to the input data and varies according 

to the conditions of  sensor and environment.   

 The traffic release pattern is highly stochastic in nature. The exact number of 

vehicles that would enter a section of the network is not easily predictable as it 

depends to a great extent on the drivers‟ behaviour and their need for travel. 

Additionally, the presence of traffic signals produces a pseudo random effect. 
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This is mainly due to the formation of platoon of vehicles at the intersection 

because of the traffic signal at intersections. 

 Traffic at an intersection can be easily defined using linguistic rules. It is much 

easier to define the control sequence as a set of rules. The rules are usually 

constructed using expert opinion. These rules are prone to error with increase 

in the number of links, lanes and phases at an intersection. 

All of the above mentioned properties of the traffic system makes it an ideal candidate 

for type-2 fuzzy system based control. 

5.3. CLASSIFICATION OF THE PROPOSED DECISION SYSTEMS 

 Four different types of decision systems are proposed in this work. The first two 

decision systems (T2DR and GFMAS) are designed based on heuristics and deductive 

reasoning. Third decision system (SET2) design is based on a stochastic symbiotic 

evolutionary learning approach to adapt the parameters of the type-2 fuzzy system. 

This decision system uses an online batch learning approach. The fourth decision 

system designed is a Q-learning based neuro-type2 fuzzy system (QLT2). It is an 

online adaptive system where the parameters of the neuro-fuzzy system are adapted 

using back propagation technique using error value computed with reinforcement Q-

learning technique. 

5.4. TYPE-2 FUZZY DEDUCTIVE REASONING DECISION SYSTEM 

The first heuristics based type-2 fuzzy decision system designed is T2DR (Type-2 

fuzzy Deductive reasoning) system. The block diagram of the decision system is 
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shown in Figure 5.5 and details of the designed decision system are described in the 

following sections. 

5.4.1. Traffic data inputs and fuzzy rule base 

T2DR decision system uses the flow, queue and communicated neighbour status data 

to compute the green time. The data collection module provides the necessary data to 

the decision system. First step performed inside the decision module is the 

fuzzification of crisp inputs received from the data collection module. The queue and 

flow data are clustered into three regions and the universe of discourse of the inputs 

are decided using the hotspot and saturation flow rate parameters. Hotspot refers to the 

condition of the link that experiences a queue length greater than threshold number of 

vehicles beyond which link can be classified as in high congestion state. A vehicle 

count of thirteen was used as a threshold value to classify the link as hotspot [62]. 

Saturation flow rate refers to the equivalent hourly rate at which vehicles can traverse 

an intersection under prevailing conditions, assuming a constant green indication at all 

time and no loss time, expressed in vehicles per hour or vehicles per hour per lane. A 

saturation flow rate of 2400 vehicle per hour was used to normalize the flow data.  



103 
 

Type-2 fuzzy 

decision system

Type-2 fuzzy 

LOC 

Level of 

cooperation / 

Weight for flow

Optimized green 

time

Action 

Implementation 

module

Input from 

neighbour 

nodes

Queue

Flow

Max 

Aggregation 

operator

Communication 

module

From 

adjacent 

agents

Decision System

 

Figure 5.5. Block diagram of T2DR multi-agent weighted input decision system 

Membership grade for each of the clustered input was assigned using a Gaussian 

function with overlapping regions. The mean values of the Gaussian functions 

represent the centre of the cluster formed and the values were chosen to be closer to 

the values used in [62]. The upper and lower boundary standard deviation values were 

calculated based on the flow rates and queues experienced at different time periods 

and same period of the day in a week. The fuzzified antecedents and consequents of 

the fuzzy rules are as shown in Table 5.1 and 5.2.  

The consequents were designed as type-2 fuzzy sets to account for the uncertainties 

associated with scaling factor and the signal timings. In this work, type-2 membership 

functions were developed based on heuristics and type-1 fuzzy membership functions 

used previously in [45]. The type-1 fuzzy membership function in [44] was used as 

the base and blurred to create lower and upper membership grade. The details of 
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antecedent and consequent membership functions used are shown in Figure 5.6. The 

maximum green time allocated for a phase is fixed at 60 seconds even though the 

recommended value is 40 seconds to provide more degree of freedom for the signal 

control and  a minimum green time of 10 seconds to avoid short phase, switching loss 

and increased travel time delay. 
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Figure 5.6. Antecedent and consequent fuzzy membership functions 
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Selection of appropriate rules and mapping of the antecedents to consequents is an 

important objective. In general practice, the rules are created by trial and error based 

on expert knowledge. Type-2 fuzzy system produces better results than type-1 fuzzy 

system under these conditions [106]. The structure of the developed rule base is as 

shown 

 Level of cooperation decision fuzzy system - If {flow is high} and 

{Neighbor status is low} then {Level of cooperation is low} 

 Green time decision fuzzy system - If {Queue is low} and {flow is high} 

then {traffic is low} 

Table 5.1. Mapping of flow and Neighbour state inputs to consequent weighting 

factor output 

 
  flow 

  
 

low Medium High 

N
ei

gh
b

o
u

r 
st

at
e 

sparse low low low 

low low low low 

Medium low medium medium 

High medium high high 
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Table 5.2. Mapping of flow and queue input to consequent green time output 

 
  Flow 

  
 

low Medium High 

Q
u

eu
e 

low sparse low low 

Medium high medium medium 

High high high high 

     

Table 5.1 and 5.2 show the rule base for both the belief or level of cooperation and 

the fuzzy decision module. The initial rule base was designed based on the 

understanding of [107] in creating the rule base from data. The rule base was fine-

tuned and validated using a small section of the network with six intersections. The 

initial origin-destination matrix or the traffic demand was modified from the original 

matrix  created from actual data to avoid saturation of the network as suggested in 

[108]. The rules were initially modelled for fuzzy decision module without any 

communication between the agents. The validation of the rule base was performed by 

comparing the total mean delay experienced by a vehicle inside a network to HMS 

traffic signal controller. A detailed explanation of Hierarchical Multi-agent System 

(HMS) was provided in chapter 3 . The rule base with the smallest travel time delay in 

comparison to HMS was used in this work. The same procedure was repeated for the 

agent system with communication capabilities to develop the belief model which 

decides the level of cooperation. The initial rule base was developed based on 

intuition and basic understanding of the relationship between traffic flow and queue. 
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5.4.2. Inference Engine 

Inference is the key component of a fuzzy system. The antecedents membership 

functions are used to calculate the firing level for each rule in the rule base and is 

applied to the consequent fuzzy sets. The outputs from the belief and fuzzy decision 

system for the l-th fuzzy rule can be  written as in (5.11) and (5.13). 

                  
                      

    

                     
    

             (5.11) 

 

                                                       (5.12) 

The weight parameter for the flow input was calculated based on the instantaneous 

flow value and the communicated neighbour status data. Max function was used to 

aggregate the communicated neighbour status data to enable coordination with 

respect to most congested neighbour. The computed weight parameter calculated is 

inversely proportional to the level of cooperation among the agents. A large weight 

value causes the flow input to the decision making fuzzy system of the inference 

engine to have a  higher membership value as shown in (5.12). This makes the output 

of the fuzzy system to be influenced by the queue input and less dependent on 

neighbouring agents. 

The flow input was used for deciding the level of cooperation, as it is an averaged 

value giving the overall traffic situation of the neighbours and calculated from 

upstream, downstream and queue spill back inputs. The instantaneous value of queue 

was determined using „max‟ function as they indicate current traffic condition at an 
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intersection and ensure the green time calculated is with respect to maximum 

congested lane. 

                  
                    

    

                        
    

                     ( 5.13) 

Where         ,          are the outputs of the fuzzy systems,     
   ,     

    are the 

type-2 membership functions for the antecedent inputs for the l-th rule. 

                 ,          ,         are the type-2 fuzzy membership functions 

of the inputs. Since the interval type-2 fuzzy system is used for determining the 

optimized green time, the firing level obtained will also be expressed as an interval 

set: 

               
 
          

 
                       (5.14) 

The lower and the upper bounds of the level of cooperation deciding type-2 fuzzy 

system of the inference engine can be written as in (5.15) and (5.16) respectively. 

          
 

               
                    

       
 

     

 

    
       (5.15) 

 
 
        

 

    
 
       

  
                     

       
 

     

 

    
     (5.16) 

In a similar fashion, the lower and upper bounds of the decision making fuzzy 

system can be written as in (5.17) and (5.18): 

          
 

               
                     

       
 

      

 

    
       (5.17) 
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     (5.18) 

Output from the fuzzy system for all the rules can be aggregated together as shown 

in (5.19) and (5.20) 

                
 
                     (5.19) 

                
 
                      (5.20) 

Where „m‟ refers to the number of rules in the decision making type-2 fuzzy system. 

Karnik-Mendel algorithm was used to convert the type-2 fuzzy outputs  into type-1 

fuzzy output. The crisp output is calculated as average value of the right and left end 

points calculated using the equations given in (5.21) and (5.22) respectively.  

    
    

   
   

   

   
  

   

                (5.21) 

    
    

   
   

   

   
  

   

                 (5.22) 

   
     

 
                                          (5.23) 

The main objective of the firing level is to minimize the lower bound and maximize 

the upper bound. As the number of rules were restricted to a fixed value, the number 

of iterations required to compute the left and right end points is bound within the 

fixed value. 

The final green value output selected is applied to the traffic signal through action 

implementation module. The action implementation module has an additional task of 

checking for the cycle time and adjusting the values proportionally for each phase, as 

maximum cycle length allowed is restricted to 120 seconds. 
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5.5. GEOMETRIC FUZZY MULTI-AGENT SYSTEM 

The computational complexity associated with the T2DR (Type-2 fuzzy deductive 

reasoning) decision system and also the difficulty in computing the associated weight 

for the input necessitates the development of lesser complex system with internal 

belief model and trapezoidal membership function for ease of implementing a lesser 

complex defuzzification process developed based on the geometric properties. It was 

also found that not all the inputs and output need to be of type-2 fuzzy set. To satisfy 

these requirements a geometric type-2 fuzzy decision process was developed and 

explained in detail in the following sections. 

 

Figure 5.7. GFMAS agent architecture 

5.5.1. Input Fuzzifier 

The averaged values of flow and queue data collected from the road network and 

communicated data is passed on to the geometric type-2 inference system for 
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calculating the green time required for the phase during the next cycle period.  

Geometric inference system has the same functional blocks as those of a type-2 fuzzy 

system, except the type-reducer and defuzzifier are merged into a single block called 

geometric defuzzifier as shown in Figure 5.8. The initial step in the inference system 

is the fuzzification of the inputs, in which a measure of possibility is assigned to each 

input. Since the fuzzy set used was an interval type-2 fuzzy set, the inputs were 

assigned  upper and lower membership grades or measure of possibility based on their 

membership functions, and the secondary membership grade associated with each 

primary membership grade assigned a value of unity. The union of all the membership 

grades between the upper and lower bounds would give the foot print of uncertainty 

of the input in the classified region. The membership functions were designed in 

trapezoidal shape and divided into three regions.  

The lower and upper bounds in each region were decided based on the maximum and 

minimum flow rate experienced at an intersection during the specified time period of 

weekdays thereby, each input is associated with a range of membership grade rather 

than a crisp point, thus retaining the fuzziness.  In a similar manner, the queue count 

was designed as Type-2 fuzzy set, and each input was assigned a boundary 

membership grade. The final input used was the data received from the 

communication module which is a Type-1 fuzzy set.  The fuzzified inputs are shown 

in Figure 5.9. 
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Figure 5.8. Block diagram of geometric type-2 fuzzy system 

The communication module calculates the percentage of green time allocated to a 

phase by the signal with respect to the maximum permissible green time. Green time 

can serve as a direct indication of the traffic state at an intersection if the value is 

calculated dynamically based on the traffic data and the traffic flowing in the 

outgoing links. However, the relationship becomes highly non-linear due to the 

influence of traffic in the incoming links and platoon formation. The level of 

uncertainty associated with green timing in a phase can be easily handled by using 

type-1 fuzzy sets itself as the only source of uncertainty is the communication noise.  
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Figure 5.9. Fuzzified antecedents and consequents in a GFMAS 

The green timing calculated solely based on the local traffic data would cause 

increased congestion levels in the outgoing links. This can cause already congested 

neighbouring intersections to experience even higher inflow of vehicles, and 

extension of queue in the link beyond the incoming intersection, resulting in 

deadlocks. Therefore coordination based on communicated congestion data becomes 

essential during the periods of heavy and medium traffic flow. Reduced value of 

green time is allocated to a specific phase if the intersection connected to the outgoing 
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link is already congested. This prevents queue spill back and deadlock formation. This 

coordination is achieved based on the rule base information and highly congested 

neighbour communicated data. 

 Since the communicated congestion data is similar to the consequent green time 

except for their representation as percentage, both have a similar classification. The 

membership functions are designed by dividing into three equal regions with the 

overlap calculated based on Webster‟s equation. As the coordination is with respect to 

the maximally congested neighbour, maximum value of the communicated congestion 

data from the neighbouring intersections is used as input. The communication module 

in short performs the functions of data reception, transmission of congestion status to 

neighbours and data mining operation.  

5.5.2. Inference engine 

Inference engine is the core of a multi-agent system. The inputs and outputs to the 

type-2 fuzzy inference engine are shown in Figure 5.9. The inference engine 

calculates the lower and upper threshold of firing levels for each rule in the rule base. 

A total of twenty seven rules were created based on the three inputs as shown in 

Figure 5.10. When the communicated congestion data indicates low traffic congestion 

in the neighbouring intersections, greedy signal policy was used to calculate the green 

time with minimal cooperation. For adjacent intersections with medium and high 

traffic congestion levels, the signal policy was suitably modified to produce smaller 

duration of green time than with greedy signal policy. This ensures smaller inflow of 

vehicles into the already congested intersection, enabling the intersection to clear its 

traffic faster. 
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The structure of the rule base is as shown below.  

“If Flow input is in Low region and Queue input is in High region and 

Communicated data is in Low region then Green time is in High region” 

 

Figure 5.10. Rule base for the GFMAS signal control 

The „AND‟ operation is performed by using the t-norm (minimum function). Since 

the geometric inference system used was a Type-2 fuzzy system, the lower and upper 

firing threshold  values for the consequent set for each rule were calculated using 

(5.24) and (5.25) respectively 
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Where     
         

     and          are the lower membership function, 

 
  
          

      
  
      are the upper membership functions of antecedents inputs 

for the l-th rule. 

                                                    are the lower and upper 

membership functions of the inputs queue, flow and communicated congestion data 

respectively. The supremum value is attained when the terms inside the bracket attain 

the least upper bound value. The firing levels of each rule is used to clip the 

consequents membership function and derive the output type-2 fuzzy set.  

Geometric defuzzification is used to calculate the crisp value of the green time from 

the derived output type-2 fuzzy set. Consequents geometrical properties are used to 

derive calculate the centroid of the shape. This requires ordering of the discretized 

lower and upper membership functions in ascending and descending order 

respectively. The coordinates are obtained using the plane sweeping algorithm that 

gives the non-overlapping edges of the trapezoid and the point of intersection of 

different regions of green time or the consequent fuzzy set. Figure 5.11 shows the 

process of arranging the coordinate points and also removing overlap regions.  

Once sorted, triangles can be constructed by using two adjacent points on the 

consequent set and the origin. The resultant average value of the centroid of all the 

triangles constructed on the consequent set meets the geometric centre of gravity of 
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the output type-2 fuzzy set which is the closed polygon formed by connecting all 

edges to origin.  

For better accuracy of the calculated value of centroid, it is essential to discretize the 

consequent set into a large number of points to increase the number of overlapping 

polygons used to average the centroid value. The trade-off would be the 

computational cost associated with the process. The signal control decisions are based 

on traffic in the incoming and outgoing links, but not on the traffic in lanes without 

right of way. Since the green time for each phase is calculated online at the end of 

each phase, it is difficult to consider the competing phase timings. 

However, the maximum green time limitation imposed on each phase minimizes the 

possibility of indiscriminate increase in green time for a phase. The signal control also 

begins to allocate more time to a phase in a recursive manner once a queue build up is 

detected. It can be said that the traffic at lanes without right of way is taken care of 

with a delay of one cycle period.  
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Figure 5.11. Geometric defuzzification process based on Bentley-Ottmann plane 

sweeping algorithm 

5.6. SYMBIOTIC EVOLUTIONARY TYPE-2 FUZZY DECISION SYSTEM 

SET2 stands for symbiotic evolutionary type-2 fuzzy decision system. In the previous 

sections, the rule base and the parameters for the creation of the input fuzzifier of the 

type-2 fuzzy system in both T2DR and GFMAS were designed based on the heuristics 

and the historical traffic data that were obtained when using a fixed-time signal 

control. The traffic data of flow and queue therefore does not truly represent the 

dynamics of the environment and does not account for the effect of the variation in 

signal timing in other connected intersections. To reduce the errors, the decision 

system utilized the communicated information of ratio of green time allocated by each 

phase in the adjacent intersection with respect to the maximum permissible value. 

However, this creates over dependency of the decision system on communicated 
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information. Any absence of the data due to communication failure would affect the 

decisions taken using the constructed rule base in which communicated data is an 

integral part. This would trigger the use of backup fixed time plan until the 

communication is fixed and adversely affecting the performance of the entire system. 

In order to avoid this, it is essential to use the communicated data to build the model 

of the system than can effectively take care of the variations in the decisions of 

adjacent agents.  

In order to address the issues mentioned above, SET2 decision system uses only the 

flow and queue input collected from the road network. Apart from these two inputs, 

rate of change in flow between two consecutive evaluation period is also used. This 

input is made possible by storing the values of average flow experienced during each 

phase in the previous cycle in the knowledge base and data repository module. This 

input gives an indication of the increase or decrease in the value of flow during the 

evaluation period. The universe of discourse for this particular input is normalized 

between [-1,1] using the saturation flow rate. A value of -1 would indicate a large 

decrease in the value of flow and literally would mean no vehicle crossed the 

intersection during the evaluation period and a value of +1 would indicate a large 

increase in the vehicle count from the previous evaluation period. The rate of change 

in flow input is therefore clustered into three clusters namely {-ve, normal, +ve}. The 

rate of change in flow is determined from the flow input received from the loop 

detectors placed at the intersection. Therefore, the rate of change in flow also has all 

the uncertainties that were associated with the flow input and is represented using 

type-2 fuzzy sets. 
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In the previous approaches, the parameters of the fuzzy sets and the rule base were 

generated based on the heuristic data. In order to make the decision system much 

more responsive to the dynamics of the traffic environment, all the parameters in 

SET2 are evolved using online simulation of the network. A batch mode online 

learning is employed, where a full set of training data created dynamically with online 

simulation is used for the training. Stochastic  search based method like traditional 

GA can be used for evolving the parameters. However, traditional GA methods suffer 

from lack of diversity and requires the use of extremely high value of mutation rate to 

maintain the diversity but ends up losing on the exploitation front [109].  

Use of a single chromosome to represent the entire solution presents a difficulty in 

evolving all the parameters and solution space search becomes too large to handle. 

Therefore a cooperative co-evolutionary approach is employed to generate the full 

solution. In the following section, an introduction to the basics of symbiotic 

evolutionary approach used to generate the decision system is presented. 

5.6.1. Symbiotic evolution 

Symbiotic evolution can be defined as a type of co-evolution process where different 

individuals explicitly cooperate with each other and rely on the presence of the other 

individual for their existence[110].  The symbiotic evolution is distinctly different 

from the co-evolutionary GA‟s.  Most of the co-evolutionary process is developed 

based on the immune system or fitness sharing[111-113]. The immune algorithm is a 

global search algorithm that is based on the characteristics of the biological immune 

system. It is an adaptive, distributed, and parallel intelligent system that has the 

capability to control a  complex system. The immune system is aimed at protecting 
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living bodies from the invasion of various foreign substances called antigens, and 

eliminating them. When an antigen is introduced in a biological species, a specific 

antibody that is capable of detecting the antigen and eliminating it needs to be 

produced. This is achieved by forming a group of antibodies that detects maximum 

number of antigens introduced. Therefore, the antibodies needs to compete with each 

other to provide the desired result. The principles of immune system can be easily 

adopted to genetic algorithm with slight modification to the parent chromosome. In 

the modified GA, the chromosome represents partial solution instead of the complete 

solution .  A combination of large number of these partial solutions would then 

produce the final antibody that maximizes the objective function. Here each partial 

solution compete with each other instead of cooperating with each other. Figure 5.12 

Shows the solution generated by combining a large number of partial solutions. The 

partial solutions are referred to as “Specializations” 
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Figure 5.12. Block diagram of symbiotic evolution complete solution obtained by 

combining partial solutions 

This is particularly not useful in large number of practical applications. For example, 

evolving an entire rule base of the fuzzy system can be cumbersome. When individual 

rules are created as species and combined together to form a full solution,  the species 

should not be competing with each other but must cooperate with each other to obtain 

the optimal final solution. 

When a single set of partial solution or specialization is used to create the final 

solution, the diversity can be affected to a great extent and large number of 

specializations would get repeated. To avoid this, an approach based on creating a 

large number of islands of specialization was introduced in [114]. Each island 
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maintains a certain type of specialization that are unique to it and final solution is 

obtained by combining specializations gathered from each of the island.  Figure 5.13 

Shows the block diagram of one such islanded evolutionary approach. In [115-117], 

the fuzzy rule base was evolved using the islanded approach. Here each of the 

specialization represents a single rule  - the parameters of each of the inputs are 

encoded to form the partial solution. The number of rules needs to be pre-fixed and 

each rule would represent a  cluster in the solution space. It is possible that the 

solution evolved does not cover the entire solution space if the training data is not 

continuous and do not cover the entire state space. Therefore a modified version of 

the islanded symbiotic evolution is proposed in this work. 

5.6.2. Proposed symbiotic evolutionary GA decision system 

In the proposed symbiotic evolutionary genetic algorithm, instead of creating each 

rule along with its input parameters as a specialization, two islands were created. The 

first island represents the membership function values such as mean, lower and upper 

sigma values for the Gaussian membership function, and the second island represents 

the rule. A combination of the membership function and the corresponding rule would 

create the final solution. The solution set obtained can then be evaluated as done in 

traditional GA. Figure 5.14 Shows the diagrammatic representation of creating full 

solution using the proposed symbiotic evolutionary approach. 
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Figure 5.13. A representation of the islanded symbiotic evolutionary algorithm 

population 
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Figure 5.14.  A block diagram representation of the symbiotic evolution in the 

proposed symbiotic evolutionary genetic algorithm 

The values of membership function have continuous state space and hence real coded 

GA was used. However, binary coded GA was used for evolving the rule base as its 

chromosome alleles takes only two values (either active or inactive).  The structure of 

the chromosome used in membership function island and the rule island specialization 

is shown in Figure 5.15 and Figure 5.16. 

The parameters evolved is bounded within [0,1]. Real-coded GA ensures a continuous 

state space representation and avoids errors arising from discretization of state space. 
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The islanded rule specialization are binary coded and  a value of one represents that 

the particular input is active and will be used in the computation of output. The cluster 

in the consequent that needs to be used in a particular rule is also evolved. The 

consequent part is represented using two bits. A decimal equivalent zero value 

indicates that the rules is invalid and would not be used. A value of one indicates first 

cluster, two represents second cluster and three represents the third cluster from the 

consequent to be used for the specific rule. Therefore the evolution of the rule base 

island would adapt the number of rules used in a particular evaluation. 

Low Med High Low Med High Low Med High Low Med High

Flow Queue
Rate of change 

of flow
Green time

σlower σupperfmean gmean σ
 

Figure 5.15. Structure of the chromosome for membership function cluster island 

Obtaining the fitness value for the individual specialization is an extremely difficult 

task. The two sets of islanded clusters are dependent on each other and the fitness 

value is shared among each other. The fitness of each individual specialization is 

obtained as the average value of the final solution in which the particular 

specialization is used. Apart from this shared value of the fitness, it is also possible to 

use other parameters apart from the shared fitness to evaluate the partial solution. 

The fitness function for the full population is computed in terms of the time delay 

value using the Webster‟s formula introduced in Chapter 3. Apart from the delay 

value computed for the local intersection, the weighted communicated delay 
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information from the neighbouring agents is also used for computing the fitness value. 

Equation (5.26) shows the final fitness function used. 

           
 

 
            

  
           

   
     

                         (5.26) 

                                                            

                                                                

 

Where            is the fitness value corresponding to the P
th 

parent in the 

population, D  is the delay computed at the intersection based on Webster‟s formula, 

  represents the delay experienced in the adjacent intersections and a is the number of 

cycles during the current traffic simulation. The delay value obtained from the 

incoming and outgoing intersection is weighted as only a certain portion of the traffic 

enters the intersection. The weight value computed is based on the assumption of 

equal distribution of delay among all the phases in the signal. 
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Figure 5.16. Structure of chromosome of the rule base cluster island 
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The fitness function of the partial solution of the membership function specialization 

is derived as a function of the fitness value of the parent population and a similarity 

measure used to compute the similarity between the evolved clusters of an input.  

The similarity measure between two different clusters is obtained by constructing a 

triangle between the mean value and the point of intersection of the line drawn at 

membership value of 0.1 (Chosen arbitrarily) and the mean of the upper and lower 

membership function. Euclidean distance measure is used for calculating the distance 

between the axes points of the triangles constructed. The equations for computing the 

similarity and distance between two triangles A and B is shown in (5.27) and (5.28). 

         
 

         
                 (5.27) 

                   
 
                   (5.28) 

It can be observed that as the distance between the triangles increases, the similarity 

measure value decreases. Therefore by combining (5.26) and (5.27), the fitness of l-th 

individual in the membership function specialization  can be written as shown in 

(5.29). 

              
 

 
                     

                          
 
   

                                                         (5.29) 

       
          
          

  

Where m represents, number of times the specialization was used in the complete 

solution, A,B,C represents the triangles drawn corresponding to the clusters in the 

input. Evolution of the GA to minimize this objective function would produce optimal 

overlap of the cluster as well as a lower travel time delay. 
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Similarly, the fitness function corresponding to the rule specialization can be written 

as shown in (5.30). 

                
 

 
                    

                             (5.30) 

Where P is the number of active rules. When the GA is used to minimize this 

objective function, number of rules required and the inputs that needs to be active in a 

rule to produce optimal solution is obtained. 

5.6.3. Crossover 

The reproduction process does not create new individuals but creates a population 

from the parent population. New population is created by performing a crossover of 

two specializations from the same island or cluster. This increases the exploration of 

the search space and helps in creating new set of parent population. The parents are 

for the crossover is selected by using binary tournament. One of the parent is selected 

based on the result of binary tournament. The second parent is selected randomly 

from the top half of the parents sorted according to the fitness value. One point 

crossover method was employed to obtain the offspring. The point of crossover is 

selected randomly.  

5.6.4. Mutation 

Mutation is an operator whereby the allele of the chromosomes are altered randomly. 

The real valued part in the membership function specialization cluster is altered by 

adding a random Gaussian noise with mean zero and variance one. For the binary rule 

specialization part, the binary value is changed from zero to one or vice versa. 

Mutation should be used sparingly because it is a random search operator; otherwise, 
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with high mutation rates, the algorithm will become little more than a random search. 

In our experiment, the mutation probability used was a fixed value of 0.01 . 

5.6.5. Reproduction 

Reproduction is the process by which the offspring generated are copied to the parent 

population. The fitness of the evolved offspring is computed and used in the selection 

of the parent in the next generation. The lower half of the parent for the next 

generation is selected based on a binary tournament. The top half of the parent for the 

next generation is obtained as the best half of the parent population obtained by 

sorting it based on the fitness value. This creates an elitism where the best performing 

candidate is always retained. 

The termination criteria used was the total number of generations. Main reason for 

such a criteria is each evaluation takes a minimum of 40 seconds and a generation 

consists of 100 evaluations (10 parents in each cluster). A Single training therefore 

would require a minimum of 100 hours of simulation. 

The evolved final network can be obtained as the combination of the best parent from 

each of the cluster. This method is based on batch learning as the fitness value at the 

intersection at the end of the each evaluation is used rather than the fitness value 

actual time period where there is a variation in the green time of the traffic signal. 

This is a major limitation as the average value does not truly reflect the traffic 

condition and can overestimate the performance of solution that performs badly 

during the peak traffic periods and extremely well during the non-peak hours. Other 

limitation is the time taken for learning of parameters. This is a serious limitation and 
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cannot be used for real-time learning without high powered multithreaded computing 

system. 

5.7. Q-LEARNING NEURO-TYPE2 FUZZY DECISION SYSTEM 

The SET2 decision system developed in the previous section was used to evolve the 

type-2 fuzzy decision system parameters and its rule base through online batch 

learning process. The fuzzy system developed decides the optimal green time for a 

phase in a cycle using the information of flow and queue collected during the phase in 

progress. The traffic flow and queue value in the other phases were not used for 

obtaining the green time. This might cause increased delay to be experienced in links 

that do not have right of way during the current phase in progress. Another major 

shortcoming with the SET2 decision system is the time required for evolving the type-

2 fuzzy network.  A better online method that uses the current rewards received from 

the environment to evaluate and modify the network needs to be developed.  

Fuzzy logic systems are generally good at modelling controls based on the rules 

mined from the expert opinions. However, they lack the ability to learn. The online 

learning methods that have been developed in the recent past mostly modify only the 

consequent part of the fuzzy system[118]. The antecedent part of the fuzzy system 

and their membership functions are usually fixed or designed in an offline manner. In 

order to perform online learning of all the parameters, a neuro-type2 fuzzy system has 

been proposed.  

The proposed neuro-fuzzy architecture utilises the advantages offered by neural 

network in learning from data and the capabilities of type-2 fuzzy system.  In order to 

reduce the complexity, Takagi-Sugeno fuzzy sets[119] were employed instead of 
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using Mamdani representation[120]. In simple terms, instead of using a Gaussian 

functions to represent the consequent part, crisp singleton constant values were used. 

This greatly improves the mapping of antecedents to the consequents though the 

interpretation or extraction of rules outside the decision system is difficult.  

The general type-2 fuzzy system  (Figure 5.1) have a type-reducer before the 

defuzzification part to obtain a crisp value. The type-reducer converts the type-2 

fuzzy set into equivalent type-1 fuzzy set. This is usually performed in an iterative 

manner or by using geometric methods. Both these methods require the consequents 

to be sorted arranged in an ascending and descending order. When this type of 

defuzzification is used in neural networks, a separate memory needs to be used to 

store the correct mapping (before and after modifying the consequents)[121] and 

additional overhead is associated with re-mapping the network. In order to avoid this 

complexity, the type-reducer has been moved before the inference engine in the 

proposed system. The type-reduction is then performed at the level of the  antecedent 

rather than at the consequents. This would greatly reduce the complexity associated 

with constructing the neural network.  

The type-reduction is performed as the weighted average of the upper and lower firing 

strength calculated from the membership function for the specific input. This allows 

the final defuzzification to be performed as  a weighted average of the firing strength 

instead of using centre-of-sets or centroid methods. 

Training can be performed in an online manner using Q-learning [122]. Basics of Q-

learning techniques were introduced in Chapter 2. In Q-learning, the best state-action 

pair is evolved over time by actively adjusting the actions chosen for a specific state 
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to maximize the overall scalar reinforcement reward received over time. In 

conventional learning techniques, the desired output for a specific input state is 

assumed to be known a priori. The mean squared error value is then computed as the 

squared difference between the actual output and the desired output. In traffic signal 

timing optimization problem, the desired output is not known. Therefore adjusting the 

values needs to be performed using just scalar reward value that does not indicate the 

desired output but is indicative of performance of the system. Q-learning is useful in 

such learning problems. 

5.7.1. Proposed Neuro-fuzzy decision system 

The proposed neuro-type2 fuzzy decision system consists of seven layers as shown in 

Figure 5.17.  

Layer 1 is the input layer that takes in the values of flow, queue and rate of change in 

flow. Each of the input is n- dimensional, where n refers to the number of phases.  

Layer 2 is the fuzzification layer where the inputs are clustered into three regions. 

Each cluster is modelled using type-2 gaussian function with fixed mean and lower 

and upper bound sigma values. Therefore each node in layer 2 produces two outputs – 

Lower and upper membership grade corresponding to the input. 

Layer 3 is the type reducer (Figure 5.18), where the type-2 fuzzy input is converted 

into equivalent type-1 fuzzy set. The synapse between layer 2 and layer 3 assigns the 

weight corresponding to the lower and upper membership functions. The output of the 

layer 3 can be represented as in (5.31) 
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                         (5.31) 

Where c is the cluster index corresponding to the input, l represents the lower and u 

represents the upper bound, j represent the input. 

Layer 4 represents the rules used to control traffic. Each node in layer 4 represents a 

rule. The output of the layer is the product of the firing value of the input from each of 

the input. Since a product T-norm is used in the layer 4, it is essential to perform 

normalization and is performed in layer 5. 

The structure of the rule is significantly different from the rules used in the previous 

decision systems as it includes inputs for all phases as shown: 

“If flowphase1 is low and flowphase2 is low and.... flowphase n  is low and Queuephase1 is low 

and ......... rate of flowphase n is low then greenphase1 is 0.125 and ...greenphase n is 0.250” 

The output from the layer 5 is the firing value of each rule. However, there is no 

corresponding consequent assigned as is done in Mamdani system. The weights of the  
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Figure 5.17. Structure of the proposed neuro- type2 fuzzy decision system (QLT2) 
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synapse connecting the layer 5 with layer 6 represents the consequents. Layer 6 

consists of n nodes, where n corresponds to number of phase. The output of the layer 

is calculated as weighted average as shown in (5.32). 

  
   

 
    

   
   

    
   

   
    

   

                           (5.32) 

Where m is the number of rules and i represents the output from layer 6. The final 

layer consists of single node that provides Q value as the output. The Q-value is 

represented as in (5.33) 

           
 
      

    
                              (5.33) 

The value of the mean, upper and lower bound sigma values and other weights 

are adjusted using back propagation of the squared error value. Adaptive 

learning rate was used during the back propagation as used in [123] The error is 

calculated using (5.34)  

   
 

 
                                                                   (5.34) 

                                                   (5.35) 

Where R is the reinforcement received for taking a specific action in a state,   is the 

discount factor which is chosen as 0.1,          is the Q value for the next state and 

       is the current Q value due to the action chosen in a specific state. Choosing a 

lower value of discount factor ensures that the update is based on the latest computed 

Q values. It is much easier to compute the maximum value of the Q if a tabular 

structure is maintained. However, the state and action space are continuous, it cannot 

be easily represented using tables and needs to be approximated using generalized 
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models like neural networks. Since the neural network is continuously trained to give 

maximum value of Q, the max part in (5.35) can be removed and becomes similar to 

SARSA algorithm. Eligibility trace was not included in this work as value assignment 

is difficult. 

The reward value or the reinforcement received from the road network at each 

evaluation period is the inverse of sum of total delay experienced at an intersection 

and discounted value of reward from adjacent intersections. 

       
        

  
          

   
   

                        (5.36) 

Where R is the reinforcement value at the current intersection,    is the ratio of 

number of phases during which vehicle is released into the network to the number of 

phases in the incoming agent intersection.    is the ratio of number of phases in the 

current intersection during which vehicles are received by the intersection to the 

number of phases at the intersection. 1000 is used to make the number large and any 

positive value could be used here. 
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Figure 5.18. Structure of type-2 fuzzy system with modified type reducer 

The communication between adjacent agents is an essential component. Without 

communication of the reward or reinforcement value of the adjacent intersection, the 
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signal green timing computed would cause higher delay. Communication of the Q-

values can improve the performance of the system to a great extent, however, it is 

difficult as the correct state action pair must be known and would require a large 

memory to store all the values. After the initial fine tuning, it is possible to start the 

learning after every hour of simulation and keep the network updated.  

5.7.2. Advantages of QLT2 decision system 

1. Better online learning capability than SET2 decision system. 

2. Green time of all the phases are computed at the end of each cycle using a 

single decision system instead of multiple fuzzy networks or by using a fuzzy 

network in a sequential manner. 

3. Lesser number of evaluations are required than SET2, therefore requiring 

considerably lesser time to train the network than SET2 decision system. 

5.8. SUMMARY 

In this chapter, four different types of decision systems were presented. Two of the 

proposed agent systems were designed based on heuristics and historical traffic 

volume. The rule base was developed using deductive reasoning technique. T2DR 

decision system uses a weighted input approach for coordination between agents. The 

decision system also uses iterative Karnik-Mendel algorithm based defuzzification 

procedure. GFMAS uses an internal belief model based architecture where the 

communicated data is an integral part of the decision system. Defuzzification is 

performed by utilizing the geometric properties of the consequent. The other two 
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decision systems are adaptive in nature with online learning capability. SET2 uses 

symbiotic evolutionary genetic algorithm to evolve the type-2 fuzzy system 

parameters and rule base. The fitness function is shared between the neighbouring 

agents. QLT2 decision system performs online adjustment of weights and parameters 

of the neuro-fuzzy network using back propagation of the temporal difference error in 

the computed Q-values. The reward value used to compute the error is obtained as the 

summation of the discounted reward from the intersections connected to the agent. 
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CHAPTER 6 

SIMULATION PLATFORM 

This chapter explains in detail the simulation platform used as a test bed to evaluate 

the performance of the proposed multi-agent architecture for urban traffic signal 

control. The simulation platform designed is a large, complicated and realistic 

problem that can replicate the real-world scenarios efficiently. The chapter details the 

performance evaluation metrics used to correctly evaluate the performance of the 

applied control algorithm. The chapter also explains the  benchmarks used to compare 

the proposed multi-agent controllers. 

6.1 SIMULATION TEST BED 

In order to experiment with different strategies for the application of multi-agent 

systems for dynamic traffic management and to examine their applicability, a suitably 

designed test bed is an essential requirement.  The main requirements of the test bed 

developed are the following [124]. 

 The multi-agent traffic management system should be easily configurable. 

 Easy interpretation of the logic developed in traffic terms. 

 Ability to create simulated scenarios that best represents the real-world 

conditions with minimum assumptions 

 Provide the necessary complexities associated with urban road 

intersection, like, the limitations of intersection geometry, vehicle merging 

etc. 
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Isolated intersections are commonly used to evaluate the developed traffic signal 

controls. The main  drawbacks of using isolated intersection are as follows: 

 The traffic input does not represent the real-traffic flow experienced at urban 

road networks 

 The effect of variation in traffic flow in adjacent network is not captured 

 Effects of queue overflow are not represented 

 Platoon formation is not efficiently reproduced 

These drawbacks critically affect the evaluation of traffic adaptive signal control 

systems even though they are sufficient in evaluation of smaller traffic networks, 

where the variation in traffic is limited. This necessitates the use of traffic networks 

that are interconnected. 
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Figure 6.1. Layout of the simulated road network of Central Business District  in 

Singapore 

 Based on the above requirements, the traffic network selected to evaluate the 

performance of the proposed multi-agent architecture is a section of the Central 

Business District (CBD) area of Singapore shown in Figure 6.1. This section of the 

road network is considered as one of the busiest sections of network that experiences 

frequent traffic jams due to extreme variation in the traffic flow during the peak 

periods and different day of the week. The section of the network faces extreme 

traffic variations due to the presence of large number of commercial offices and 
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shopping centres. This causes the vehicle count to increase considerably during the 

morning office hours and evening shopping periods well beyond the office timings. 

This traffic network is significantly bigger compared to those developed in [107, 125-

128]. 

The section of the network consists of one-way links, two-way links, major and minor 

priority lanes, signalled right and left turning movements, merge lane etc., that makes 

CBD the perfect test bed to simulate all of the traffic conditions efficiently.  

6.2 PARAMICS 

The network was modelled using version 6.0 of PARAMICS software. PARAMICS 

is a microscopic traffic simulation suite developed by Quadstone Ltd [129]. Figure 6.2 

Shows a screenshot of the Paramics modeller software. The modeller software is used 

to define the characteristics of the traffic network, their geometry, amount of traffic to 

be simulated and the maximum capacity of the network. Paramics allows the traffic 

process to be simulated on the level of the individual vehicles. The functionality of 

the Modeller can be further enhanced using customized API. User defined plug-ins , 

written in C++ and compiled using Microsoft visual C++ compiler allows the users to 

retrieve traffic simulation information from Paramics and send back the control 

actions. Critical information like flow, queue and rate of flow can be obtained via the 

loop detectors in real-time, while the simulation is running. The induction loop 

detectors are coded in the simulated traffic network at the stop line of each 

intersection.   
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Figure 6.2. Screenshot of Paramics modeller software 

6.3 ORIGIN-DESTINATION MATRIX 

 Details of the simulated traffic network model is as follows: 

Total number of nodes 130 

Total number of links 330 

Total number of zones 23 

Total number of loop detectors 132 

Total number of vehicle types simulated 16 

Total number of agents 25 

 

In order to reflect the true traffic conditions that exist in the urban traffic network of 

Central Business District of Singapore, the traffic information needs to be collected 
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from the real network and converted into suitable origin-destination matrix. The 

required data is collected from the Land Transport Authority of Singapore for three 

separate days. LTA uses GLIDE which is a modified version of SCATS (Explained in 

Chapter 3). A screenshot of SCATS traffic control is shown in Figure 6.3. 

 

Figure 6.3. Snapshot of SCATS traffic controller and the controlled intersection 

SCATS assigns a set of pre-determined signal plans to each intersection according to 

the traffic condition experienced at the specified time period. Therefore the data 

collected [108] from LTA consisted of the pre-determined signal plans used for each 

of the intersection (Computed using the Webster‟s signal plan formulation), the order 

of the signal plan usage during 24-hours over a period of three days, change in the 

cycle length during the specific signal plan execution and the total number of vehicles 

that have crossed the specific intersection at each lane during the execution of the 
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specific signal plan. The data is sampled at an interval of 15 minutes which is the 

usual sampling time for the operation of SCATS. The nominal cycle length is 

obtained as the average cycle length of the signals during the 15 minute sampling 

period.  

 

Figure 6.4. Origin-destination matrix indicating trip counts 
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Figure 6.5. Traffic release profile for a six hour, single peak simulation 

Using the vehicle count data sampled over a period of three days, a origin-destination 

matrix is constructed. The road networks usually possess input zones that forms a sink 

and pool for the release and termination of vehicles. Number of vehicles released 

from a start zone to the end zone is specified in the demand profile and hourly vehicle 

release rate is specified in the demand profile which can be adjusted by using the 

divisor (Figure 6.4). 

 The profile of the traffic can be adjusted using the divisor value in the profile editor. 

Figure 6.5 Shows the typical traffic profile for a six hour, two peak simulation and the 

vehicle release pattern. The modeller software ensures the number of vehicles 

released into the network to be equal to the percentage of vehicles indicated in the 

profile (Figure 6.6) from the specified demand matrix. The vehicles are released 

randomly even though the vehicle count is pre-fixed for the release period (In our case 
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it was fixed at 15 minutes to be consistent with SCATS data sampling period). This 

property  reflects the stochastic nature of traffic witnessed in the real world. 

 

Figure 6.6. Profile demand editor for a twenty four hour eight peak traffic simulation 

6.4 PERFORMANCE METRICS 

Performance of the proposed multi-agent signal control is evaluated based on two 

measures.  

1. Mean delay of vehicles  

2. Mean speed of vehicles currently inside the network 

6.4.1. Travel Time Delay 

Delay at each signalized intersection is computed as the difference between the actual 
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travel time of vehicles across the intersection and the travel time in case of no signal 

control. The actual delay is calculated as the sum of the acceleration, deceleration and 

stopped time delay for each vehicle at an intersection. In microscopic traffic 

simulation platform like PARAMICS, the delay value calculated at each intersection 

of the network at every time step of the simulation is stored in the memory, and an 

average value of the time delay 
ADT  is calculated as  

1

n

D

i

AD

v

T

T
T




                (6.1)         

where n is the number of intersections in the road network, 
DT is the time delay 

experienced by vehicles at each intersection and 
vT is the total number of vehicles that 

entered and left the network during the measurement period.  Delay parameter has 

been widely adopted for characterizing traffic signal control schemes. In [130], it has 

been proved that the average queue size at any intersection is directly proportional to 

the average delay experienced by a vehicle inside the network, which makes average 

time delay parameter a suitable entity to classify the congestion level at an 

intersection. Another important work that showed the linear relationship of the 

detector occupancy with the average delay was [131]. Moreover, the Highway 

capacity manual (HCM2000)[132] uses the average control delay incurred by  

vehicles at the intersection to classify the level of service offered by each signal 

control. All of these aforementioned works justify suitability of using average delay 

parameter to evaluate the performance of traffic signal control. 

6.4.2. Mean Speed 

Current vehicle mean speed is the other parameter used for evaluation of performance 

of the proposed architecture. It is essential to use the speed parameter along with the 
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delay parameter to avoid errors caused due to inaccuracy in the calculated travel delay 

value and the number of vehicles inside the network [33, 62]. Current vehicles mean 

speed is inversely proportional to delay. These two parameters reflect the overall 

traffic condition in the road network and have been adopted in this work. 

    
   
 
   

                    (6.2) 

Where     is the average value of vehicle speed inside the network,    is the speed of 

individual vehicles and n is the number of vehicles released into the network. 

6.5 BENCHMARKS 

It is extremely difficult to find a best suitable benchmark for an urban traffic network 

with a large number of interconnected intersections. Some of the major factors that 

affect the selection of the benchmarks are as follows: 

 Existing traffic signal control algorithms have been specifically developed for 

different traffic networks with varying complexity. 

 The traffic patterns on which the networks have been tested are different from 

those experienced in Singapore. 

 Most of the controllers were tested for isolated intersections. 

 Internal working of the commercially available traffic controllers like SCATS, 

SCOOT and GLIDE are not known and are proprietary in nature. 

 The assumptions used are different limiting the application of the developed 

signal control on the system. 

For this specific reason Hierarchical Multi-agent System (HMS) traffic signal control 

is used as a benchmark in this study. Working of the HMS has been explained in 
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detail in Chapter 3. The HMS have been specifically developed for the Central 

Business District of Singapore ( Same as the network considered in this study) and 

exactly same traffic scenarios, patterns and software has been used to evaluate the 

performance. This reduces the requirement of recoding the algorithm that might 

produce a sub-optimal performance than what was intended.  

 The other benchmark used is the version of GLIDE simulated in [33, 62]. Though it 

has been shown that HMS performs better than simulated version of GLIDE in [33], it 

would be appropriate to show a comparison here as it had been tested on the same 

traffic network as the proposed signal control and for similar traffic patterns. 

6.6 SUMMARY 

This chapter describes the various implementation details concerning the modelling of 

the urban traffic network using PARAMICS software. It details how the data 

collected from Land Transport Authority of Singapore is converted into origin-

destination matrix that reflects the true traffic pattern experienced at the urban traffic 

network. The chapter also details performance metrics and the benchmarks used to 

evaluate the performance. The next chapter discusses the simulation results for all the 

experiments that are carried out in this study to evaluate each of the proposed multi-

agent system developed. 
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CHAPTER 7 

RESULTS AND DISCUSSIONS 

In this chapter, details of the various experiments that were performed to evaluate the 

performance of the proposed distributed multi-agent system based traffic signal 

control developed in this study are detailed. Different types of simulation scenarios 

were designed consistent with the tests performed in [108] that effectively tests the 

robustness and effectiveness of the proposed multi-agent systems. Apart from the tests 

in [108], lane closures and incidents were simulated to test the responsiveness, 

stability and effect of the variation in capacity of the infrastructure on the proposed 

multi-agent based traffic signal controls. An in-depth analysis of the simulation results 

and the reasons for improved performance of the proposed traffic signal controls over 

benchmark signal controls – HMS (Hierarchical Multi-agent Systems) and GLIDE 

(Green Link Determine) are presented.    

7.1. SIMULATION SCENARIOS 

Two types of  simulation scenarios were used to evaluate the performance of the 

proposed multi-agent based traffic control system. They are as follows: 

1. Peak traffic scenarios 

2. Events 

While „peak traffic scenarios‟ simulate the traffic flow pattern observed in urban road 

networks , „events‟ simulate the traffic scenarios where there is a  change in capacity 

of the road network.  
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7.1.1. Peak Traffic Scenarios 

Three types of peak traffic scenarios were used to evaluate the performance of the 

multi-agent traffic signal controller. They are namely: 

 Six hour, two peak simulation 

 Twenty four hour, two peak simulation 

 Twenty four hour, eight peak simulation 

The six hour, two peak traffic simulation is designed to test the response of the 

proposed multi-agent traffic signal control to peak traffic conditions experienced 

during the morning and afternoon period. This test was designed to verify the 

efficiency of the proposed multi-agent systems to high traffic conditions experienced 

in a short period of time. Twenty four, two peak simulation reflects the true condition 

experienced at the Central Business District of Singapore during the morning and 

evening periods. This scenario creates an infinite horizon problem that replicates the 

increased stress level experienced by the road networks during peak periods. The final 

traffic condition experimented is the twenty four hour, eight peak traffic condition. 

This is an extremely fictitious scenario, where the urban traffic network is subjected 

to extreme stress condition. Multiple peaks are placed close to each other that creates 

an increased level of stress condition and allows to test the response of the proposed 

signal controls to dynamic variation in traffic condition. 

7.1.2. Events 

Two different type of events were simulated to verify the responsiveness of the 

proposed multi-agent traffic signal control and the effect of variation in capacity of 
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the road network and are as follows: 

 Link and lane closures 

 Incidents and accidents  

Link and lane closures simulate the conditions where the infrastructure is not 

available for use due to pre-planned events or conditions. Incidents and accidents, 

simulate conditions that cause restriction to traffic flow due to reasons not foreseen 

and accounted for during signal timing optimization. 

7.2. SIX HOUR, TWO PEAK TRAFFIC SCENARIO 

The two peak simulation is a typical traffic pattern, where the morning and afternoon 

heavy traffic condition is simulated. The traffic release pattern and the number of 

vehicles released into the road network during different time periods of simulation is 

shown in Figure 7.1.  
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Figure 7.1. Vehicle release profile for a six hour, two peak traffic scenario  



155 
 

Figure 7.1 shows the approximate count of the vehicles released into the network 

during the period of simulation. The actual traffic release is random and is divided 

into regions of fifteen minutes period. The number of vehicles released during the 

fifteen minute period is fixed using the origin-destination matrix. 

Table. 7.1. Mean travel time delay and speed of vehicles for a six hour, two peak 

traffic scenario 

1st peak 2nd peak 1st peak 2nd peak

QLT2 201 209 28 26.5

QLT1 222 218 20.75 23.08

SET2 209 213 23.3 25.16

GAT2 224 221 20.5 21.5

GFMAS 222 219 22.4 14.4

T2DR 224 222 20.32 17.92

HMS 400 470 11.2 12.8

GLIDE 500 600 8 4.8

Control Techniques
Total mean delay (sec per vehicle) Current mean speed (kmph)

 

Table 7.1. shows the comparison of results in terms of travel time delay and mean 

speed of vehicles inside the road network for the proposed multi-agent signal controls 

and the benchmarks at the end of peak traffic period. It can be seen that there is a 

significant improvement in the delay experienced by vehicles during the peak traffic 

time when using proposed multi-agent based traffic signal controls in comparison to 

HMS and GLIDE. It can also be seen that for both HMS and GLIDE, the performance 

degrades during the second peak period and can be attributed to the increased  settling 

time after the end of first peak period.  

Among the proposed traffic signal controls, QLT2 performed the best followed by 

SET2 signal control. GAT2 and QLT1 signal controls had a performance equivalent 

to those of heuristics based fuzzy signal control. Table 7.1 indicates the point value of 
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delay experienced at the end of the peak traffic period. This value indicates the 

performance of the signal control during the start of increase in vehicle count. For 

proper analysis, this value might not be sufficient as the delay is experienced a short 

period of time after the increase in traffic count. Hence the main reason for the 

increase in travel time delay needs to be analyzed. Travel time delay is directly 

proportional to the number of vehicles retained inside the network. Traffic count 

information at the end of the peak period would not convey much information. Hence 

an hourly analysis of the number of vehicles released and retained inside the network 

is performed in Table 7.3. 

 



 
 

 

 

Table.7.2. Total number of vehicles inside the network at the end of each hour of simulation for six hour, two peak traffic scenario 

GLIDE HMS GFMAS T2DR QLT2 QLT1 SET2 GAT2 GLIDE HMS GFMAS QLT2 QLT1 SET2 GAT2

0:00:00 28 35 47 17 36 38 36 36 50 56% 70% 94% 72% 76% 72% 72%

1:00:00 694 700 650 416 440 577 440 440 5565 12% 13% 12% 8% 10% 8% 8%

2:00:00 1671 1200 373 878 399 383 469 538 14505 12% 8% 3% 3% 3% 3% 4%

3:00:00 877 750 83 106 95 100 69 79 20120 4% 4% 0% 0% 0% 0% 0%

4:00:00 800 710 622 590 589 539 426 440 25735 3% 3% 2% 2% 2% 2% 2%

5:00:00 1850 1000 398 845 394 377 429 512 34625 5% 3% 1% 1% 1% 1% 1%

6:00:00 900 250 103 101 91 86 93 76 40240 2% 1% 0% 0% 0% 0% 0%

Simulation 

time

Number of vehicles inside network % Vehicles retainedTotal number of 

vehicles released 

from start

1
57
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Since the entire traffic flow generation mechanism is stochastic in nature, a 

comparison between different control strategies is valid only when the number of 

vehicles released into the road network at the end of specific time periods remains 

close to each other. This condition is satisfied by using a fixed traffic profile and 

origin-destination matrix for all simulations. Comparison is done with respect to the 

best performing benchmark signal control HMS. 

The results clearly indicate the effectiveness of proposed multi-agent based signal 

controls in clearing traffic at intersections, and improving the current mean speed of 

the vehicles. To prove the repeatability and robustness of the results, ten different 

simulations were conducted for the scenario with different initial random seeds. The 

standard deviation of the time delay for the ten simulation runs and the 90, 95 and 99 

percentage confidence interval is calculated and is shown in Table 7.3. As can be seen 

from Table 7.3, even for 99 percentile confidence interval, the delay value fluctuation 

is restricted to a maximum of +10.7 seconds. The QLT2 signal controls showed the 

lowest standard deviation and confidence interval value. T2DR signal controls 

showed the highest variation. The main reason for this can be attributed to the 

heuristic nature of the T2DR control and improved learning capability of QLT2. Even 

though QLT1 controls have similar learning ability, the type-1 fuzzy system have 

reduces the ability of the signal controls. 
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Table.7.3. Standard deviation and confidence interval of the mean travel time delay 

for six hour, two peak traffic scenario 

1:00:00 2:00:00 3:00:00 4:00:00 5:00:00 6:00:00

S.D 4.4 10.0 12.0 9.7 11.1 5.9

90% CI 2.3 5.2 6.2 5.0 5.8 3.1

95% CI 2.7 6.2 7.4 6.0 6.9 3.7

99% CI 3.6 8.1 9.7 7.9 9.0 4.8

S.D 5.2 8.8 13.1 10.1 12.9 7.0

90% CI 2.7 4.6 6.8 5.3 6.7 3.6

95% CI 3.2 5.5 8.1 6.3 8.0 4.3

99% CI 4.2 7.2 10.7 8.2 10.5 5.7

S.D 4.4 5.1 4.9 5.8 4.1 3.2

90% CI 2.3 2.7 2.5 3.0 2.1 1.7

95% CI 2.7 3.2 3.0 3.6 2.5 2.0

99% CI 3.6 4.2 4.0 4.7 3.3 2.6

S.D 3.7 4.8 5.9 4.8 5.3 4.2

90% CI 2.3 5.2 6.2 5.0 5.8 3.1

95% CI 2.7 6.2 7.4 6.0 6.9 3.7

99% CI 3.6 8.1 9.7 7.9 9.0 4.8

S.D 2.9 4.7 6.0 4.6 3.7 3.4

90% CI 1.5 2.4 3.1 2.4 1.9 1.8

95% CI 1.8 2.9 3.7 2.9 2.3 2.1

99% CI 2.4 3.8 4.9 3.7 3.0 2.8

S.D 3.1 4.7 4.9 3.4 3.7 2.9

SET2
90% CI 1.6 2.4 2.5 1.8 1.9 1.5

95% CI 1.9 2.9 3.0 2.1 2.3 1.8

99% CI 2.5 3.8 4.0 2.8 3.0 2.4

QLT1

GAT2

Simulation time

GFMAS

T2DR

QLT2
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Figure 7.2 shows the average value of the time delay experienced by vehicles for a six 

hour, two peak traffic profile applied to a traffic network implementing the proposed 

multi-agent based traffic signal controls. Best results were obtained when traffic 

signal control was based on multi-agent neuro-type2 fuzzy Q-learning (QLT2) traffic 

signal controls. This particular behavior can also be observed in the mean speed of 

vehicles inside the network shown in Figure 7.3. The QLT2 based agent system 

improved the speed of vehicles during the peak period though all controls performed 

equally well for low traffic conditions.  
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Figure 7.2. Mean travel time delay of vehicles for six hour, two peak traffic scenario 
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Figure 7.3. Average speed of vehicles inside the network for six hour, two peak traffic 

scenario 

 

For better understanding, a graphical representation of the number of vehicles retained 

inside the network during various instances of the simulation is shown in Figure 7.4. 

It is also necessary to highlight at this point that the speed comparison shown in 

Figure 7.3. is a sampled version of the real speed data. The actual data fluctuates to a 

great extent and cannot be presented in a single plot. The actual data is shown in 

Figure 7.5. 
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Figure 7.4. Total number of vehicles inside the road network for six hour, two peak 

traffic 
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Figure 7.5. Actual mean speed of vehicle inside the road network 
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Table 7.4. shows the percentage improvement in the observed results over HMS 

signal control. It can be seen that QLT2 signal controls performed the best followed 

closely by SET2 signal controls. The GFMAS and T2DR performed better than HMS 

but the control was not smooth and fluctuated to a large extent as shown in Figure 7.2 

and 7.3. The online trained QLT1 signal control performed well, however, the 

performance was not as comparable to QLT2 control.  

 

Table.7.4.Percentage improvement over HMS signal control  

Travel time delay Mean speed

QLT2 52.8 75

QLT1 49.4 52

SET2 51.4 66

GAT2 48.8 58

GFMAS 46 48

T2DR 45.1 46.9

Percentage improvement over HMS

Control Technique

 

7.3. TWENTY FOUR HOUR, TWO PEAK SCENARIO 

For the typical twenty four hour scenario with morning and afternoon peaks, ten 

simulation runs with different random seeds were conducted for each of the six 

proposed multi-agent traffic signal controls. The typical traffic release profile is 

shown in Figure 7.6. The average value obtained in these simulation runs were used to 

evaluate the performance of the developed signal controllers.  
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Figure 7.6. Vehicle release traffic profile for twenty four hour, two peak traffic 

condition 
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Figure 7.7. Total mean delay of vehicles for twenty four hour, two peak traffic 

condition 
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Figure 7.7 shows the comparison of the mean travel time delay experienced by 

vehicles in response to a twenty four hour, two peak traffic simulation. QLT2 signal 

control performed the best under this simulation scenario. The second best 

performance was that of SET2 signal control. However, it was observed that during 

second peak period, its performance was equal to GAT2 signal control. This 

observation is supported by the variation in mean speed of vehicles seen in Figure 7.8. 

The variation in speed clearly indicate a superior performance of QLT2 and low 

performance of T2DR signal control in comparison to all other proposed multi-agent 

signal controls. 
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Figure 7.8. Average speed of vehicles inside the network for twenty four hour, two 

peak traffic scenario 

It can be seen from Figure 7.9, there is a considerable amount of fluctuation in the 

number of vehicles retained inside the road network at the beginning of the second 

peak period.  This particular phenomenon was also observed in the traffic simulation 
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scenario simulated in [108]. This was not seen prominently in HMS as the signal 

control was not able to reduce the number of vehicles after reaching the peak value 

and continued to have a flat profile.  
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Figure 7.9. Vehicles inside the network for a twenty four hour, two peak traffic 

simulation scenario 

For a more detailed analysis, Table 7.5. shows the comparison of the travel time 

delay, speed and number of vehicles retained inside the network at the end of the peak 

periods. QLT2 performs considerably well in comparison to other multi-agent models 

followed closely by SET2. 47% improvement was observed in the mean time delay 

and 84% in the speed when using QLT2 over HMS signal control. The heuristically 

designed T2DR signal control also produced better results than online trained HMS 

signal control and can be observed in Table 7.6. The main reason for superior 

performance is due to the fact that the rule base was specifically selected by 
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comparing the delay with HMS signal control. The performance of SET2 signal 

control degraded during the second peak period. This is mainly because of the traffic 

pattern used for training the signal control.  

SET2 signal control was not able to capture the dynamics of the traffic sufficiently. 

Further, the green time of each phase was calculated at the end of the phase instead of 

the end of cycle time. This  increases the delay as the vehicles in lanes without right 

of way are made to wait for longer period. It can also be seen that all proposed 

controllers performed well without large fluctuations as the change in traffic count is 

slower in this traffic simulation scenario. 

Table 7.5. Comparison of mean delay, speed and number of vehicles for twenty four 

hour, two peak traffic scenario 

1st peak 2nd peak 1st peak 2nd peak 1st peak 2nd peak

GLIDE 600 430 9.6 8 1800 1650

HMS 420 340 12.8 12.8 1200 1050

QLT2 208.5 193.5 28.1 28.7 418 514

QLT1 250.4 207.8 18.6 24.9 744 533

SET2 222.4 198.7 22.9 27.1 463 538

GAT2 229.5 201.2 22.1 28.5 475 550

GFMAS 256.7 212.5 17.8 24.2 703 549

T2DR 274 221 15.8 22.3 905 619

Number of vehicles 

inside network (Veh)Control Technique

Total mean delay         (sec 

per vehicle)
Current mean speed (kmph)
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Table 7.6. Percentage improvement of travel time delay and speed over HMS control 

for twenty four hour, two peak traffic scenario 

Travel time delay Mean speed

QLT2 47.1 84

QLT1 39.7 52

SET2 44.6 71

GAT2 43.3 59

GFMAS 38.4 41

T2DR 35 29

Percentage improvement over HMS

Control Technique

 

The standard deviation and the confidence interval calculated using ten different 

random seeds (Table 7.7) was well within the permissible limits indicating a good 

repeatability and responsiveness to varying traffic loads. T2DR signal control 

performed the worst in comparison to all other proposed multi-agent controls and 

QLT2 signal control performed the best with a standard deviation of +2.9 seconds for 

the ten simulation runs. It can also be seen that substantial improvement in the 

standard deviation values and confidence interval was observed during the second 

peak period. This is mainly due to the ability of the signal control to adapt to 

repetitive peak traffic conditions.  
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Table 7.7. Standard deviation and Confidence interval for a twenty four hour, two 

peak traffic mean travel time delay 

1st peak 2nd peak

SD 5.1 6.2

90% CI 2.7 3.2

95% CI 3.2 3.8

99% CI 4.2 5.1

SD 4.3 3.2

90% CI 2.2 1.7

95% CI 2.7 2.0

99% CI 3.5 2.6

SD 2.9 2.5

90% CI 1.5 1.3

95% CI 1.8 1.5

99% CI 2.4 2.0

SD 3.9 5.1

90% CI 2.0 2.7

95% CI 2.4 3.2

99% CI 3.2 4.2

SD 3.8 2.9

90% CI 2.0 1.5

95% CI 2.4 1.8

99% CI 3.1 2.4

SD 4.6 2.1

90% CI 2.4 1.1

95% CI 2.9 1.3

99% CI 3.7 1.7

SET2

GAT2

Simulation period

T2DR

GFMAS

QLT2

QLT1
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7.4. TWENTY FOUR HOUR, EIGHT PEAK TRAFFIC SCENARIO 

Twenty four hour, eight peak scenario is the extreme traffic pattern simulation stress 

test to verify the integrity, robustness, and responsiveness of the signal control when 

subjected to repetitive high traffic condition within a short interval of time. The traffic 

release pattern is shown in Figure 7.10. 
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Figure 7.10. Twenty four hour, eight peak traffic release profile 
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Table 7.8. Travel time delay of vehicles at the end of peak period for twenty four 

hour, eight peak traffic scenario 

1st peak 2nd peak 3rd peak 4th peak 5th peak 6th peak 7th peak 8th peak

HMS 400 450 450 450 450 500 650 700

GLIDE 400 500 600 650 800 1500 2300 3200

T2DR 242 223 253 243 247 240 247 242

GFMAS 235 243 239 240 242 242 243 240

QLT2 196 207.4 205.8 207.4 206.7 208.8 210.9 210.1

QLT1 203.2 206.9 208.1 210.7 212.2 212.1 216.3 218.2

SET2 204.8 211.5 213.5 212 211 210.8 211.1 212.5

GAT2 195.7 200.3 208.5 213.4 215 216.8 215.4 214.6

control 

technique

Total mean delay (sec per vehicle) in a period

 

It can be seen from Table 7.8 and 7.9, HMS and GLIDE signal control performance 

starts to degrade after the fifth traffic peak period. The main reason for this 

degradation is the inability to clear the vehicles present inside the network within a 

short duration of time before the start of next high traffic period and can be observed 

from Table 7.10. GLIDE signal control adopts a pre-specified value for the cycle 

length during the off-peak periods and only changes it to another pre-specified value 

during the peak period.  This makes the green time allocated to each phase 

insufficient to clear the vehicles when the traffic input increases, resulting in queue 

spillback. HMS [14][32] signal control also starts showing degradation in 

performance after the sixth peak period, which is due to the increase in number of 

vehicles waiting for green time. 
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Table 7.9. Total mean speed of vehicle inside the network for twenty four hour, eight 

peak traffic scenario 

1st peak 2nd peak 3rd peak 4th peak 5th peak 6th peak 7th peak 8th peak

HMS 11.2 16 22.4 12 9.6 6.4 6.4 6.4

GLIDE 11.2 8 8 8 0 0 0 0

T2DR 20.8 22.5 18.8 23 11.36 23 12.6 23

GFMAS 21.8 27.2 27.1 23 24.2 20.4 20.6 22.7

QLT2 22.5 28.596 29.496 27 27.696 26.496 26.196 29.904

QLT1 24.996 25.896 27.6 21.696 24.804 30.996 22.404 27.396

GAT2 23.904 29.004 21.204 21.9 25.704 30.3 25.296 26.4

SET2 28.296 29.796 23.7 24.996 27.396 23.004 25.104 28.8

control 

technique

Mean speed of vehicles (kmph)

 

Table 7.10. Vehicles inside the network for twenty four hour, eight peak traffic 

scenario 

1 2 3 4 5 6 7 8

HMS 2000 1500 1400 1800 2500 3300 3000 3100

T2DR 700 890 710 819 853 790 793 808

GFMAS 681 848 701 781 819 754 762 798

QLT2 427 436 373 441 398 379 509 464

QLT1 379 401 387 407 330 481 347 386

SET2 443 466 564 556 507 441 441 394

GAT2 401 450 444 419 427 460 440 444

Peak traffic periods

Vehicles inside 

the network
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The degradation in performance can be attributed to the conflict in decisions between 

agents of different hierarchy causing smaller green time to be allocated to congested 

intersections. Therefore the number of vehicles leaving the simulated section of the 

network increases as the vehicle input is kept a constant based on the OD matrix and 

can be seen in Table 7.10.  However, results show that the proposed GFMAS signal 

control does not undergo any degradation and performs better than both GLIDE [13] 

and HMS [19][32]. All of the proposed multi-agent based signal control was able to 

handle the increased influx of traffic flow without major degradation in their 

performance. 

QLT2 signal control was the best performing multi-agent system in this traffic 

scenario. Interestingly, SET2 signal control performance started to degrade after the 

second peak period and was closer to QLT1. On other hand, GAT2 signal control was 

able to bring down the time delay and improve the speed of vehicles to a greater 

extent almost equalling the performance of QLT2.  

For better understanding of the fluctuations and variations during different simulation 

runs for the same traffic condition, an analysis of the standard deviation and 

confidence interval of the observed time delay for every two hours of simulation is 

presented in Table 7.11. Predictably, GFMAS and T2DR showed large fluctuations in 

the standard deviation. This indicates that the variation in the observed time delay 

with different starting points produced varying results.  
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Table 7.11. Standard deviation and confidence interval of travel time delay for twenty 

four hour, eight peak traffic simulation 

2 4 6 8 10 12 14 16 18 20 22 24

S.D 4.5 8.1 7.6 6.8 5.1 6.4 6.2 6.9 7.3 6.8 6.3 6.0

90% CI 3.3 6.0 5.6 5.0 3.7 4.7 4.5 5.1 5.4 5.0 4.6 4.4

95% CI 4.0 7.1 6.7 5.9 4.5 5.6 5.4 6.1 6.4 6.0 5.5 5.3

99% CI 5.2 9.3 8.8 7.8 5.9 7.4 7.1 8.0 8.4 7.9 7.2 6.9

S.D 5.2 9.3 8.3 7.2 6.1 7.2 6.1 6.5 7.6 6.9 6.1 5.8

90% CI 2.7 4.8 4.3 3.8 3.2 3.8 3.1 3.4 4.0 3.6 3.2 3.0

95% CI 3.2 5.8 5.1 4.5 3.8 4.5 3.7 4.0 4.7 4.3 3.8 3.6

99% CI 4.2 7.6 6.8 5.9 5.0 5.9 4.9 5.3 6.2 5.6 5.0 4.7

S.D 4.2 4.1 5.3 3.9 2.1 2.6 3.8 3.9 5.1 4.7 4.9 4.9

90% CI 2.2 2.1 2.8 2.0 1.1 1.4 2.0 2.0 2.7 2.4 2.5 2.5

95% CI 2.6 2.5 3.3 2.4 1.3 1.6 2.4 2.4 3.2 2.9 3.0 3.0

99% CI 3.4 3.3 4.3 3.2 1.7 2.1 3.1 3.2 4.2 3.8 4.0 4.0

S.D 3.9 2.7 3.9 3.4 3.4 4.1 4.8 5.4 2.9 2.8 4.1 3.7

90% CI 2.0 1.4 2.0 1.8 1.8 2.1 2.5 2.8 1.5 1.5 2.1 1.9

95% CI 2.4 1.7 2.4 2.1 2.1 2.5 3.0 3.3 1.8 1.7 2.5 2.3

99% CI 3.2 2.2 3.2 2.8 2.8 3.3 3.9 4.4 2.4 2.3 3.3 3.0

S.D 2.4 5.2 4.5 3.8 3.3 4.1 2.7 4.3 4.8 4.4 5.1 2.2

90% CI 1.2 2.7 2.3 2.0 1.7 2.1 1.4 2.2 2.5 2.3 2.7 1.1

95% CI 1.5 3.2 2.8 2.4 2.0 2.5 1.7 2.7 3.0 2.7 3.2 1.4

99% CI 2.0 4.2 3.7 3.1 2.7 3.3 2.2 3.5 3.9 3.6 4.2 1.8

S.D 3.1 4.9 5.5 5.2 4.8 3.9 3.3 3.3 4.7 4.2 4.2 3.8

90% CI 1.6 2.5 2.9 2.7 2.5 2.0 1.7 1.7 2.4 2.2 2.2 2.0

95% CI 1.9 3.0 3.4 3.2 3.0 2.4 2.0 2.0 2.9 2.6 2.6 2.4

99% CI 2.5 4.0 4.5 4.2 3.9 3.2 2.7 2.7 3.8 3.4 3.4 3.1

SET2

GAT2

period

Simulation time (hours)

GFMAS

T2DR

QLT2

QLT1
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On the whole, a 59% improvement in the time delay and 71% improvement in the 

speed of vehicles were observed for QLT2 signal controls over HMS. Least 

improvement was observed in T2DR controls. It is interesting to note that GAT2 

signal control performed better than SET2 signal control. Table 7.12 shows the 

percentage improvement in reducing the travel time delay and increasing mean speed 

of vehicles inside the network over HMS signal control. 

Table 7.12. Percentage improvement of travel time delay and mean speed over HMS 

signal control 

Travel time delay Mean speed

QLT2 59.2 71

QLT1 57.3 66

SET2 54.4 62

GAT2 58.2 70

GFMAS 51 59

T2DR 49.9 57

Percentage improvement over HMS

Control Technique

 

Figure 7.11 and 7.12 shows the average value of time delay and speed experienced 

during simulation runs with different random seeds respectively. A distinct lag 

between the travel time delay and the improvement in speed can be observed. Further, 

QLT2 and GAT2 shows a low level of fluctuation in mean speed of vehicles 

indicating a smooth and consistent control. T2DR shows the largest fluctuation and 

can be deduced as the least performing signal control among the proposed multi-agent 

systems. 
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Figure 7.11. Total mean delay experienced for a twenty four hour, eight peak traffic 

scenario 
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Figure 7.12. Mean speed of vehicles for twenty four hour, eight peak traffic scenario 
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Figure 7.13. Number of vehicles inside the network for twenty four hour, eight peak 

traffic scenario 

7.5. LINK AND LANE CLOSURES  

Link and lane closures are of practical importance and recreate the conditions of road 

blockage due to pre organized or planned events such as clearance of roadside trees, 

scheduled maintenance of traffic management systems like VMS (Variable message 

signs), ERP ( Electronic road pricing units) maintenance, or  special events like 

“Formula One car racing”.  Planned events reduces the capacity of the traffic 

infrastructure. Total traffic handling capacity of the road network was reduced by 

closing down lanes in the road structure. This scenario is similar to step input in 

control system.  

The average travel time delay of vehicles when experiencing multiple peak traffic 

scenario with two major lane closure is shown in Figure 7.14. There is a shift in the 
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total travel time delay and a increase in the delay during the start period. The main 

reason for this is the routing mechanism used in PARAMICS. The routing is usually 

performed by calculating the feedback costs associated with each link network wide 

for every pre-specified interval (five minutes in this case). This causes the vehicles to 

opt for major links thereby achieving better optimization and lesser travel delay time. 

This particular effect is not prominently witnessed when only a single lane is closed. 

This behaviour can be seen in Figure 7.15. This experimentation proves the reliable 

performance of the proposed signal controls to the change in infrastructure capacity.  

All the plotted results are the average of ten simulation runs.  
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Figure 7.14. Two lane closure – Mean travel time delay of vehicles 
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Figure 7.15. Single lane closure – Mean travel time delay of vehicles 

7.6. INCIDENTS AND ACCIDENTS 

Incidents and accidents simulation try to replicate the random reduction in the 

infrastructure capacity due to unforeseen reasons like vehicle crash, that cannot be 

controlled. Incidents were created randomly during the first peak period of the traffic 

simulation using the incidents file in PARAMICS. Responsiveness of the proposed 

multi-agent traffic signal controls to such intermittent disturbances, which are 

analogous to impulse inputs, were studied using this scenario. The detection and 

clearance of the incidents is assumed to be handled by different sub-units of the traffic 

management system which do not come under the multi-agent signal control 

architecture currently.  

Figure 7.16-7.17 shows the various scenarios simulated for this study. The incidents 

were created during the first peak period to examine the response and time taken to 
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settle down. The incidents were simulated in the link connecting Victoria St with 

Rochor Road, and in the link connecting Rochor Road to Bencoolean St. as indicated 

in the network map in chapter 6. It can be observed that two simultaneous incidents at 

different links cause the proposed multi-agent traffic signal control performance to 

degrade. Although the incidents were simulated very close to the peak traffic period, 

the increase in the traffic is considerably lesser and the proposed multi-agent traffic 

signal controls were able to effectively handle the increased traffic congestion, and 

bring down the average delay experienced by the vehicles.  

GFMAS experienced the largest fluctuation in travel time delay. QLT2 signal control 

showed the least variation in the travel time delay. The behaviour of all signal 

controls were on expected lines as seen in the twenty four hour eight peak traffic 

simulation scenario. The only difference was the increased traffic experienced at the 

start period due to incident. The test conclusively proves the ability of the proposed 

multi-agent traffic signal controls in handling unexpected change in the traffic pattern. 
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Figure 7.16. Single incident simulation – Multiple peak traffic scenario 
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Figure 7.17. Two incidents simulation – Multiple peak traffic scenario 

In conclusion, QLT2 signal control performed the best under all traffic simulation 

scenarios, both for the regular traffic simulation scenarios and events. The 
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performance could be attributed to the online learning feature of the QLT2 signal 

control. Though QLT1 signal controls also have online learning capabilities, their 

performance were not equivalent to QLT2 because of the absence of type-2 fuzzy 

decision system.  

Table 7.13. Comparison of the proposed signal control methods with HMS in terms of 

computation and communication 

Control Method Computational Complexity Computational Cost Communication Overhead

QLT2 Low Low Low

SET2 High Low Low

GFMAS High High Low

T2DR High High Low
 

The batch learning multi-agent systems SET2 and GAT2 did not perform well 

because the learning was based on the average fitness function values computed over 

a period of three hours. This dilutes the difference in fitness function between various 

multi-agent signal controls and reduces the ability of the system to handle the 

variation in traffic during lower peak period. This increases the total baseline travel 

time delay experienced by the vehicles and an overall shift in the value. SET2 

performed better than GAT2 because of the increased coverage of state action space 

than GA. The evolution of  membership functions parameters and rule base as two 

different individual entities in SET2 ensures better exploration of state space. Since 

the fitness function for the individual population  is shared, it allows co-evolution of 

the parameters. This is the main reason for the improved performance over HMS.   
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HMS signal control used an actor-critic based reinforcement learning. Actor-critic 

network are sensitive to exploration and requires the selected actions to be randomly 

perturbed to improve performance. However, the developed system did not have any 

such feature to improve exploration. The second disadvantage is the policy selected 

must be kept fixed for proper learning. However, the rule base was evolved using 

genetic algorithm removing the reference point for critic learning. The back 

propagation method used in HMS selectively updated only active rules based on a 

threshold value. Improper selection of threshold prevents weight values and 

parameters to be updated. These are few of the reasons why the proposed methods 

were able to perform better than the HMS signal control method. Table 7.13 shows a 

comparison of the performance of the proposed traffic signal controls over HMS 

signal control in terms of computational complexity, computational cost and 

communication overhead. QLT2 signal control has the lowest in all of these 

parameters as the control uses a single iteration level each time to decide the actions 

and learning whereas in SET2 separate memory is required to store the fitness values 

during the entire period of training pattern inputs.  

7.7. SUMMARY 

In this chapter, the various traffic simulation scenarios as well the results obtained 

have been presented and analyzed in detail. A comparative analysis of the results 

show the better performance of the proposed multi-agent traffic signal control 

methods over HMS traffic signal control. The reasons for such a marked improved 

have been presented and discussed. From the results, it was observed that the online 

learning based systems outperform heuristically designed controls. Among the 

learning systems, QLT2 performed the best. The following chapter will draw a 
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conclusion to this dissertation and explore the open research avenues for future 

research work.  
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CHAPTER 8 

CONCLUSIONS 

 

This chapter concludes the dissertation and provides recommendations for the future 

research that could enhance the functionality of the proposed multi-agent system. 

8.1. OVERALL CONCLUSION 

The objective of this thesis was to develop a distributed, multi-agent based approach 

to traffic signal timing optimization and control. The choice for a distributed approach 

was motivated by the fact that a centralized traffic control approach is often not 

feasible due to computational complexity, communication overhead, and lack of 

scalability. 

The creation of a distributed, multi agent approach requires the subdivision of the 

traffic control problem into several loosely coupled sub-problems, such that the 

combination of all the solutions of the sub problems together provide an approximate 

solution to the original traffic control problem.  

In the multi-agent framework proposed in this dissertation, each agent located at the 

intersection tries to optimize the green timing of the intersection rather than the whole 

network with an objective to minimize the travel time delay and increasing mean 

speed of vehicles inside the road network. In order to perform this,  four 

computational intelligent decision systems have been proposed. Type-2 fuzzy sets 

was used as the main component of the intelligent decision system. The ability of 

type-2 fuzzy sets to handle the level of uncertainties associated with the data and 
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stochasticity associated with the dynamic environment, it is an ideal candidate for use 

in traffic signal timing optimization. 

Two of the proposed decision system (T2DR and GFMAS) were designed based on 

heuristics and the rule base for the type-2 fuzzy sets were obtained by deductive 

reasoning. This approach performed reasonably well during the high traffic 

conditions, however, the performance degraded when subjected to a high stress traffic 

condition.  

Third proposed decision system (SET2) exhibits better adaptation than those designed 

using heuristic methods. It used online batch learning method to adapt the parameters 

of the type-2 fuzzy sets and at the same time evolve the fuzzy rules. Stochastic 

optimization technique using symbiotic evolutionary genetic algorithm was able to 

evolve the parameters better than the traditional GA approach. The cooperative co-

evolutionary approach based on fitness sharing between clusters and the neighbouring 

agents was able to provide better results compared to GA with fitness sharing.   

The last proposed decision system was an online learning neuro-type2 fuzzy system 

whose parameters were adapted every evaluation period unlike the SET2, where the 

parameters were updated after the completion of a simulation run. The update is based 

on the objective to maximize the overall reward received by an agent using back 

propagation technique. The method also combined decision system for all the phases 

into a single network unlike the other three approaches. This considerably improved 

the performance over all other proposed multi agent systems and the benchmark 

multi-agent system. 
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8.2. MAIN CONTRIBUTIONS 

The main contributions of this research were in the conceptualization, development 

and application of a distributed multi-agent architecture to urban traffic signal timing 

optimization problem. The significant contributions made in the design front are as 

follows. 

 The development of a generalized distributed multi-agent framework with 

hybrid computational intelligent decision making capabilities for 

homogeneous agent structure. The modular concept used in the design 

allows the reuse of components without major modifications to its internal 

structure.  

 The development of deductive reasoning method for the construction of 

membership functions, rule base of type-2 fuzzy sets and calculating the 

level of cooperation required between agents. Manual clustering of the 

data and fine tuning of the rule base created using expert knowledge 

through trial and error method to achieve lower travel time delay and 

improved mean speed of vehicles inside the road network. 

 The development of cooperation strategies in multi-agent system through 

internal belief model by incorporating communicated neighbour agent 

status information. Two different structures with communicated neighbour 

status data as an integral part of decision system and as an auxiliary input 

external to the decision system were experimented.   
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 The development of symbiotic evolutionary learning method for 

coevolving membership functions and rule base for the type-2 fuzzy 

decision system. Modified the general symbiotic evolutionary method to 

coevolve the cluster mean and spread along with the number of rules and 

significant inputs in each rule. Comparison with genetic algorithm based 

evolution showed an improved performance while using modified 

symbiotic evolutionary learning for evolving parameters of type-2 fuzzy 

sets. 

 The development of modified Q-learning technique with shared reward 

values for solving distributed urban traffic signal control problem. 

Adapted the general Q-learning method to a distributed problem by 

sharing the reward values to improve the global view and prevent 

premature convergence. 

 The development and relocation of the modified type-reducer using neural 

networks to reduce the computational complexity associated with sorting 

and defuzzification process in interval type-2 fuzzy sets.  

 The development of traffic simulation scenarios to test the reliability and 

responsiveness of the developed traffic signal controls. 

8.3. RECOMMENDATIONS FOR FUTURE RESEARCH WORK 

Considerable amount of work has been done by researchers in the area of multi agent 

systems application to traffic control. However, a solid multi agent framework with 

hybrid computational intelligent techniques haven‟t been developed. Most of the 
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systems developed exhibits only partial or weak agency. Further, the field of multi 

agent system by itself is a relatively new field with a lot of open avenues for research. 

Some of the recommendations for future research work are given below. 

 The proposed multi agent architecture was designed specifically for the urban 

traffic signal control problem. However, there are many other applications that 

are similar to traffic control problem and have similar restrictions. Network 

packet routing, ATM networks are examples of such similar systems. In order 

to effectively use the proposed multi agent system for such application, it is 

essential to generalize the framework and create standard templates that can be 

easily embedded into the custom codes. 

 In this dissertation, the offset timing and direction of coordination were kept 

fixed. The main reason is the non-availability of the network wide 

performance information. For improving the performance further, a distributed 

method to obtain the offset value must be developed. In HMS, the offset 

adjustment was possible because of hierarchical nature of the system and 

regional control agents had a better view of a section of the network. 

 In the proposed multi agent architecture, the protocol used was similar to 

FIPA protocol but not all the functionalities were included. For example, 

service request and acknowledgement were not used as the agents were 

homogeneous and had the same functionality with no delegation of duty to 

adjacent agents. However, to connect to legacy systems used in traffic signal 

control all the functionalities needs to be introduced. 
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 Parallel evaluation of multiple solution of an agent must be developed using 

multithreading feature. In the current architecture, the multithreading or 

parallelization is at the level of agent and not used in the internal evaluation. 

This is essential to test multi agent system for applications with rapid changing 

environment.  

 The Q-learning approach implemented in our study communicated or passed 

reinforcement or reward values among the agents. This is a scalar quantity and 

provides very little direction towards optimal solution. Communicating the 

value function or Q-values would improve the performance to a great extent. 

However, the challenge is in storing the state action pair values for the 

continuous input and perform update in a distributed manner. 
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