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METHODOLOGY ARTICLE Open Access

Negative binomial mixed models for
analyzing microbiome count data
Xinyan Zhang1, Himel Mallick2,3, Zaixiang Tang4, Lei Zhang4, Xiangqin Cui1, Andrew K. Benson5 and Nengjun Yi1*

Abstract

Background: Recent advances in next-generation sequencing (NGS) technology enable researchers to collect a
large volume of metagenomic sequencing data. These data provide valuable resources for investigating interactions
between the microbiome and host environmental/clinical factors. In addition to the well-known properties of
microbiome count measurements, for example, varied total sequence reads across samples, over-dispersion and
zero-inflation, microbiome studies usually collect samples with hierarchical structures, which introduce correlation
among the samples and thus further complicate the analysis and interpretation of microbiome count data.

Results: In this article, we propose negative binomial mixed models (NBMMs) for detecting the association between
the microbiome and host environmental/clinical factors for correlated microbiome count data. Although having not
dealt with zero-inflation, the proposed mixed-effects models account for correlation among the samples by
incorporating random effects into the commonly used fixed-effects negative binomial model, and can efficiently
handle over-dispersion and varying total reads. We have developed a flexible and efficient IWLS (Iterative Weighted
Least Squares) algorithm to fit the proposed NBMMs by taking advantage of the standard procedure for fitting the
linear mixed models.

Conclusions: We evaluate and demonstrate the proposed method via extensive simulation studies and the application
to mouse gut microbiome data. The results show that the proposed method has desirable properties and outperform
the previously used methods in terms of both empirical power and Type I error. The method has been incorporated
into the freely available R package BhGLM (http://www.ssg.uab.edu/bhglm/ and http://github.com/abbyyan3/BhGLM),
providing a useful tool for analyzing microbiome data.

Keywords: Count data, Correlated measures, Microbiome, Metagenomics, Random effects, Negative binomial model,
Penalized Quasi-likelihood

Background
The advent of next-generation sequencing (NGS) tech-
nology enables the generation of large volume of meta-
genomic sequencing data at moderate cost [1–3]. This
opens a new era of metagenomics studies to explore
microbial communities sampled directly from the envi-
ronments without need for cultivation [4–6]. The meta-
genomic sequencing data provide valuable resources for
investigating associations between the microbiome and
host environmental/clinical factors. Accurately identify-
ing and understanding these associations is critical to
elucidate the true roles of the microbiome in health and

disease states and for development of new diagnostics
and therapeutic targets based on the microbiome [7–
10]. Recent studies have found that the human micro-
biome is influenced by various host factors including
genotype [11–14], lifestyle such as dietary habit [15, 16],
physiological status such as aging [17], pathophysiological
status [18], and host environment [19]. Abnormalities in
compositional features of the microbiome are associated
with human diseases such as obesity [20], diabetes [21],
inflammatory bowel disease [22], and cancers [23].
Despite our ability to generate large-scale metage-

nomic sequencing data, study of the microbiome is still
in its infancy and many challenges exist to decipher the
mechanisms through which the microbiome affects
human health. One of the challenges is the development
of robust and powerful statistical methods and
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computational tools for properly analyzing and inter-
preting complex microbiome data. High-throughput
microbiome datasets generated by the 16S ribosome
RNA (rRNA) gene sequencing or shotgun metagenomic
sequencing have some properties that require tailored
analytic tools; these include count compositional struc-
ture, varied total sequence reads across samples, over-
dispersion and zero-inflation. Several methods have been
developed to tackle these properties. One way to ac-
count for varing total reads is normalization, i.e., conver-
sion of the sequence counts to the relative abundance
(or proportion) using the total sum, mean, or median of
representative OTUs across all samples [7, 24–27]. The
negative binomial regression, which is a standard statis-
tical method for analyzing over-dispersed count observa-
tions, has been recently applied to microbiome data
[28]. On the other hand, several zero-inflated models
have also been proposed to correct for excess zero
counts in microbiome measurements, including zero-
inflated Gaussian, lognormal, negative bimomial and
beta models [25, 29–32].
In addition to the challenges resulting from the char-

acteristics of microbiome count data, there are other
statistical issues due to the study designs commonly
used in microbiome studies. Microbiome studies usu-
sally collect samples from study designs that bring about
hierarchical, spatial, and temporal dependences [32–39],
which introduce correlation among the samples and thus
further complicate the analysis and interpretation of
microbiome count data. Since related samples tend to
harbor more similar microbiota than unrelated ones [11,
38], ignoring the correlation among samples can result
in biased inference and misleading results. Thus, statis-
tical models for accounting for the correlation among
samples are crucially required [11, 38, 40].
The literature on mixed-effects models for analyzing

microbiome count data is sparse. Most of the previous
studies resort to linear mixed models (LMMs) to ac-
count for hierarchical structures in microbiome study
designs by treating transformed data as normally distrib-
uted responses [33–35, 37, 39]. Such methods may be
suboptimal due to the discrete and compositional nature
of the microbiome measures and can be hard to inter-
pret on the original scale, which might lead to challenges
in future prediction tasks and replication studies. To ad-
dress these limitations, we propose negative binomial
mixed models (NBMMs) for directly modeling the raw
microbiome count data, which bypasses the need for
transformation. Although not dealing with zero-
inflation, the proposed mixed-effects models not only ef-
ficiently handle over-dispersion and varying total reads,
but also account for correlation among the samples. We
develop a flexible IWLS (Iterative Weighted Least
Squares) algorithm to fit the proposed NBMMs by

taking advantage of the standard procedure for fitting
linear mixed models. Through extensive simulations, we
show that the NBMMs outperform the negative bino-
mial model and the previously used linear mixed models
in terms of empirical power and false positive rates. We
also apply our method to previously published mouse
gut microbiome data to detect taxa significantly associ-
ated with high-fat diet. The proposed method is capable
of identifying biologically significant taxa, consistent
with the existing literature. We have implemented the
method in the freely available R package BhGLM, pro-
viding a useful tool for microbiome studies.

Methods
Negative Binomial Mixed Models (NBMMs) for
microbiome studies
Typical microbiome data generated by the 16S rRNA
gene sequencing or the shotgun metagenomic sequen-
cing consist of the following components (see Table 1):
1) Counts, Cij, for n samples and m features. The fea-
tures may refer to bacterial taxa at different hierarchical
levels (species, genus, classes, etc.), groups of correlated
taxa, gene functions, or pathways, etc.; 2) Total se-
quence read (also referred to as depths of coverage or
library size), Ti, for each sample; 3) Host factors, Xi,
representing host clinical/environmental or genetic vari-
ables; 4) Sample variables, Zi, representing sample col-
lection identifier in the hierarchical study design, such as
family structure, repeated measures from multiple body
sites or time points. The goal is to detect associations
between microbiome features Cij and host factors Xi.
The total sequence reads vary from sample to sample by
orders of magnitude and can largely bias comparison of
counts across samples, and thus should be accounted for
in the analysis. Sample variables Zi introduce hierarch-
ical, spatial, and temporal dependence of microbiome
counts, and should be included in the analysis as ran-
dom factors.
Similar to most existing methods, we separately

analyze each feature (count response) in a univariate
fashion. For notational simplification, we denote yi =Cij

for any given feature j. We assume that the count re-
sponse yi follows the negative binomial distribution:

yi eNB yijμi; θð Þ ¼ Γ yi þ θð Þ
Γ θð Þyi!

⋅
θ

μi þ θ

� �θ

⋅
μi

μi þ θ

� �yi

ð1Þ

where μi and θ are the mean and the shape parameter,
respectively, and Γ(·) is the gamma function. The nega-
tive binomial distribution can be expressed as a gamma
mixture of Poisson distribution [41]: yi ~ Poisson(yi|μiεi)
and εi ~ Gamma(θ, θ). It can be derived that E(yi) = μi,
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Var yið Þ ¼ μi þ μ
2

i
θ
, and Var(yi) ≥ E(yi). Thus, the shape

parameter θ controls the amount of over-dispersion.
When θ = +∞, Var(yi) = μi and the negative binomial
model converges to a Poisson model that cannot deal
with over-dispersion.
Our negative binomial mixed models (NBMMs) relate

the mean parameters μi to the host factors Xi (including
the intercept), the sample variables Zi and the total se-
quence reads Ti via the link function logarithm:

log μið Þ ¼ log Tið Þ þ Xiβþ Zib ð2Þ
where log(Ti) is the offset, which corrects for the variation
of the total sequence reads across the samples, β is the
vector of fixed effects for the host factors Xi, and b is the
vector of K random effects for the sample variables Zi. The
random effects are used to model the correlation among
the samples and the multiple sources of variation, and thus
to avoid biased inference on the effects of the host factors
Xi. The vector of the random effects is usually assumed to
follow the multivariate normal distribution [42, 43]:

beNK 0;Ψð Þ ð3Þ
where Ψ is a positive-definite variance-covariance matrix
that determines the form and complexity of random ef-
fects. Although in principle our NBMMs can deal with
various patterns of Ψ, we here describe the method with
a simple case where the random effects are independent,
i.e., b ~NK (0, τ

2I).

The IWLS algorithm for fitting the NBMMs
We propose an IWLS (Iterative Weighted Least Squares)
algorithm to fit the NBMMs by extending the commonly
used algorithms for fitting generalized linear models
(GLMs) and generalized linear mixed models (GLMMs).
For any fixed shape parameter θ, the negative binomial

density is of the exponential form, NB yijμi; θð Þ ¼ exp

yiϑi−b ϑið Þ
ϕ þ c yi;ϕð Þ

n o
, where ϑi ¼ log μi

μiþθ , ϕ = 1, b ϑið Þ
¼ −θ log 1−e log

μi
μiþθ

� �
¼ −θ log 1−eϑi

� �
, and c yi;ϕð Þ ¼ log

Γ yiþθð Þθθ
Γ θð Þyi!

� �
. Therefore, the negative binomial model is a

special case of generalized linear models (GLMs) for any

fixed θ. If θ is an unknown parameter, the negative bino-
mial model is not a GLM. However, the NBMMs can be
fit by iteratively updating the parameters (β, b, τ2) and θ.
Conditional on θ, the NBMM is a special GLMM and thus
the parameters (β, b, τ2) can be updated by using the
GLMMs procedure. Conditional on (β, b), the shape par-
ameter θ can be updated by maximizing the NB likelihood
using the standard Newton–Raphson algorithm [44].
Conditional on θ, we update the parameters (β, b, τ2) by

extending the IWLS algorithm or equivalently the Penal-
ized Quasi-Likelihood procedure for fitting GLMMs. [42,
44–46] The IWLS algorithm proceeds to approximate the
generalized linear model likelihood by a weighted normal
likelihood and then update the parameters from the
weighted normal model [41, 47]. Conditional on the shape
parameter θ, the fixed effects β and the random effects b,
the negative binomial likelihood NB(yi|μi, θ) can be ap-
proximated by the weighted normal likelihood:

NB yijμi; θð Þ≈N tijηi;wi
−1

� �
ð4Þ

where ηi = log(Ti) + Xiβ + Zib, the ‘normal response data’
ti and the ‘weights’ wi are called the pseudo-response
and the pseudo-weights, respectively. The pseudo-
response ti and pseudo-weights wi are calculated by:

ti ¼ η̂i−
L0 yijη̂i; θ̂
� �

L00 yijη̂i; θ̂
� � ; and wi ¼ −L00 yijη̂i; θ̂

� �
ð5Þ

where η̂i ¼ log Tið Þ þ Xiβ̂ þ Zib̂ , L yijη̂i; θ̂
� �

¼ logNB

yijμ̂i; θ̂
� �

, L ' (yi|ηi, θ) = dL(yi|ηi, θ)/dηi, L '' (yi|ηi, θ) =

d2L(yi|ηi, θ)/dηi
2, and β̂; b̂

� �
and θ̂ are the current esti-

mates of (β, b) and θ, respectively. Therefore, the
NBMMs can be approximated by the linear mixed
model with wi as weights:

ti ¼ log Tið Þ þ Xiβþ Zib

þ wi
−1=2

ei; beNK 0; τ2
� �

; eeNn 0; σ2I
� � ð6Þ

The parameters (β, b, τ2, σ2) are then updated from
this linear mixed model by using the standard algorithm
for fitting LMMs.

Table 1 Microbiome Data Structure

Feature 1 Feature 2 · · · Feature m Total read Host factors Sample variables

Sample 1 C11 C12 · · · C1m T1 X1 Z1

Sample 2 C21 C22 · · · C2m T2 X2 Z2

· · · · · · · ·

· · · · · · · ·

· · · · · · · ·

Sample n Cn1 Cn2 · · · Cnm Tn Xn Zn
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In summary, the IWLS for fitting the NBMMs is an it-
erative algorithm and proceeds as follows:

1) Initialize β, b, and θ some plausible values;
2) For j = 1, 2, · · · :

a) Based on the current values (β(j − 1), b(j − 1), θ(j − 1)),
calculate pseudo-response ti

(j) and pseudo-weights
wi
(j);

b) Update (β, b, τ2, σ2) by fitting the LMM (6);
c) Update θ by the standard Newton–Raphson

algorithm.
3) Repeat Step 2) until convergence.

We use the criterion (η(j) − η(j − 1))2 < ε(η(j))2 to assess

convergence, where η jð Þ ¼
Xn
i¼1

log Tið Þ þ Xiβ
jð Þ þ Zib

jð Þ
� �

,

and ε is a small value (say 10−5). At convergence of the al-
gorithm, we get the maximum likelihood estimates of the
fixed effects βk and their confidence intervals from the
final LMM. We then can test H0: βk = 0 following the
LMMs framework.
It has been noted that the maximum likelihood esti-

mator of the shape parameter θ in negative binomial
models often lacks robustness and may be severely
biased or even fail to converge especially if the sample
size is small [48]. Similar to quasi-GLMs [47] and
GLMMs [44–46], the above IWLS algorithm for fitting
the NBMMs introduces an additional parameter σ2,
which can correct for over-dispersion to some extent
even if θ is not well estimated. Therefore, our approach
can be robust and efficient to deal with over-dispersed
microbiome count data.

Computer software for implementing the proposed method
We have created an R function glmm for setting up and
fitting the NBMMs. The function glmm works by re-
peated calls to the function lme in the package nlme.
The function lme is widely used for analyzing linear
mixed models. The function glmm takes advantage of
the nice features in lme, and thus provides an efficient
and flexible tool for analyzing microbiome count data.
We have incorporated the function glmm into our R
package BhGLM, which is freely available from the
website http://www.ssg.uab.edu/bhglm/ and the public
GitHub repository http://github.com/abbyyan3/BhGLM
that includes R codes for examples, simulation studies
and real data analysis in this article.

Results
Simulation studies
Simulation design
We used simulation studies to assess the performance of
the proposed method and to better understand the

properties of our procedure. Several studies have re-
cently performed simulations for microbiome data [25,
29, 30, 49, 50], most of which use negative binomial dis-
tributions to generate microbiome counts. We followed
the simulation framework of Sohn et al. [30] to simulate
microbiome counts from negative binomial distributions
and extended their framework to include random effects
and correlation structures:

yieNB yijμi; θð Þ; log μið Þ ¼ log Tið Þ þ μþ xiβ
þzib; beNK 0; τ2I

� �
;

i ¼ 1;⋯; n

We simulated n = 200 and 400 individuals clustered
into K = n/10 groups (e.g., families), respectively. We
considered a binary fixed-effect variable xi and a
random-effect factor zi. The random-effect factor zi was
a multinomial variable, i.e., zi = (zi1,⋯, ziK), zij =
0 or 1, ∑j = 1

K zij = 1, which assigned n samples into K
groups and introduced correlation for the samples
within a same group. To simulate xi and zi, we first
generated two continuous variables from the standard
normal density N(0, 1) with a preset correlation coeffi-
cient ρ, and then transformed the first continuous vari-
able to a binary indictor xi based on the quantile of
40% and the second continuous variable to a multi-
nomial variable zi based on the K quantiles. Our goal
was to evaluate the performance of the proposed
method for detecting the simulated fixed effect β and
also the accuracy of parameter estimation.
There are several parameters that determine the distri-

bution of the simulated count data. To minimize any
possible bias and to yield reasonable count values that
are similar to real microbiome data, we randomly gener-
ated these parameters from wide ranges of values par-
tially drawn from the real data described in the next
section:

1) The values Ti are total reads, and μ is the overall
mean. Thus, the values, log(Ti) + μ, control the mean
of simulated counts. We set μ = −7 and randomly
sampled values, log(Ti), from the range [7.1, 10.5]. In
this case, log(Ti) + μ falls in the range [0.1, 3.5],
which yield similar counts as in the real microbiome
data;

2) The shape parameter θ controls over-dispersion; we
uniformly sample θ from the range [0.1, 5], which
yield highly or moderate over-dispersed counts;

3) To evaluate false positive rates, the fixed effect β was
set to be zero, and to evaluate empirical power, β
was set to be low from [0.2, 0.35], or high from
[0.4, 0.55];

4) To generate the random effects bk, we first sampled
τ from the range [0.5, 1] and then bk from N(0, τ2);
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5) The correlation coefficient ρ was set to be weak
from [−0.1, 0.1], positive from [0.5, 0.8], or negative
from [−0.8, −0.5].

The ranges of all the parameters used in the simula-
tion are summarized in Table 2.
For each combination of the parameters, the proced-

ure was repeated 5000 times. Both empirical power and
Type I error for testing the hypothesis H0: β = 0 were
calculated under several significance (alpha) levels. We
compared the proposed NBMMs with three existing
methods:

1) The linear mixed model with the log transformation
(LMM_log): log yiþ1

Ti
¼ β0 þ xiβþ zibþ ei, b ~

NK(0, τ
2I), ei ~N(0, σ2);

2) The linear mixed model with the arcsine square root

transformation (LMM_arcsine): arcsine
ffiffiffiffi
yi
T i

q� �
¼ β0

þxiβþ zibþ ei, b ~NK(0, τ
2I), ei ~N(0, σ2);

3) The negative binomial model (NB): yi ~NB(yi|μi, θ),
log(μi) = log(Ti) + β0 + xiβ;

4) The linear model with the arcsine square root
transformation (LM): arcsin

ffiffiffiffi
yi
T i

q� �
¼ β0 þ xiβþ ei,

ei ~N(0, σ2).

Simulation results
Figure 1 displays Type I error rates for detecting the
fixed effect under four significance levels for the four
methods. We found that sample size n had minimal ef-
fects on Type I error. However, the correlation between
the host variable and the random factor affected Type I
error if the random factor was not included in the
model. Under the weak correlation setting (i.e., ρ ϵ
[−0.1, 0.1]), the four methods, NBMM, LMMs
(LMM_arcsine and LMM_log) and LM, controlled Type
I error under or close to the nominal level, however, NB
had slightly inflated Type I error. In both positive and
negative correlation settings (i.e., ρ ϵ [0.5, 0.8] or [−0.8,
−0.5]), NB and LM had largely inflated Type I errors,
however, NBMM and LMMs still resulted in well con-
trolled Type I errors. This implies that ignoring the ran-
dom effects can be misleading and can produce severely
biased results.

Figure 2 shows empirical power for detecting the fixed
effect under four significance levels for the four
methods. As expected, the power was largely affected by
the sample size and the effect size. However, the correl-
ation between the host variable and the random factor
had little influence on the empirical power. It can be
clearly seen that the proposed method performed con-
sistently much better than the other methods across all
the scenarios. For most scenarios, LMMs were able to
produce higher power than NB. Therefore, our NBMM
that accounts for the dependence of samples and directly
analyzes the generated count data produces increased
power to detect the fixed effect of interest.
Figure 3 displays the differences between the estimates

of three parameters, the fixed effect β, the variance τ2

and the shape parameter θ, and their simulated values,
in our NBMM. It can be seen that the estimates of β
and τ2 were very close to the corresponding simulated
values under all the scenarios and the estimates of the
shape parameter were slightly inflated. These results
show that the proposed IWLS algorithm was able to
provide accurate model fit. We found that models in
which the estimates of the shape parameter were inflated
usually gave larger residual variances σ2. This finding in-
dicates that with the additional parameter σ2, our
method can robustly deal with over-dispersion even if
the shape parameter was not accurately estimated.

Application to mouse gut microbiome data
We applied our method to a robust mouse gut micro-
biome data set from the genetic analysis of Leamy et al.
[39]. The population of 472 mice is the tenth gener-
ation of advanced intercross from an original cross of
inbred C57BL/6 J (B6) female mice with male mice
from a strain (HR) selected for a high level of voluntary
wheel running. The 472 progeny G10 mice were gener-
ated from 45 G9 dams and 42 G9 sires, forming family
structuring in the G10 progeny. The detailed protocol
for mating can be found in Leamy et al. [39]. At 4 weeks
of age, all G10 progeny mice were randomly allocated
into two diet groups, one fed with high-fat diet, the
other fed with control diet. At 8 weeks of age, the fecal
pellets of mice were collected for DNA extraction and
subsequent pyrosequencing. Composition of the micro-
biota was assessed by deep pyrosequencing of PCR
products originating from the V1-V2 region of the 16S
rRNA gene with bar-coded fusion primers containing
Roche-454 A or B Titanium sequencing. 203 taxa were
detected for the species level data. These species belong
to 104 different genera, 45 families, 29 orders, 22 clas-
ses and 14 phyla. The median value of the total reads
across all animals was 14170 and the standard deviation
was 3422.

Table 2 Parameter Ranges in Simulation Studies

Parameter Range

log (Ti) + μ Unif (0.1, 3.5)

Shape parameter θ Unif (0.1, 5)

Fixed effect β 0, Unif (0.2, 0.35), Unif (0.4, 0.55)

Standard deviation τ Unif (0.5, 1)

Correlation ρ Unif (−0.1, 0.1), Unif (0.5, 0.8), Unif (−0.8, −0.5)
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We used the proposed NBMM and two linear mixed
models (LMMs) with the arcsine square root transforma-
tions and log (LMM_arcsine and LMM_log) to detect as-
sociations between taxa and high-fat diet. Since the
maternal environment have a profound influence on the
microbiota composition [11], we included dam indicators
as a random factor in the NBMM and LMMs. In
LMM_arcsine, we treated the arcsine square root trans-

formed values, arcsin
ffiffiffiffi
yi
T i

q� �
, as normally distributed,

where yi is the microbiome count and Ti is the total se-
quence read for the i-th animal. In LMM_log, we treated

the transformed values log yiþ1
Ti

as normally distributed.

These two LMMs performed similarly and thus only re-
sults of LMM_arcsine were shown in the following figure.
Leamy et al. [39] also analyzed the associations between
taxa and high-fat diet. However, their analyses compared
estimates of alpha diversity in the microbiota across ani-
mals fed control or high-fat diets and used ANOVA to
identify significant taxa not accounting for the dam effects.

Figure 4 shows the significant features of the species,
genus, family, order, class and phylum levels at the 5%
significance threshold and their minus log transformed
p-values for NBMM and LMM_arcsine. It can be seen
that For NBMM and LMM_arcsine the identified signifi-
cant features were mostly overlapped. However, the pro-
posed NBMM method produced smaller p-values for
most of the identified features, and detected more sig-
nificant features than the LMM_arcsine. These results
indicate that our NBMM approach is more powerful to
detect significant features than the previously used
LMMs in real data analysis.
The top significant genera include Lactococcus, Sporo-

bacter, Enterorhabdus, Marvinbryantia, and Butyricicoc-
cus. Some of the identified features are associated with
metabolic health and have been previously reported in
other studies. At the species level, Marvinbryantia for-
matexigens has been reported to decrease with increased
casein levels in dietary intervention, and the genus Mar-
vinbryantia is also believed to be associated with human

Fig. 1 Type I error rates for the five methods in different simulation settings

Fig. 2 Empirical powers for the five methods in different simulation settings
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health [51, 52]. Eubacterium ventriosum has been found
to be shifted by high fat diet [53] and Alistipes putredinis
has also been found to be of particular interest in its as-
sociation with obesity [54]. The genus Lactococcus has
been reported to decrease overtime in high-fat diet fed
mice [51, 55]. The genus Enterorhabdus has been

reported to be positive correlated with intrahepatic levels
triacylglycerol concentrations and non-HDL plasma con-
centrations in mice or hamsters [56]. The genus Butyri-
cicoccus has also been discovered to decrease in mice fed
a high-fat diet [57]. Studies have also found that the spe-
cies Tropheryma whippleis is associated with acquired

Fig. 3 Differences between the estiamates and their simulated values for the parameters β, τ2, and θ in the proposed NBMM in different simulation
settings. The points represent the average values and the lines represent the interval estimates

Fig. 4 The analyses of NBMM and LMM with the arcsine square root transformation: minus log transformed p-values for the significant differentially
abundant taxa at the 5% significance threshold between high fat diet and control diet groups for species, genus, family, order, and class levels
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obesity [58, 59]. It is also worth noting that certain gen-
era were only detected by NBMM, including Bacteroides,
which has been reported as an important genus in high-
fat fed animals gut microbiome to potentially act as
Obesity-Associated Metabolic Parameters [51, 60–62].

Discussion and conclusions
We have proposed a negative binomial mixed model to
detect the associations between host clinical/environ-
mental factors and the microbiome while accounting for
sources of heterogeneity and dependence in microbiome
measurements. Many microbiome studies collect sam-
ples with hierarchical, spatial, and temporal structures
[33–38]. These properties have important implications
in the analysis and interpretation of microbiome data.
Our simulation studies illuminated the impact of such
structuring on the data, showing that ignoring the cor-
relation among samples can substantially inflate Type I
error and reduce power for detecting the effects of host
clinical/environmental factors, thus leading to biased
and false inferences. Due to the lack of efficient statis-
tical methods and programs, most previous studies used
conventional linear mixed models (LMMs) by treating
transformed relative abundance data as normally distrib-
uted response. Although useful in some situations,
LMMs can be less powerful than the proposed method
as shown in our simulation studies.
We applied our method to previously published data

set of a genetic analysis to detect host genetic factors
that control compositional featurs of the gut micro-
biome [39]. The goal of our analysis was to detect taxa
that are significantly associated with the effect of high-
fat diet, which was introduced as an environmental vari-
able in the original study to examine G x E effects on
microbiome composition. Many studies found that the
maternal environment have a profound influence on the
microbiota composition [11, 63–66]. Thus, it is neces-
sary to incorporate the dam indictors as a random factor
into the model to correct for possible counfounding ef-
fects. Our analysis identified several significant and bio-
logically meaningful taxa that have been previously
reported in other studies. Our NBMM method was able
to detect more significant taxa and yield much smaller
p-values than the LMMs, showing that the proposed
method could be more powerful than the conventional
LMMs in real data analysis.
The proposed NBMMs directly model microbiome

counts generated by the 16S rRNA gene sequencing or
the shotgun sequencing. Since most bioinformatics tools
produce count data in microbiome studies, the proposed
method has broad applications. For shotgun metage-
nomic data, some tools such as MetaPhlAn only output
the relative abundances or proportions of the bacteria in
the sample. Chen and Li [40] have recently developed

zero-inflated Beta mixed-effects models to analyze the
proportion data. Although we focus our analysis on
microbiome studies, the proposed method are applicable
to other similar types of sequence count data such as
RNA-Seq. Most of the statistical methods and computer
software for analyzing RNA-Seq data are developed
based on negative binomial models [27, 67], but have
not incorporated random effects. Our ability to deal with
other types of sequence count data further broadens the
biological impact of the proposed approach.
We have developed an IWLS algorithm to fit the

proposed NBMMs by extending a commonly used
procedure for fitting GLMs and GLMMs. [42, 44–46]
The idea of the algorithm is to approximate the nega-
tive binomial likelihood given the shape parameter by
a weighted normal likelihood and then to update the
parameters by fitting a linear mixed model. This pro-
cedure for GLMs and GLMMs has been proved to be
highly useful and efficient. Our extensive simulations
and real data analysis show that our algorithm is
stable and efficient.
The proposed NBMMs with the IWLS algorithm have

several remarkable features. Due to the introduction of
an additional parameter σ2 to correct for over-
dispersion, the proposed method can be robust and effi-
cient to deal with over-dispersed data. Our approach
takes advantage of the fitting procedure of LMMs to up-
date the parameters, and hence can in principle incorp-
orate all the features of LMMs into the NBMMs.
Although we describe our method with a simple random
effect, the proposed method can be applied to various
patterned covariance structures for modeling special
random effects [42, 43], for example, family, longitu-
dinal, repeated measures or kinship structures. The as-
sumption Var(e) = σ2I can be relaxed as described in
Pinheiro and Bates [43], where they discuss extensions
that allows us to model non-constant variances or spe-
cial correlation structures. All these extensions will be
incorporated into the proposed NBMMs. Microbiome
data have the distinct characterstic of zero-inflation. The
proposed NBMMs are not particularly designed to deal
with zero-inflation, although we suggest it as a future
work.
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