893 research outputs found

    Electronically-switched Directional Antennas for Low-power Wireless Networks: A Prototype-driven Evaluation

    Get PDF
    We study the benefits of electronically-switched directional antennas in low-power wireless networks. This antenna technology may improve energy efficiency by increasing the communication range and by alleviating contention in directions other than the destination, but in principle requires a dedicated network stack. Unlike most existing works, we start by characterizing a real-world antenna prototype, and apply this to an existing low-power wireless stack, which we adapt with minimal changes. Our results show that: i) the combination of a low-cost directional antenna and a conventional network stack already brings significant performance improvements, e.g., nearly halving the radio-on time per delivered packet; ii) the margin of improvement available to alternative clean-slate protocol designs is similarly large and concentrated in the control rather than the data plane; iii) by artificially modifying our antenna's link-layer model, we can point at further potential benefits opened by different antenna designs

    Airborne Directional Networking: Topology Control Protocol Design

    Get PDF
    This research identifies and evaluates the impact of several architectural design choices in relation to airborne networking in contested environments related to autonomous topology control. Using simulation, we evaluate topology reconfiguration effectiveness using classical performance metrics for different point-to-point communication architectures. Our attention is focused on the design choices which have the greatest impact on reliability, scalability, and performance. In this work, we discuss the impact of several practical considerations of airborne networking in contested environments related to autonomous topology control modeling. Using simulation, we derive multiple classical performance metrics to evaluate topology reconfiguration effectiveness for different point-to-point communication architecture attributes for the purpose of qualifying protocol design elements

    Visualization of Wormholes in Sensor Networks

    Get PDF
    Several protocols have been proposed to defend against wormholes in ad hoc networks by adopting positioning devices, synchronized clocks, or directional antennas. In this paper, we propose a mechanism, MDS-VOW, to detect wormholes in a sensor network. MDS-VOW first reconstructs the layout of the sensors using multi-dimensional scaling. To compensate the distortions caused by distance measurement errors, a surface smoothing scheme is adopted. MDS-VOW then detects the wormhole by visualizing the anomalies introduced by the attack. The anomalies, which are caused by the fake connections through the wormhole, bend the reconstructed surface to pull the sensors that are faraway to each other. Through detecting the bending feature, the wormhole is located and the fake connections are identified. The contributions of MDS-VOW are: (1) it does not require the sensors to be equipped with special hardware, (2) it adopts and combines the techniques from social science, computer graphics, and scientific visualization to attack the problem in network security. We examine the accuracy of the proposed mechanism when the sensors are deployed in a circle area and one wormhole exists in the network. The results show that MDS-VOW has a low false alarm ratio when the distance measurement errors are not large

    On Heterogeneous Neighbor Discovery in Wireless Sensor Networks

    Full text link
    Neighbor discovery plays a crucial role in the formation of wireless sensor networks and mobile networks where the power of sensors (or mobile devices) is constrained. Due to the difficulty of clock synchronization, many asynchronous protocols based on wake-up scheduling have been developed over the years in order to enable timely neighbor discovery between neighboring sensors while saving energy. However, existing protocols are not fine-grained enough to support all heterogeneous battery duty cycles, which can lead to a more rapid deterioration of long-term battery health for those without support. Existing research can be broadly divided into two categories according to their neighbor-discovery techniques---the quorum based protocols and the co-primality based protocols.In this paper, we propose two neighbor discovery protocols, called Hedis and Todis, that optimize the duty cycle granularity of quorum and co-primality based protocols respectively, by enabling the finest-grained control of heterogeneous duty cycles. We compare the two optimal protocols via analytical and simulation results, which show that although the optimal co-primality based protocol (Todis) is simpler in its design, the optimal quorum based protocol (Hedis) has a better performance since it has a lower relative error rate and smaller discovery delay, while still allowing the sensor nodes to wake up at a more infrequent rate.Comment: Accepted by IEEE INFOCOM 201

    Routing schemes in FANETs: a survey

    Get PDF
    Flying ad hoc network (FANET) is a self-organizing wireless network that enables inexpensive, flexible, and easy-to-deploy flying nodes, such as unmanned aerial vehicles (UAVs), to communicate among themselves in the absence of fixed network infrastructure. FANET is one of the emerging networks that has an extensive range of next-generation applications. Hence, FANET plays a significant role in achieving application-based goals. Routing enables the flying nodes to collaborate and coordinate among themselves and to establish routes to radio access infrastructure, particularly FANET base station (BS). With a longer route lifetime, the effects of link disconnections and network partitions reduce. Routing must cater to two main characteristics of FANETs that reduce the route lifetime. Firstly, the collaboration nature requires the flying nodes to exchange messages and to coordinate among themselves, causing high energy consumption. Secondly, the mobility pattern of the flying nodes is highly dynamic in a three-dimensional space and they may be spaced far apart, causing link disconnection. In this paper, we present a comprehensive survey of the limited research work of routing schemes in FANETs. Different aspects, including objectives, challenges, routing metrics, characteristics, and performance measures, are covered. Furthermore, we present open issues

    AODV enhanced by Smart Antennas

    Get PDF

    Impact of directional antennas on routing and neighbor discovery in wireless ad-hoc networks

    Get PDF
    Wireless ad-hoc networks are data networks that are deployed without a fixed infrastructure nor central controllers such as access points or base stations. In these networks, data packets are forwarded directly to the destination node if they are within the transmission range of the sender or sent through a multi-hop path of intermediary nodes that act as relays. This paradigm where a fixed infrastructure is not needed, is tolerant to topology changes and allows a fast deployment have been considered as a promissory technology that is suitable for a large number of network implementations, such as mobile hand-held devices, wireless sensors, disaster recovery networks, etc. Recently, smart directional antennas have been identified as a robust technology that can boost the performance of wireless ad-hoc networks in terms of coverage, connectivity, and capacity. Contrary to omnidirectional antennas, which can radiate energy in all directions, directional antennas can focus the energy in a specific direction, extending the coverage range for the same power level. Longer ranges provide shorter paths to destination nodes and also improve connectivity. Moreover, directional antennas can reduce the number of collisions in a contention-based access scheme as they can steer the main lobe in the desired direction and set nulls in all the others, thereby they minimize the co-channel interference and reduce the noise level. Connections are more reliable due to the increased link stability and spatial diversity. Shorter paths, as well as alternative paths, are also available as a consequence of the use of directional antennas. All these features combined results in a higher network capacity. Most of the previous research has focused on adapting the existing medium access control and routing protocols to utilize directional communications. This research work is novel because it improves the neighbor discovery process as it allows to discover nodes in the second neighborhood of a given node using a gossip based procedure and by sharing the relative position information obtained during this stage with the routing protocol with the aim of reducing the number of hops between source and destination. We have also developed a model to evaluate the energy consumed by the nodes when smart directional antennas are used in the ad-hoc network. This study has demonstrated that by adapting the beamwidth of the antennas nodes are able to reach furthest nodes and consequently, reduce the number of hops between source and destination. This fact not only reduces the end-to-end delay and improves the network throughput but also reduces the average energy consumed by the whole network
    • …
    corecore