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Past antimicrobial misuse has led to the spread of antimicrobial resistance amongst pathogens, 

reportedly a major public health threat. Attempts to reduce the spread of antimicrobial resistant 

(AMR) bacteria are in place worldwide, amongst which finding alternatives to antimicrobials has a 

pivotal role. Such molecules could be used as “green alternatives” to reduce the bacterial load either 

by targeting specific bacterial groups or more generically, functioning as biocides when delivered in 

vivo. In this study, the effect of in-water peracetic acid as a broad-spectrum antibiotic alternative for 

broilers was assessed via hydrolysis of precursors sodium percarbonate and 

tetraacetylethylenediamine. Six equidistant peracetic acid levels were tested from 0 to 50ppm using 

four pens per treatment and 4 birds per pen (i.e., 16 birds per treatment and 96 in total). Peracetic 

acid was administered daily from day 7 to 14 of age whilst measuring performance parameters and 

end-point bacterial concentration (qPCR) in crop, jejunum and caeca, as well as crop 16S 

sequencing. PAA treatment, especially at 20, 30 and 40 ppm, increased body weight at day 14, and 

feed intake during PAA exposure compared to control (P<0.05). PAA decreased bacterial 

concentration in the crop only (P<0.05), which was correlated to better performance (P<0.05). 

Although no differences in alpha- and beta-diversity were found, it was observed a reduction of 

Lactobacillus (P<0.05) and Flectobacillus (P<0.05) in most treatments compared to control, together 

with an increased abundance of predicted 4-aminobutanoate degradation (V) pathway. The analysis 

of the AMR genes did not point towards any systematic differences in gene abundance due to 

treatment administration. This, together with the rest of our observations could indicate that proximal 

gut microbiota modulation could result in performance amelioration. Thus, peracetic acid may be a 

valid antimicrobial alternative that could also positively affect performance. 

Key words: Peracetic acid, Microbiota, Antimicrobial Resistance, Antimicrobial Alternative, Broiler 

INTRODUCTION 

Chicken gut microbiota consists of a multitude of microbial symbionts longitudinally colonizing 

the gastrointestinal tract, whose interactions with the host affect well-being and performance at 
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several levels, including nutritional, immunological and physiological (Diaz Carrasco et al., 2019). 

Host colonization is thought to start soon after hatching, with low parental contribution, and presents 

both temporal and longitudinal fluctuations, which primarily depend on environmental factors 

(Stanley et al., 2014). Due to the well documented interactions between microbiota and host, 

manipulation of the microbial communities through probiotics (Memon et al., 2021), prebiotics 

(Ricke, 2021) and for several decades also via antimicrobial growth promoters (AGP) (Collignon, 

2004; Costa et al., 2017) has been applied to impact broiler production. However, past AGP misuse 

has led to an increased antimicrobial resistance (AMR) amongst pathogens, characterized as a major 

health threat for both animals and humans alike (Munita and Arias, 2016).  

The issue of AMR associated with poultry production has reached concerning levels (Nhung et 

al., 2017; Agyare et al., 2019), thus alternative to antibiotics, such as for example probiotics, 

prebiotics, organic acids and plant extracts have been proposed (Lewith and Jacob, 2005). Other type 

of alternatives may also exert antimicrobial activity, include enzymes, organic acids, 

immunostimulants, bacteriocins, bacteriophages, phytogenic feed additives, phytoncides, 

nanoparticles and essential oils (Mehdi et al., 2018). Peracetic acid (PAA) is an emerging biocide 

widely used in contexts beyond poultry production, e.g., wastewater treatment (Zhang et al., 2020) or 

poultry processing with proven inhibitory effect on pathogens such as Campylobacter (Micciche et 

al., 2019). Here, we propose and test the possible in vivo effect of PAA in broiler birds administered 

through water, on gastrointestinal microbial communities, main AMR gene relative abundance and 

performance. The generic antimicrobial activity of PAA action We tested the broad-spectrum 

antimicrobial activity of different PAA levels of inclusion at the end of the starter phase, for seven 

days, on young birds during a 14-day trial without interfering with the normal microbiota 

colonization dynamics through the first week, hence the choice of administering PAA only from day 

7 to day 14. We observed positive effects on performance, correlated to a reduction of bacterial 

concentration in the crop and specifically to a significant reduction of Firmicutes at phylum level and 
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Lactobacillus at genus level. Our findings indicate both the possible use of in-water PAA as an 

antimicrobial alternative and the importance of the upper gut microbiota in broiler performance in 

young broiler birds. 

MATERIALS AND METHODS 

Animal Study 

The animal study was carried out at the Allermuir Avian Innovation and Skills Centre (AISC), 

SRUC. Study design and protocol were approved by SRUC Animal Welfare and Review Body (POU 

AE 20-2019). A total of 96 day-old Ross 308 male broilers were placed in 24 pens within two rooms, 

with 4 birds per pen and 4 pens per treatment (stocking density at day 14: ~1.9Kg/m
2
) , with a total 

of six treatments (Table 1) between day 7 and day 14 of age, which was the last day of the trial. 

Chickens were fed a standard commercial wheat, soybean meal based diet formulated to have 20.8% 

crude protein, 1.21% d-lysine and 12.8% apparent metabolizable energy. Feed was offered as starter 

diet (mash, ad libitum) throughout the study designed to meet standard nutrient requirements (crude 

protein: ~23%, 2800 Kcal metabolizable energy/Kg). At day 0 all the birds were wing-tagged and 

allocated to one of the 24 pens following a randomised complete block design, where treatments 

were also randomly allocated within each of four blocks. Number of birds and replicate was based on 

a number of previous dose-response studies with a similar design, in which 4 replicates and a set of 

orthogonal contrast statements were used to assess linear and quadratic effects of equidistant 

treatment levels (Smith et al., 2013). 

Treatment Preparation 

Peracetic acid (PAA) was produced in water by hydrolysis of precursors sodium percarbonate 

(SP) and tetraacetylethylenediamine (TAED) (AGA Nanotech, Hemel Hempstead, UK). In addition, 

disodium ethylenediaminetetraacetic acid (EDTA) was used as a stabilizer to prevent PAA 

degradation and citric acid was added to counterbalance the effect of SP and TAED on pH (Table 1). 

Water treatments were freshly prepared and administered to the chicken daily. The control at 0ppm 
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of PAA was prepared by addition of EDTA only as vehicle control. The precise precursor ratio 

needed to obtain the different PAA levels of inclusion (Table 1) were established in vitro prior to the 

animal study via measuring the PAA concentrations at each level using the using the free and total 

chlorine AccuVac (HACH, Loveland, Colorado, United States) method as described below. 

Permachem N,N-diethyl-p-phenylenediamine total Chlorine reagent (HACH, product number 

2105628) was added to 10mL of TAED, SP, EDTA and citric acid solution. Therefore, the 

absorbance at 530nm was read via using the HACH spectrophotometer (DR6000 UV-VIS, HACH, 

Loveland, USA). Thus, PAA concentration was calculated from Chlorine values via multiplying Cl2 

output of the spectrophotometer reads by 1.07 (i.e., scaling factor between chlorine and PAA 

concentration) and the dilution factor. 

Performance Analysis 

Individual body weight (BW), feed issued, and feed refusals were measured at day 0, day 7, day 

10 and day 14 to allow measurement of bird-level BW, bird-level body weight gain (BWG), pen-

level feed intake (FI) and pen-level feed conversion ratio (FCR). Mortality correction for the latter 

was not required as there was no mortality before or during the experimental phases. 

Sampling 

At day 14, all the birds were humanely culled via cervical dislocation, and content from crop, 

jejunum, caeca and colon were pooled by pen and gut segment. pH was measured in the colon 

content (1111105 2-star benchtop pH meter, Thermo Scientific, Waltham, USA) whilst the content 

of the other segments was snap frozen at ~-78°C (dry ice) before being transferred to an ultra-low-

temperature freezer (-80°C) pending further analysis. 

DNA Isolation 

Approximately 0.25g of gut content were transferred in the PowerBead tubes of the DNeasy 

PowerSoil Kit whilst being mixed with 60µL of solution C1 of the same kit (Part no. 12888-100, 

QIAGEN, Hilden, Germany). The tubes were placed in a FastPrep-24TM 5G homogenizer 
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(116005500, MP Biomedicals, Irvine, USA) for 55 seconds at 5.5m/s. Afterwards, QIAGEN 12888-

100 manufacturer instructions were followed to isolate total DNA, which was immediately stored at -

80ºC until further analysis. 

Bacterial Absolute Quantification 

Standard Curve Preparation. 

Standard curve for absolute qPCR quantification was built through nine ten-fold serial dilutions 

of linear plasmid (Hou et al., 2010) containing qPCR target as insert. The latter was amplified from 

the isolated DNA through PCR reaction and separated via 1.5% agarose gel after electrophoresis at 

100V for 80 minutes. The 25µL-reaction mix included 1X of KAPA Taq ReadyMix with dye (Kapa 

Biosystems), 0.2µM of each primer (Table 2) and nuclease-free water. PCR conditions were 95 °C 

for 3 min, 35 cycles including 95 °C, 60ºC both for 30 seconds and 72ºC for 1 min, followed by a 

final elongation at 72°C for 10 min.  

The amplicons were excised from gel, purified following the protocol from Wizard® SV Gel and 

PCR Clean-Up System (Promega) and cloned into a pCR2.1 plasmid vector (TA CloningTM Kit, 

Thermo Fisher Scientific), prior to transformation of ligase reaction into chemically competent One 

shot® INVαF’ E. coli cells (Thermo Fisher Scientific) by heat shock. 

The plasmid was isolated from liquid Luria-Bertani cultures inoculated with positive-X-gal-

transformed colonies through the QIAprep Miniprep kit as per manufacturer instructions (27104, 

QIAGEN, Hilden, Germany). Insert presence was verified both by EcoRI (R3101S, New England 

BioLabs, Ipswich, USA) restriction enzyme digestion and by Sanger sequencing (DNA Sequencing 

and Services, Medical Sciences Institute, School of Life Sciences, University of Dundee). Finally, 

plasmids were linearized using 5 units of HindIII (R3104S, New England BioLabs, Ipswich, USA) 

and 1X of CutSmart® buffer (B7204, New England BioLabs, Ipswich, USA) in 50μL total volume. 
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Linear plasmid-copy number (CN) concentration was calculated from NanoDrop 

spectrophotometer ng/µL reads (TM 1000, Thermo Fisher Scientific, Waltham, USA) and further 

used through the qPCR reactions. 

Absolute qPCR Quantification. 

Absolute qPCR quantification was carried to quantify total number of bacteria by targeting the 

V3 region of the 16S rRNA gene (Table 2). All reactions were carried out in 20µL containing 1X of 

Takyon qPCR MasterMix with Low Rox (UF-LSMT-B0701, Eurogentec, Seraing, Belgium), 50nM 

of each primer (Table 2), 10ng of DNA template and nuclease-free water (129114, QIAGEN, Hilden, 

Germany). Cycling conditions (Mx3000P thermocycler, Agilent Technologies, Santa Clara, USA) 

were 95°C for 3 min followed by 40 cycles at 95°C for 5 s and 65°C for 35 s, at the end of which 

fluorescence was detected. Qualitative template control was performed through melting curve 

analysis.  

All the reactions were run in triplicate. Excellent reaction efficiency metrics were detected 

throughout the analysis, based on R
2
, slope and efficiency of the standard curve, whose average 

values were calculated as ~0.99, ~-3.3 and ~100%, respectively. 

qPCR Data Analysis. 

Copy number (CN) per reaction for each sample was calculated based on the linear regression 

model fitted with standard curve fluorescence and cycle threshold (Stratagene Mx3000P software, 

Agilent technologies). 

Therefore, CN per reaction was first converted into bacterial cells per reaction (BCr) by 

normalizing CN to 5.2 average copy number of 16S gene per bacterial cell at the time of writing 

(Stoddard et al., 2015). Finally, BC per gram of sample was calculated using equation  (1) below 

(Singh et al., 2014). 

𝐵𝐶𝑟∙𝐶∙𝐷

𝑆∙𝑉
. (1) 
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Where, C and D were concentration and dilution volume of the extracted DNA, respectively, 

whilst S was the amount of DNA subjected to qPCR and V was the amount of sample used to isolate 

DNA (Singh et al., 2014). 

Antimicrobial Resistance Gene Analysis 

Table 2 depicts primers and annealing conditions applied through the relative qPCR 

quantification of the six AMR poultry-relevant genes selected. Each reaction (20µl) was run in 

triplicate and included 1X Brilliant III Ultra-Fast SYBR Green qPCR Master Mix (600882, Agilent 

technologies, Santa Clara, USA), 1ng of crop content gDNA template and nuclease-free water 

(129114, QIAGEN, Hilden, Germany), 250nM of each primer for tetW, vanC, aadA and 350nM for 

vanA, tetQ and mecA. Each array included a non-template control and the samples from the control 

group to eliminate inter-run bias whilst melting curve analysis assessed reaction quality. 

Amplification conditions (Mx3000P thermocycler, Agilent Technologies, Santa Clara, USA) were 

95°C for 3 min followed by 40 cycles of 95°C for 10 s and 20 s annealing as per Table 2. 

Fold-change relative abundance (i.e., 2
-ΔΔCt

) as per protocol used by other authors (Walsh et al., 

2011; Juricova et al., 2021) was calculated as the Ct difference between the AMR genes and the 16S 

rRNA as a normalizer (ΔCt) between treatments and controls (ΔΔCt). 

16S rRNA Gene Sequencing 

Library Preparation. 

16S rRNA gene sequencing on crop-content gDNA was carried out by Omega Bioservices 

(Norcross, USA) targeting the V4 region of the bacterial 16S rRNA gene (F515b (Parada et al., 

2016): 5'-TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGTGYCAGCMGCCGCGGTAA-

3’; R806b (Apprill et al., 2015): 5'-

GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGGACTACNVGGGTWTCTAA-3’).  

Amplicon PCR (total volume of 25µL) components (final concentration) were, 12.5 ng of template 

DNA,1x KAPA HiFi HotStart ReadyMix (KK3604, Kapa Biosystems, Wilmington, USA) and 
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0.2µM of each primer, whereas amplification conditions were 95°C for 3 min (initial denaturation) 

followed by 25 cycles of denaturation (95°C, 30 s), annealing (55°C, 30 s) and extension (72°C, 30 

s), and a final elongation of 5 min at 72°C. PCR product clean-up was carried out using Mag-Bind 

RxnPure Plus magnetic beads (M1378-01, Omega Bio-tek, Norcross, USA). A second index PCR 

amplification, used to incorporate barcodes and sequencing adapters was performed maintaining the 

component concentrations as described above. Cycling conditions were 95°C for 3 min, followed by 

8 cycles of 95°C, 55°C and 72°C, each held for 30 s, thus a final 5-minute elongation step at 72°C. 

Finally, the libraries ~600 bases in size were checked using a 2200 TapeStation (5067, Agilent 

technologies, Santa Clara, USA) and quantified using QuantiFluor dsDNA System (E2671, Promega, 

Madison, USA) before normalization, pooling and sequencing (2 x 300bp paired end read setting) on 

the MiSeq (SY-410-1003, Illumina, San Diego, USA). 

Bioinformatic Analysis 

A total of 5,480,595 FASTQ paired end demultiplexed reads (~ 230,000x2 reads/sample) were 

imported and analyzed in QIIME2 v2022.2 (Bolyen et al., 2019), through which ~105,000 

reads/sample were retained after being joined via VSEARCH (Rognes et al., 2016), with quality 

score of ~40 throughout the sequence length both before and after quality-filtering with minimum 

Phred score of 20 (McKinney, 2010; Bokulich et al., 2013). Therefore, Deblur was used to denoise, 

with sequence trimming set at 290bp (Amir et al., 2017) and taxonomy was assigned using the q2-

feature-classifier plugin via applying a Naïve Bayes classifier, trained based on the F515b/R806b 

primers and the last release of the Silva data base (138, 99% of similarities) (Pruesse et al., 2007; 

Pedregosa et al., 2011; Bokulich et al., 2018). Diversity analysis was carried out on even sequence 

depth of 3,790, retaining 90,960 (48.61%) features in 24 (100%) samples, allowing calculation of α-

diversity through richness and Shannon’s diversity index (Anderson, 2001; Kim et al., 2017), testing 

for significance through the Kruskal-Wallis test (Kruskal and Wallis, 1952; Benjamini and 

Hochberg, 1995). Moreover, β-diversity was measured through the Bray-Curtis dissimilarities and 
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the Jaccard similarity index (Jaccard, 1908; Bray and Curtis, 1957), followed by permutational 

multivariate analysis of variance (PERMANOVA) (Anderson, 2001). Functional gene prediction 

based on 16S data was carried out via using PICRUSt2 (Langille et al., 2013). Differential 

abundance analysis was carried out via Microbiome Multivariable Association with Linear Models 2 

(MaAsLin2, Mallick et al., 2021) in R v4.1.2 (R Core Team, 2021). This included the use of a 

negative binomial distribution (NEGBIN, Zhang et al., 2017) for differential microbial abundance 

analysis on cumulative sum scaling (CSS) normalized taxonomical data in order to reduce the bias 

introduced by differences in sampling depth (Pereira et al., 2018). NEGBIN was also used on 

trimmed mean of M values (TMM) for metabolic pathways prediction output of PICRUSt2 to 

account for the homological content of transcriptomic data (Robinson and Oshlack, 2010). 

The package qiime2R (Bisanz, 2018) was used to graphically represent QIIME2 outputs produced 

through the analysis. 

Statistical Analysis 

Linear mixed model (LMM) was carried out to assess whether treatments had a significant impact 

on the variables analyzed, fit with linear and quadratic treatment terms allowing the assessment of 

eventual dose response effect. All the analyses were carried out in R (R Core Team, 2021), were the 

LMM was fitted using “lmer” function from the lme4 package (Bates et al., 2015), thus “lmerTest” 

was applied to calculate the p value for the t tests output of lme4 through using Satterthwaite's 

method (Kuznetsova et al., 2017). In addition, both linear and quadratic terms were incorporated 

with a contrast analysis within “lmer” allowing the identification of a possible optimum level. 

Metabolic pathways predicted via PICRUSt2 pipeline were analyzed through alpha- and beta-

diversity via the Vegan package in R and differential abundance analysis was carried out through 

NEGBIN on TMM normalized data via Maaslin2. 

Treatment and time, for longitudinal data, were both input as fixed effects in LMM, whereas the 

hierarchy of “Room/Block/Pen/Bird” represented the random effects, the model was fitted with 
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random intercept. Finally, Tukey corrected post hoc comparison for significant regressions or 

interactions, was carried out through using the function “emmeans” (Lenth, 2021). Longitudinal BW 

was Log10 transformed prior to fitting the model. 

RESULTS 

Performance and Colonic pH 

Results from the analysis of the different performance parameters and colonic pH are summarized 

in Table 3. As expected, there was a significant effect of time to the cumulative BW at bird-level 

(F(2,180)=8097.01, P<0.01). At day 14, birds on the 20, 30 and 40 ppm PAA treatments were 10.6, 

10.0 and 12.5% heavier (P<0.05) than the control birds. This effect was less pronounced for birds 

allocated to the 10 and 50 ppm PAA treatments, which were 7.3% (P=0.14) and 6.1% (P=0.21) 

heavier than the control birds, respectively). This concurred with a significant quadratic effect of 

PAA inclusion on both longitudinal BW (F(2,92)=4.5, P=0.01) and day 14 BW (F(2,92)=4.10, 

P=0.02). 

Pen level FI analysis revealed increased FI from day 7 to day 14 (F(5,17)=2.17, P=0.107), with a 

clear positive effect birds on the 20, 30 and 40 ppm PAA treatments, recording 0.15, 0.13 and 0.13 

Kg more, respectively compared to the 1.37 kg for the control birds (P<0.05). Pen level FCR did not 

differ between PAA treatments, whilst colonic pH did not change amongst the experimental 

conditions.  

Total Bacterial Quantification and Correlation with Performance 

As expected, bacterial concentration differed between crop, jejunum and caecal content 

(F(2,35.9)=133.57, P<0.01, Figure 1). However, PAA treatment impacted on bacterial abundance in 

the crop only. Bacterial concentration (mean log10±SD) was reduced at PAA levels of 10ppm 

(8.56±1.02; P<0.05), 20 ppm (8.89±1.00; P=0.103), 40 ppm (8.87±1.04; P=0.09) and 50ppm 

(8.61±0.99; P<0.05) compared to the control (9.70±0.08). Bacterial concentration in the jejunum and 

caecal content did not differ between PAA treatments and averaged 6.59±0.87 and 9.78±0.26, 
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respectively, though caecal bacterial concentration appeared greatest for the 40ppm and 50ppm 

treatments. 

To explore possible relationships between bacterial load and performance, BW at day 14 was 

fitted in an additional LMM as a depended variable and crop bacterial concentration as a fixed effect, 

again with room/block representing the hierarchy of random effects, this revealed an inverse 

relationship between the two variables (F(1,22)=8.47, P<0.01, Figure 2), with better performance 

(greater BW at d14) for birds with lower crop bacterial concentration. Indeed, the model 

demonstrated that high bacterial concentrations as observed in the control birds concurred with 

reduced performance at endpoint, compared to birds on PAA treatments, which was associated with 

greater final BW and lower crop bacterial abundance. 

Crop Antimicrobial resistance gene analysis 

Six AMR genes were analyzed in total by relative quantification using the ΔΔCt method using the 

16S rRNA gene as a normalizer and read-outs for the control birds as baseline (Table 4). Whilst there 

were no significant linear regressions between PAA level and any AMR gene relative abundance, a 

quadratic relationship was observed between PAA and tetQ relative abundance (F(2,21)=4.05, 

P=0.03), arising from a decrease associated with 10, 20 and 30 ppm PAA compared to the control, 

followed by an increased gene abundance at 40 and 50 ppm PAA. In addition, a tentative quadratic 

relationship was observed between PAA and mecA (F(2,18)=2.72, P=0.09), arising from an 

increased gene level at 20, 30 and 40 ppm PAA compared to control and 50 ppm PAA. Furthermore, 

although AMR relative abundance was associated with rather large variance throughout, compared to 

the control, relative abundance was greater for aadA at 50 ppm PAA, vanC at 40 ppm PAA and 

mecA at 20 ppm PAA (all P<0.05) and mecA at 40 ppm PAA at P=0.09. 

Crop 16S rRNA Gene Sequencing 

Both alpha- and beta-diversity of the crop microbial community, as measured through the 

richness index, Shannon index and Bray-Curtis dissimilarity index and the Jaccard distance index, 
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respectively, did not differ between PAA levels. Although especially richness appeared to decrease 

in a rather similar fashion in response to PAA level (Figure 3) when compared to the reduction in 

total bacterial concentration (qPCR), there were no linear (P=0.78) or quadratic (P=0.36) 

relationships observed. 

The most abundant phylum across the treatments was Firmicutes (~50%), followed by 

Proteobacteria (~25%) and Cyanobacteria (~20%), less dominant phyla were Actinobacteriota and 

Bacteroidota representing only ~0.5% of the total population in all the samples (Table 5). Firmicutes 

decreased for all PAA levels compared to control (0ppm), though most pronounced for 10 ppm PAA 

(P<0.05) and 40 ppm PAA (P=0.10). Similarly, albeit Cyanobacteria and Proteobacteria reads were 

smaller for all PAA levels compared to the control, this was significant for the 10 ppm group only 

(P<0.01). The 10 most predominant genera (Table 6) were Lactobacillus accounting for almost 50% 

of the reads followed by Cyanobacteria (unassigned) and  Rickettsiales (unassigned), each covering 

~20% of the total community,  Acinetobacter (~1.5%) and Erwiniaceae (unassigned), Pseudomonas, 

Escherichia-Shigella, Ruminococcus (torques group), unassigned Enterobacteriaceae and 

Enterobacterales all less than 1% of the total. Lactobacillus normalized reads were reduced for all 

PAA levels tested compared to the control (P<0.05) apart from 50ppm. Flectobacillus was also 

reduced for all PAA levels tested, though significantly so for the 20 ppm PAA group (P<0.01). In 

contrast, whilst Enterococcus normalized reads were decreased for most PAA levels compared to the 

control (P<0.05), they were increased for the 20 ppm PAA level (P<0.05). Although the less 

dominant Ruminococcus (torques group) was found to be decreased for all PAA levels compared to 

the control (P<0.05) apart from 40ppm, Subdoligranulum reads were decreased for both 10 and 50 

ppm PAA (P<0.05), though noticeably increased at 40 ppm PAA (P<0.05). 

Figure 4 shows the NEGBIN calculated differential abundance of TMM normalized predicted 

pathway abundance for the different PAA levels tested. Diversity analysis did not reveal any 

statistically significant difference between the treatments apart from a tendency of 20 ppm PAA to 
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an increased Shannon index (P=0.05), pointing towards both qualitative and quantitative similarities 

of predicted metabolic pathways. The aminobutanoate degradation (V) pathway was noticeably less 

abundant in both control and for 10 ppm PAA compared to the rest of the treatments (P<0.05), 

whereas albeit the pathway of formaldehyde assimilation II (RuMP Cycle) was less abundant in 

almost all the treatments, significant reduction was observed only for 10 ppm PAA compared to 

control (P<0.01). Similarly, (aerobic) toluene degradation IV (via catechol) pathway was reduced in 

all treatments compared to control, although significant only for 50 ppm PAA (P<0.01). 

DISCUSSION 

Antimicrobial resistance poses a serious threat to animal and human health, mainly emphasized 

by a reduced treatment effectiveness towards bacterial infections (World Health Organization, 2014). 

Finding alternative molecules to antimicrobials is amongst the strategies to decrease the AMR spread 

rate (Ghosh et al., 2019) through environment (Furtula et al., 2013) and livestock (Thanner et al., 

2016). Here, we have assessed for the first time the potential antimicrobial alternative PAA for its 

effect on broiler performance, bacterial communities, and gut pH. 

In particular, we tested six different levels of inclusion of PAA prepared fresh and administered 

daily from day 7 to day 14 of a two-week trial. The absence of observable side effects and mortality 

during the treatment week pointed towards the safety of this therapeutical approach, whilst we 

recorded an increased BW at day 14 in all treatment levels, though with less noticeable effects for the 

10 and 50 ppm groups with some effects already visible at day 10. In general, average day14-BW 

through the six experimental conditions, was 466.67g, thus 11.39% (60.3g) lower than the target at 

day 14 (527g) for the breed, whereas the average FI per bird throughout the experimental conditions 

between day 7 and day 14 was 367g, which was 5.66% lower than FI/bird from day 7 to day 14, 

according to performance objectives for the breed (389g). 

Moreover, we found that incorporating the quadratic term in the mixed model was associated 

with a significant effect on both longitudinal BW and observations at day 14, indicating a possible 
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dose-response effect. Therefore, the analysis of the two model components possibly pointed towards 

a range of optimum levels of inclusion for PAA in-water administration, with an optimal response at 

20ppm. This view was also supported by the observation that FI was most pronouncedly increased 

for 20, 30 and 40 ppm PAA.  

The efficacy of the PAA treatment as a potential broad-spectrum antimicrobial alternative was 

confirmed by the observed reductions in crop bacterial concentration (Kitis, 2004), which reached a 

biologically relevant ~1 Log10 reduction (Mayr et al., 2010) as PAA concentration increased, and 

without evident changes throughout the other gut locations analyzed. 

Whilst overall bacterial concentration was as per expectation throughout crop, jejunum, and caeca 

(Shang et al., 2018), these findings are consistent with the theoretical fast rate of PAA formation 

from its precursors, and its subsequent hydrolysis. Indeed, PAA reacts with water to form acetic acid 

and hydrogen peroxide (Zhao et al., 2007), thus it is assumable that without further encapsulating the 

precursors for further distal gut delivery (Chourasia and Jain, 2003), the likelihood of formation of 

active molecules is expected to be greater in the proximal gut. This concept represents the basis for 

further studies exploring alternative delivery methods of encapsulated PAA precursors to assess 

potential effect in the distal gut. Such proximal effect of PAA could also explain why colonic pH did 

not change, as PAA likely never reached the hind gut to modulate bacterial fermentation. However, it 

is worth to notice that colonic pH was found to be lower than the expected reported range of 7.0-8.0 

(Ravindran, 2013; Skoufos et al., 2016). In addition, water acidification may improve performance, 

likely mediated through a reduction in pH of the gastrointestinal tract content (Hamid et al., 2018). 

The administration of PAA via precursors hydrolysis as presented here is not comparable with such 

approaches, as it does not cause variation of the gastrointestinal pH, which remains close to 

physiological levels.  

Interestingly, it was noticed a monotonic inverse relationship between crop bacterial 

concentration and BW, with higher performance associated with lower bacterial load in the upper 
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gut. Numerous studies have explored the potential relationship between especially the ileal and 

caecal microbiota and performance (Tiihonen et al., 2010; Torok et al., 2011; Ovi et al., 2021), 

whilst the number of studies that evaluate the role of the upper gut microbiota (Rinttilä and 

Apajalahti, 2013) or specifically of the crop microbiota (Ren et al., 2019) is poorly represented. For 

example, Lactobacillus is a primary symbiont in the crop (Yadav and Jha, 2019), whose decreased 

abundance has been correlated to a decreased intestinal activity of bile salt hydrolase produced by 

this genus, therefore possibly leading to an increased host-lipid digestion and energy harvest (Chand 

et al., 2017), which in turn could potentially promote host lipid metabolism, energy harvesting and 

increased weight gain (Lin et al., 2013). This could likely explain the correlation between higher live 

weight and decreased Lactobacillus CSS normalized reads at increased PAA concentrations that was 

observed. On the other hand, Lactobacillus is traditionally recognized as a beneficial, probiotic strain 

for its action in the distal intestine, promoting performance, inhibiting pathogen growth by 

competition, and providing organic nutrients to the rest of the bacterial community (Ehrmann et al., 

2002; Kabir, 2009; Pokorná et al., 2019; Sinha et al., 2020). Albeit Lactobacillus use as a probiotic 

has been validated by numerous studies focusing on the lower intestine, evidence provided here 

suggest that its reduction in the proximal gut could lead to better host-driven lipid digestion. Indeed, 

our findings not only indicate that microbiota modulation in the proximal tract is strictly correlated to 

performance amelioration but also suggest that the gastrointestinal section targeted should be taken 

into consideration when modulating specific genera whilst designing novel probiotic strategies. 

We did not find any difference in crop microbial alpha- and beta-diversity due to treatment, 

which might indicate that the changes that we reported in terms of single phyla or genera did not 

affect the entropy of the general bacterial communities, whose variations where more quantitative 

than qualitative as indicated by the differences in bacterial concentration (qPCR) and marginally by 

the calculated OTU richness (16S sequencing). 
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We found that Cyanobacteria level was lower in treated birds than control, especially in the 

10ppm PAA group. The role of cyanobacteria within the gastrointestinal tract is not fully elucidated, 

although this phylum seems to be connected to a series of developmental and metabolic host 

functions (di Rienzi et al., 2013; Hu and Rzymski, 2022). Nevertheless, it cannot be ignored that at 

sequencing level, reads from this phylum could potentially also include chloroplast from indigested 

plant material (Willson et al., 2018). 

We observed a drastic reduction of Flectobacillus for all PAA levels. This genus is known to 

contribute to mucosal immunity and homeostasis in other host species, especially IgM mediated by 

producing sphingolipids (Sepahi et al., 2016; Jin Song et al., 2019). This does not seem to accord 

with increased performance observed, although this apparent contrast could have arisen from its low 

relative abundance, supported by absence of effects on diversity parameters, and therefore by its 

marginal role towards host interactions. It could also point towards a possible marginal sphingolipid 

role within the proximal gut, as opposite to the established positive roles known through the distal 

intestine (Vesper et al., 1999). 

Enterococcus faecium has been described as a beneficial probiotic in Ross308 broilers, capable of 

improving performance whilst retaining carcass quality features (Gheisar et al., 2016), which could 

agree with our finding for Enterococcus genus CSS normalized reads increased in the 20ppm PAA 

group. However, since its abundance for the other PAA levels remained lower than the levels 

observed in the control, such role at crop level might not be biologically relevant. Care should be 

taken when considering this strain as a probiotic in relation to broiler performance due to its 

associated vancomycin resistance (Cetinkaya et al., 2000; Ahmed and Baptiste, 2018). However, in 

our data, only a slight fold change increase was found for vanC in the 50 ppm PAA group, also 

associated to a high degree of variation. 

Finally, we observed that the abundance of the 4-aminobutanoate degradation (V) predicted 

pathway was increased through all treatments ≥20ppm, which has been correlated to increased 
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insulin secretion in humans (Sanna et al., 2019) and could therefore be associated to an increased 

level of host glucose metabolism. From the six AMR genes analyzed, aadA, vanC and mecA 

recorded sporadic higher relative abundance in some of the treatments, although the level of PAA at 

which this was observed was rather inconsistent. Whilst it could be argued that therefore a reduction 

in AMR relative abundance triggered by PAA cannot be excluded, these observations were 

associated with relatively large degree of variation. Moreover, the absence of linearity between PAA 

level and AMR-DNA relative abundance may suggest these may be more likely chance findings 

rather than a systematic response to PAA intervention. However, the significance or tendency 

observed for the quadratic regression for tetQ and mecA, respectively, could point towards a 

selection pressure at some of the levels of inclusions and the need to optimize PAA administration 

concentration accordingly.  

In conclusion, this first study strongly supports the view of the role of PAA as a possible broad-

spectrum antimicrobial alternative, when administered in water for a week to young birds up to the 

age of 14 days. Our results also suggest that the modulation of the upper gut (i.e., crop) microbiota of 

young birds could contribute to changes in the host capability to metabolize specific nutrients, such 

as lipids and glucose, possibly leading to ameliorated performance in young birds. Therefore, our 

study not only suggests that the microbiota inhabiting the proximal intestine should be considered as 

a target for host-interaction modulation but also indicates that the established antimicrobial action of 

PAA could be applied in vivo to young chickens. 
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Table 1. Water treatments from day 7 to day 14 of age. The different PAA levels of inclusion were obtained by mixing different 

concentrations of SP and TAED and by adding EDTA and citric acid as stabilizers. Control at 0 ppm was obtained by adding EDTA 

only 

Treatment PAA level of inclusion TAED (g/l) SP (g/l) NaEDTA (g/l) Citric acid (g/l) 

1 0 ppm 0 0 0.05 0 

2 10 ppm 0.035 0.065 0.05 0.04 

3 20 ppm 0.055 0.095 0.05 0.05 

4 30 ppm 0.07 0.13 0.05 0.07 

5 40 ppm 0.09 0.17 0.05 0.09 

6 50 ppm 0.10 0.20 0.05 0.1 

PAA: peracetic acid; TAED: tetraacetylethylenediamine; SP: sodium percarbonate; NaEDTA: 

ethylenedinitrilotetraacetic acid disodium salt. 

 

Table 2. List of primers used in this study to amplify the AMR genes and the V3 region of the 16S rRNA gene 

Resistance/target 

(class, gene) 
Primers (5’ → 3’) Annealing  Amplicon Reference 

Streptomycin, 

spectinomycin 

(Aminoglycoside, 

aadA) 

Fw: 

GCAGCGCAATGACATTCTTG 

Rev: 

ATCCTTCGGCGCGATTTTG 

60 °C 282 bp 
(Esperón et 

al., 2018) 

Vancomycin 

(glycopeptide,  

vanA) 

Fw: 

GCCGGAAAAAGGCTCTGAA 

Rev: 

TTTTTTGCCGTTTCCTGTATCC 

60 °C 90 bp 
(He et al., 

2020) 
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Vancomycin 

(glycopeptide,  

vanC) 

Fw: 

CTTATGTTGGTTGCCATGTCG 

Rev: 

CGATTGTGGCAGGATCGTT 

60 °C 138 bp 
(Flipse et al., 

2019) 

Tetracycline (tetW) 

Fw: 

AGCGACAGCGTGAGGTTAAA 

Rev: 

AAGTTGCGTAAGAGCGTCCA 

60 °C 153 bp 
(Juricova et 

al., 2021) 

Tetracycline (tetQ) 

Fw: 

AGAATCTGCTGTTTGCCAGTG 

Rev: 

CGGAGTGTCAATGATATTGCA 

63 °C 167 bp 
(Aminov et 

al., 2001) 

Methicillin, penicillin 

(β-lactam, mecA) 

Fw: 

AACCACCCAATTTGTCTGCC 

Rev: 

TGATGGTATGCAACAAGTCGTAAA 

60 °C 135 bp 
(Kelley et al., 

2013) 

V3 region 16S rDNA  

341F: 

CCTACGGGAGGCAGCAG 

518R: 

ATTACCGCGGCTGCTGG 

60 °C 192 bp 
(Muyzer et al., 

1993) 

 

Table 3. Performance and colonic pH data at different intervals through the treatment week. Means ± standard deviations are 

shown for each treatment according to the detailed number of observations 

 Average body 
weight/period (Kg, 
day 14) 

Average feed 
intake/bird/period 
(Kg, days 7-14) 

Average 
FCR/bird/period 
(days 7-14) 

Colonic pH (day 
14) 

0 ppm 0.432 ± 0.065
A
 

(n=16) 
1.37±0.1

a
 (n=4) 1.23±0.06 (n=4) 6.94±0.55 (n=4) 

10 ppm 0.464 ± 0.067 
(n=16) 

1.45±0.08 (n=4) 1.24±0.08 (n=4) 7.32±0.58 (n=4) 

20 ppm 0.478 ± 0.061
B
 

(n=16) 
1.53±0.05

b
 (n=4) 1.24±0.01 (n=4) 6.94±0.40 (n=4) 

30 ppm 0.475 ± 0.056
B
 

(n=16) 
1.51±0.11

b
 (n=4) 1.30±0.14 (n=4) 6.88±0.88 (n=4) 

40 ppm 0.486 ± 0.049
B
 

(n=16) 
1.51±0.04

b
 (n=4) 1.26±0.04 (n=4) 7.17±0.24 (n=4) 

50 ppm 0.459 ± 0.066 
(n=16) 

1.43±0.13 (n=4) 1.25±0.05 (n=4) 7.34±0.43 (n=4) 

Different superscripts in the same row indicate statistically significant differences (P<0.05 and 

P<0.10 if upper or lowercase, respectively) output of the linear mixed model and Tukey corrected 

post hoc comparison of the type III LMM analysis of variance with Satterthwaite's method. 

Table 4. Mean fold change relative abundance (±standard deviation) of the six AMR genes analyzed through relative qPCR with 

the 2-ΔΔCt method, using the 16S rRNA gene as normalizer and the 0ppm control for comparison 

PAA aadA P value tetQ P value vanC P value 

0ppm 1.36 ± 0.93A  1.74 ± 1.48  0.75 ± 0.22A  
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10ppm 4.6 ± 4.88 0.12 0.12 ± 0.03 0.43 0.72 ± 0.1 0.99 

20ppm 3.86 ± 2.73 0.23 0.35 ± 0.21 0.50 0.86 ± 0.07 0.95 

30ppm 3.21 ± 2.96 0.37 0.32 ± 0.35 0.49 1.36 ± 1.36 0.76 

40ppm 2.76 ± 2.81 0.50 2.04 ± 1.94 0.89 5.15 ± 5.57B 0.03 

50ppm 8.88 ± 9.04B <0.01 2.99 ± 3.84 0.54 1.48 ± 0.97 0.72 

PAA tetW P value vanA P value mecA P value 

0ppm 2.19 ± 2.74  1.54 ± 1.2  1.13 ± 0.58A,a  

10ppm 1.89 ± 1.03 0.43 0.48 ± 0.21 0.61 1.29 ± 0.44 0.94 

20ppm 1.82 ± 0.92 0.50 0.22 ± 0.12 0.52 5.4 ± 4.72B 0.04 

30ppm 2.45 ± 1.59 0.49 2.42 ± 3.72 0.67 3.45 ± 4.82 0.26 

40ppm 4.67 ± 4.55 0.89 2.48 ± 2.9 0.65 4.64 ± 3.26b 0.09 

50ppm 1.64 ± 1.99 0.54 0.75 ± 0.57 0.70 0.93 ± 0.55 0.92 

Different superscripts in the same column indicate statistically significant differences (P<0.05 and 

P<0.10 if upper or lowercase, respectively) based on the linear mixed model and Tukey corrected 

post hoc comparison of the type III LMM analysis of variance with Satterthwaite's method. 

Table 5. Taxonomical composition at phylum level through the six different levels of inclusion of 

PAA administered through the study. The table depicts the calculated average of the relative 

abundance for each phylum at each treatment level ±SD calculated amongst the replicates 

 
0ppm (n=4) 10ppm (n=4) 20ppm (n=4) 30ppm (n=4) 40ppm (n=4) 50ppm (n=4) 

Firmicutes 57.7 ± 10.1A,a 58.9 ± 6.9B 47.1 ± 7.5 62.2 ± 7.7 51.7 ± 11.9b 55.6 ± 8.4 

Cyanobacteria 18.4 ± 5.5 17.2 ± 6.7 21.7 ± 5.8 15.6 ± 5.1 19.3 ± 6.5 13.8 ± 3.9 

Proteobacteria 23.5 ± 10.3A 23.5 ± 10.2B 31 ± 8.3 21.9 ± 3.1 28.7 ± 6.3 30.5 ± 5.2 

Actinobacteriota 0.06 ± 0.06A 0.01 ± 0.03B 0.04 ± 0.05 B 0.02 ± 0.02 B 0.05 ± 0.07 B 0.02 ± 0.03 B 

Bacteroidota 0.3 ± 0.2 0.3 ± 0.2 0.1 ± 0 0.2 ± 0.2 0.2 ± 0.1 0.1 ± 0.1 

Unassigned 0.01 ± 0.01A 0 ± 0 B 0.01 ± 0.02 B 0.03 ± 0.02 B 0 ± 0.01 B 0.02 ± 0.01 B 

Different superscripts in the same row indicate statistically significant differences (P<0.05 and 

P<0.10 if upper or lowercase, respectively) based on linear model analysis of the NEGBIN 

transformed reads. 

 

Table 6. Taxonomical composition at genus level through the six different levels of inclusion of 

PAA administered through the study. The table depicts the calculated average of the relative 

abundance for each genus amongst the 10 most abundant ones at each treatment level ±SD calculated 

amongst the replicates. 

  0ppm (n=4) 10ppm (n=4) 20ppm (n=4) 30ppm (n=4) 40ppm (n=4) 50ppm (n=4) 

Lactobacillus 57.42 ± 10.06A 58.88 ± 6.91B 46.23 ± 7.48B 62.07 ± 7.69B 51.41 ± 12.14B 55.5 ± 8.43 

Cyanobacteria 

(Unassigned) 

18.39 ± 5.46a 17.23 ± 6.73b 21.74 ± 5.83 15.63 ± 5.06 19.33 ± 6.46 13.76 ± 3.93 
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Rickettsiales 

(Unassigned) 

20.77 ± 11.11 20.58 ± 9.6 27.74 ± 9.11 18.27 ± 2.68 25.88 ± 5.18 24.12 ± 8.23 

Acinetobacter 1.61 ± 1.62 1.49 ± 1.26 1.15 ± 0.96 1.54 ± 1.22 0.84 ± 0.68 1.64 ± 1.25 

Erwiniaceae 

(Unassigned) 

0.25 ± 0.21A 0.11 ± 0.07B 0.37 ± 0.25 0.28 ± 0.19 0.44 ± 0.18 0.81 ± 0.87B 

Pseudomonas 0.13 ± 0.09 0.15 ± 0.05 0.38 ± 0.31 0.36 ± 0.5 0.32 ± 0.18 0.25 ± 0.19 

Escherichia-

Shigella 

0.09 ± 0.1 0.45 ± 0.27 0.64 ± 0.27 0.39 ± 0.42 0.17 ± 0.17 0.13 ± 0.1 

Ruminococcus 

(torques group) 

0.06 ± 0.07 0.02 ± 0.02B 0.07 ± 0.04B 0.04 ± 0.05B 0.06 ± 0.09 0.02 ± 0.02B 

Enterobacteriacea

e (Unassigned) 

0.27 ± 0.19A 0.38 ± 0.16 0.33 ± 0.17 0.81 ± 0.77 0.5 ± 0.4 2.96 ± 2.68B 

Enterobacterales 

(Unassigned) 

0.14 ± 0.22A 0.13 ± 0.09 0.14 ± 0.06 0.08 ± 0.08 0.25 ± 0.09 0.33 ± 0.32B 

Others 0.89 ± 0.47 0.59 ± 0.25 1.21 ± 0.67 0.53 ± 0.24 0.8 ± 0.32 0.49 ± 0.21 

Different superscripts in the same row indicate statistically significant differences (P<0.05 and 

P<0.10 if upper or lowercase, respectively) based on linear model analysis of the NEGBIN 

transformed reads. 
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Figure 1. Log10 bacterial concentration in the three different gut locations analyzed 

 

Figure 2. Correlation between body weight gain and Log10 crop bacterial concentration. Each dot 

represents the bacterial abundance associated with the different treatments (in different colors), 

whereas the size of the dot indicates whether the measurement was associated with either of the 

rooms. Linear models for each treatment are represented by the colored lines, indicating the 

monotonic inverse relationship between the variables especially for treatments whose level of 

inclusion was higher than 20ppm 

 

Figure 3. Microbial OTU alpha-diversity; richness calculated through the different levels of 

inclusion 

 

Figure 4. NEGBIN calculated differential abundance of TMM normalized predicted pathway 

abundance 

  

                  



 36 / 37 

 

 

 

 

 

  

                  



 37 / 37 

 

 

 

 

 

                  


