25 research outputs found

    Negative binomial mixed models for analyzing microbiome count data

    Get PDF
    Background: Recent advances in next-generation sequencing (NGS) technology enable researchers to collect a large volume of metagenomic sequencing data. These data provide valuable resources for investigating interactions between the microbiome and host environmental/clinical factors. In addition to the well-known properties of microbiome count measurements, for example, varied total sequence reads across samples, over-dispersion and zero-inflation, microbiome studies usually collect samples with hierarchical structures, which introduce correlation among the samples and thus further complicate the analysis and interpretation of microbiome count data. Results: In this article, we propose negative binomial mixed models (NBMMs) for detecting the association between the microbiome and host environmental/clinical factors for correlated microbiome count data. Although having not dealt with zero-inflation, the proposed mixed-effects models account for correlation among the samples by incorporating random effects into the commonly used fixed-effects negative binomial model, and can efficiently handle over-dispersion and varying total reads. We have developed a flexible and efficient IWLS (Iterative Weighted Least Squares) algorithm to fit the proposed NBMMs by taking advantage of the standard procedure for fitting the linear mixed models. Conclusions: We evaluate and demonstrate the proposed method via extensive simulation studies and the application to mouse gut microbiome data. The results show that the proposed method has desirable properties and outperform the previously used methods in terms of both empirical power and Type I error. The method has been incorporated into the freely available R package BhGLM (http://www.ssg.uab.edu/bhglm/ and http://github.com/abbyyan3/BhGLM), providing a useful tool for analyzing microbiome data

    Precursor-derived in-water peracetic acid impacts on broiler performance, gut microbiota and antimicrobial resistance genes

    Get PDF
    Past antimicrobial misuse has led to the spread of antimicrobial resistance amongst pathogens, reportedly a major public health threat. Attempts to reduce the spread of antimicrobial resistant (AMR) bacteria are in place worldwide, among which finding alternatives to antimicrobials have a pivotal role. Such molecules could be used as “green alternatives” to reduce the bacterial load either by targeting specific bacterial groups or more generically, functioning as biocides when delivered in vivo. In this study, the effect of in-water peracetic acid as a broad-spectrum antibiotic alternative for broilers was assessed via hydrolysis of precursors sodium percarbonate and tetraacetylethylenediamine. Six equidistant peracetic acid levels were tested from 0 to 50 ppm using four pens per treatment and 4 birds per pen (i.e., 16 birds per treatment and 96 in total). Peracetic acid was administered daily from d 7 to 14 of age whilst measuring performance parameters and end-point bacterial concentration (qPCR) in crop, jejunum, and ceca, as well as crop 16S sequencing. PAA treatment, especially at 20, 30, and 40 ppm, increased body weight at d 14, and feed intake during PAA exposure compared to control (P < 0.05). PAA decreased bacterial concentration in the crop only (P < 0.05), which was correlated to better performance (P < 0.05). Although no differences in alpha- and beta-diversity were found, it was observed a reduction of Lactobacillus (P < 0.05) and Flectobacillus (P < 0.05) in most treatments compared to control, together with an increased abundance of predicted 4-aminobutanoate degradation (V) pathway. The analysis of the AMR genes did not point towards any systematic differences in gene abundance due to treatment administration. This, together with the rest of our observations could indicate that proximal gut microbiota modulation could result in performance amelioration. Thus, peracetic acid may be a valid antimicrobial alternative that could also positively affect performance

    Overview of data preprocessing for machine learning applications in human microbiome research

    Get PDF
    Although metagenomic sequencing is now the preferred technique to study microbiome-host interactions, analyzing and interpreting microbiome sequencing data presents challenges primarily attributed to the statistical specificities of the data (e.g., sparse, over-dispersed, compositional, inter-variable dependency). This mini review explores preprocessing and transformation methods applied in recent human microbiome studies to address microbiome data analysis challenges. Our results indicate a limited adoption of transformation methods targeting the statistical characteristics of microbiome sequencing data. Instead, there is a prevalent usage of relative and normalization-based transformations that do not specifically account for the specific attributes of microbiome data. The information on preprocessing and transformations applied to the data before analysis was incomplete or missing in many publications, leading to reproducibility concerns, comparability issues, and questionable results. We hope this mini review will provide researchers and newcomers to the field of human microbiome research with an up-to-date point of reference for various data transformation tools and assist them in choosing the most suitable transformation method based on their research questions, objectives, and data characteristics
    corecore