1,769 research outputs found

    Routing schemes in FANETs: a survey

    Get PDF
    Flying ad hoc network (FANET) is a self-organizing wireless network that enables inexpensive, flexible, and easy-to-deploy flying nodes, such as unmanned aerial vehicles (UAVs), to communicate among themselves in the absence of fixed network infrastructure. FANET is one of the emerging networks that has an extensive range of next-generation applications. Hence, FANET plays a significant role in achieving application-based goals. Routing enables the flying nodes to collaborate and coordinate among themselves and to establish routes to radio access infrastructure, particularly FANET base station (BS). With a longer route lifetime, the effects of link disconnections and network partitions reduce. Routing must cater to two main characteristics of FANETs that reduce the route lifetime. Firstly, the collaboration nature requires the flying nodes to exchange messages and to coordinate among themselves, causing high energy consumption. Secondly, the mobility pattern of the flying nodes is highly dynamic in a three-dimensional space and they may be spaced far apart, causing link disconnection. In this paper, we present a comprehensive survey of the limited research work of routing schemes in FANETs. Different aspects, including objectives, challenges, routing metrics, characteristics, and performance measures, are covered. Furthermore, we present open issues

    Adoption of vehicular ad hoc networking protocols by networked robots

    Get PDF
    This paper focuses on the utilization of wireless networking in the robotics domain. Many researchers have already equipped their robots with wireless communication capabilities, stimulated by the observation that multi-robot systems tend to have several advantages over their single-robot counterparts. Typically, this integration of wireless communication is tackled in a quite pragmatic manner, only a few authors presented novel Robotic Ad Hoc Network (RANET) protocols that were designed specifically with robotic use cases in mind. This is in sharp contrast with the domain of vehicular ad hoc networks (VANET). This observation is the starting point of this paper. If the results of previous efforts focusing on VANET protocols could be reused in the RANET domain, this could lead to rapid progress in the field of networked robots. To investigate this possibility, this paper provides a thorough overview of the related work in the domain of robotic and vehicular ad hoc networks. Based on this information, an exhaustive list of requirements is defined for both types. It is concluded that the most significant difference lies in the fact that VANET protocols are oriented towards low throughput messaging, while RANET protocols have to support high throughput media streaming as well. Although not always with equal importance, all other defined requirements are valid for both protocols. This leads to the conclusion that cross-fertilization between them is an appealing approach for future RANET research. To support such developments, this paper concludes with the definition of an appropriate working plan

    Performance Evaluation of Ad Hoc Routing in a Swarm of Autonomous Aerial Vehicles

    Get PDF
    This thesis investigates the performance of three mobile ad hoc routing protocols in the context of a swarm of autonomous unmanned aerial vehicles (UAVs). It is proposed that a wireless network of nodes having an average of 5.1774 log n neighbors, where n is the total number of nodes in the network, has a high probability of having no partitions. By decreasing transmission range while ensuring network connectivity, and implementing multi-hop routing between nodes, spatial multiplexing is exploited whereby multiple pairs of nodes simultaneously transmit on the same channel. The proposal is evaluated using the Greedy Perimeter Stateless Routing (GPSR), Optimized Link State Routing (OLSR), and Ad hoc On-demand Distance Vector (AODV) routing protocols in the context of a swarm of UAVs using the OPNET network simulation tool. The first-known implementation of GPSR in OPNET is constructed, and routing performance is observed when routing protocol, number of nodes, transmission range, and traffic workload are varied. Performance is evaluated based on proportion of packets successfully delivered, average packet hop count, and average end-to-end delay of packets received. Results indicate that the routing protocol choice has a significant impact on routing performance. While GPSR successfully delivers 50% more packets than OLSR, and experiences a 53% smaller end-to-end delay than AODV when routing packets in a swarm of UAVs, increasing transmission range and using direct transmission to destination nodes with no routing results in a level of performance not achieved using any of the routing protocols evaluated

    ECaD: Energy‐efficient routing in flying ad hoc networks

    Get PDF
    Much progress can be expected in the domain of unmanned aerial vehicle (UAV) communication by the next decade. The cooperation between multiple UAVs in the air exchanging data among themselves can naturally form a flying ad hoc network (FANET). Such networks can be the key support to accomplish several kinds of missions while providing the required assistance to terrestrial networks. However, they are confronted with many challenges and difficulties, which are due to the high mobility of UAVs, the frequent packet losses, and the weak links between UAVs, all affecting the reliability of the data delivery. Furthermore, the unbalanced energy consumption may result in earlier UAV failure and consequently accelerate the decrease of the network lifetime, thus disrupting the overall network. This paper supports the use of the movement information and the residual energy level of each UAV to guarantee a high level of communication stability while predicting a sudden link breakage prior to its occurrence. A robust route discovery process is used to explore routing paths where the balanced energy consumption, the link breakage prediction, and the connectivity degree of the discovered paths are all considered. The performance of the scheme is evaluated through a series of simulations. The outcomes demonstrate the benefits of the proposed scheme in terms of increasing the lifetime of the network, minimizing the number of path failures, and decreasing the packet losses.Much progress can be expected in the domain of unmanned aerial vehicle (UAV) communication by the next decade. The cooperation between multiple UAVs in the air exchanging data among themselves can naturally form a flying ad hoc network (FANET). Such networks can be the key support to accomplish several kinds of missions while providing the required assistance to terrestrial networks. However, they are confronted with many challenges and difficulties, which are due to the high mobility of UAVs, the frequent packet losses, and the weak links between UAVs, all affecting the reliability of the data delivery. Furthermore, the unbalanced energy consumption may result in earlier UAV failure and consequently accelerate the decrease of the network lifetime, thus disrupting the overall network. This paper supports the use of the movement information and the residual energy level of each UAV to guarantee a high level of communication stability while predicting a sudden link breakage prior to its occurrence. A robust route discovery process is used to explore routing paths where the balanced energy consumption, the link breakage prediction, and the connectivity degree of the discovered paths are all considered. The performance of the scheme is evaluated through a series of simulations. The outcomes demonstrate the benefits of the proposed scheme in terms of increasing the lifetime of the network, minimizing the number of path failures, and decreasing the packet losses

    Using artificial intelligence to support emerging networks management approaches

    Get PDF
    In emergent networks such as Internet of Things (IoT) and 5G applications, network traffic estimation is of great importance to forecast impacts on resource allocation that can influence the quality of service. Besides, controlling the network delay caused with route selection is still a notable challenge, owing to the high mobility of the devices. To analyse the trade-off between traffic forecasting accuracy and the complexity of artificial intelligence models used in this scenario, this work first evaluates the behavior of several traffic load forecasting models in a resource sharing environment. Moreover, in order to alleviate the routing problem in highly dynamic ad-hoc networks, this work also proposes a machine-learning-based routing scheme to reduce network delay in the high-mobility scenarios of flying ad-hoc networks, entitled Q-FANET. The performance of this new algorithm is compared with other methods using the WSNet simulator. With the obtained complexity analysis and the performed simulations, on one hand the best traffic load forecast model can be chosen, and on the other, the proposed routing solution presents lower delay, higher packet delivery ratio and lower jitter in highly dynamic networks than existing state-of-art methods

    On the Delay of Reactive-Greedy-Reactive Routing in Unmanned Aeronautical Ad-hoc Networks

    Get PDF
    AbstractReactive-Greedy-Reactive (RGR) has been proposed as a promising routing protocol in highly mobile density-variable Unmanned Aeronautical Ad-hoc Networks (UAANETs). In RGR, location information of Unmanned Aerial Vehicles (UAVs) as well as reactive end-to-end paths are employed in the routing process. It had already been shown that RGR outperforms existing routing protocols in terms of packet delivery ratio. In this paper, the delay performance of RGR is evaluated and compared against Ad-hoc On-demand Distance Vector (AODV) and Greedy Geographic Forwarding (GGF).We considerextensive simulation scenariostocover both searchingand tracking applicationsofUAANETs. The results illustrate that when the number of UAVs is high enough in a searching mission to form a connected UAANET, RGR performs well. In sparsely connected searching scenarios or dense tracking scenarios, RGR may also slightly decrease delay compared to traditional reactive routing protocols for similar PDR

    Design, Analysis and Evaluation of Unmanned Aerial Vehicle Ad hoc Network for Emergency Response Communications

    Get PDF
    In any emergency situation, it is paramount that communication be established between those affected by an emergency and the emergency responders. This communication is typically initiated by contacting an emergency service number such as 9-1-1 which will then notify the appropriate responders. The communication link relies heavily on the use of the public telephone network. If an emergency situation causes damage to, or otherwise interrupts, the public telephone network then those affected by the emergency are unable to call for help or warn others. A backup emergency response communication system is required to restore communication in areas where the public telephone network is inoperable. The use of unmanned aerial vehicles is proposed to act as mobile base stations and route wireless communication to the nearest working public telephone network access point. This thesis performs an analysis based on wireless attributes associated with communication in this type of network such as channel capacity, network density and propagation delay

    S-ROGUE: Routing protocol for Unmanned Systems on the Surface

    Get PDF
    International audienceThe cooperation of heterogeneous unmanned systems , for instance, between aerial engines and terrestrial engines, relies on reliable communication. Data delivery is ensured by routing protocols, but traditional routing approaches, MANET and DTN, are not efficient in such networks. In this paper, we propose the S-ROGUE routing protocol combining the paradigms MANET and DTN and switching between them according to the network connectivity. On the one hand, the S-ROGUE MANET algorithm relies on a proactive approach and a novel metric to anticipate link disruptions and detect unidirectional links. On the other hand, the S-ROGUE DTN algorithm uses on a reinforcement learning technique to select the best routing action. It implements also a replication control and packet prioritization to improve routing performances. We lead a performance evaluation of S-ROGUE with similar routing protocols in realistic simulated environments and conclude that S-ROGUE has the best routing performance regardless the scenarios
    corecore