8 research outputs found

    The machine abnormal degree detection method based on SVDD and negative selection mechanism

    Get PDF
    As is well-known, fault samples are essential for the fault diagnosis and anomaly detection, but in most cases, it is difficult to obtain them. The negative selection mechanism of immune system, which can distinguish almost all nonself cells or molecules with only the self cells, gives us an inspiration to solve the problem of anomaly detection with only the normal samples. In this paper, we introduced the Support Vector Data Description (SVDD) and negative selection mechanism to separate the state space of machines into self, non-self and fault space. To estimate the abnormal level of machines, a function that could calculate the abnormal degree was constructed and its sensitivity change according to the change of abnormal degree was also discussed. At last, Iris-Fisher and ball bearing fault data set were used to verify the effectiveness of this method

    A practical study on shape space and its occupancy in negative selection

    Get PDF

    Handling minority class problem in threats detection based on heterogeneous ensemble learning approach.

    Get PDF
    Multiclass problem, such as detecting multi-steps behaviour of Advanced Persistent Threats (APTs) have been a major global challenge, due to their capability to navigates around defenses and to evade detection for a prolonged period of time. Targeted APT attacks present an increasing concern for both cyber security and business continuity. Detecting the rare attack is a classification problem with data imbalance. This paper explores the applications of data resampling techniques, together with heterogeneous ensemble approach for dealing with data imbalance caused by unevenly distributed data elements among classes with our focus on capturing the rare attack. It has been shown that the suggested algorithms provide not only detection capability, but can also classify malicious data traffic corresponding to rare APT attacks

    Artificial immune system based security algorithm for mobile ad hoc networks

    Get PDF
    Securing Mobile Ad hoc Networks (MANET) that are a collection of mobile, decentralized, and self-organized nodes is a challenging task. The most fundamental aspect of a MANET is its lack of infrastructure, and most design issues and challenges stem from this characteristic. The lack of a centralized control mechanism brings added difficulty in fault detection and correction. The dynamically changing nature of mobile nodes causes the formation of an unpredictable topology. This varying topology causes frequent traffic routing changes, network partitioning and packet losses. The various attacks that can be carried out on MANETs challenge the security capabilities of the mobile wireless network in which nodes can join, leave and move dynamically. The Human Immune System (HIS) provides a foundation upon which Artificial Immune algorithms are based. The algorithms can be used to secure both host-based and network-based systems. However, it is not only important to utilize the HIS during the development of Artificial Immune System (AIS) based algorithms as much as it is important to introduce an algorithm with high performance. Therefore, creating a balance between utilizing HIS and AIS-based intrusion detection algorithms is a crucial issue that is important to investigate. The immune system is a key to the defence of a host against foreign objects or pathogens. Proper functioning of the immune system is necessary to maintain host homeostasis. The cells that play a fundamental role in this defence process are known as Dendritic Cells (DC). The AIS based Dendritic Cell Algorithm is widely known for its large number of applications and well established in the literature. The dynamic, distributed topology of a MANET provides many challenges, including decentralized infrastructure wherein each node can act as a host, router and relay for traffic. MANETs are a suitable solution for distributed regional, military and emergency networks. MANETs do not utilize fixed infrastructure except where a connection to a carrier network is required, and MANET nodes provide the transmission capability to receive, transmit and route traffic from a sender node to the destination node. In the HIS, cells can distinguish between a range of issues including foreign body attacks as well as cellular senescence. The primary purpose of this research is to improve the security of MANET using the AIS framework. This research presents a new defence approach using AIS which mimics the strategy of the HIS combined with Danger Theory. The proposed framework is known as the Artificial Immune System based Security Algorithm (AISBA). This research also modelled participating nodes as a DC and proposed various signals to indicate the MANET communications state. Two trust models were introduced based on AIS signals and effective communication. The trust models proposed in this research helped to distinguish between a “good node” as well as a “selfish node”. A new MANET security attack was identified titled the Packet Storage Time attack wherein the attacker node modifies its queue time to make the packets stay longer than necessary and then circulates stale packets in the network. This attack is detected using the proposed AISBA. This research, performed extensive simulations with results to support the effectiveness of the proposed framework, and statistical analysis was done which showed the false positive and false negative probability falls below 5%. Finally, two variations of the AISBA were proposed and investigated, including the Grudger based Artificial Immune System Algorithm - to stimulate selfish nodes to cooperate for the benefit of the MANET and Pain reduction based Artificial Immune System Algorithm - to model Pain analogous to HIS

    Machine learning for network based intrusion detection: an investigation into discrepancies in findings with the KDD cup '99 data set and multi-objective evolution of neural network classifier ensembles from imbalanced data.

    Get PDF
    For the last decade it has become commonplace to evaluate machine learning techniques for network based intrusion detection on the KDD Cup '99 data set. This data set has served well to demonstrate that machine learning can be useful in intrusion detection. However, it has undergone some criticism in the literature, and it is out of date. Therefore, some researchers question the validity of the findings reported based on this data set. Furthermore, as identified in this thesis, there are also discrepancies in the findings reported in the literature. In some cases the results are contradictory. Consequently, it is difficult to analyse the current body of research to determine the value in the findings. This thesis reports on an empirical investigation to determine the underlying causes of the discrepancies. Several methodological factors, such as choice of data subset, validation method and data preprocessing, are identified and are found to affect the results significantly. These findings have also enabled a better interpretation of the current body of research. Furthermore, the criticisms in the literature are addressed and future use of the data set is discussed, which is important since researchers continue to use it due to a lack of better publicly available alternatives. Due to the nature of the intrusion detection domain, there is an extreme imbalance among the classes in the KDD Cup '99 data set, which poses a significant challenge to machine learning. In other domains, researchers have demonstrated that well known techniques such as Artificial Neural Networks (ANNs) and Decision Trees (DTs) often fail to learn the minor class(es) due to class imbalance. However, this has not been recognized as an issue in intrusion detection previously. This thesis reports on an empirical investigation that demonstrates that it is the class imbalance that causes the poor detection of some classes of intrusion reported in the literature. An alternative approach to training ANNs is proposed in this thesis, using Genetic Algorithms (GAs) to evolve the weights of the ANNs, referred to as an Evolutionary Neural Network (ENN). When employing evaluation functions that calculate the fitness proportionally to the instances of each class, thereby avoiding a bias towards the major class(es) in the data set, significantly improved true positive rates are obtained whilst maintaining a low false positive rate. These findings demonstrate that the issues of learning from imbalanced data are not due to limitations of the ANNs; rather the training algorithm. Moreover, the ENN is capable of detecting a class of intrusion that has been reported in the literature to be undetectable by ANNs. One limitation of the ENN is a lack of control of the classification trade-off the ANNs obtain. This is identified as a general issue with current approaches to creating classifiers. Striving to create a single best classifier that obtains the highest accuracy may give an unfruitful classification trade-off, which is demonstrated clearly in this thesis. Therefore, an extension of the ENN is proposed, using a Multi-Objective GA (MOGA), which treats the classification rate on each class as a separate objective. This approach produces a Pareto front of non-dominated solutions that exhibit different classification trade-offs, from which the user can select one with the desired properties. The multi-objective approach is also utilised to evolve classifier ensembles, which yields an improved Pareto front of solutions. Furthermore, the selection of classifier members for the ensembles is investigated, demonstrating how this affects the performance of the resultant ensembles. This is a key to explaining why some classifier combinations fail to give fruitful solutions

    Machine learning for network based intrusion detection : an investigation into discrepancies in findings with the KDD cup '99 data set and multi-objective evolution of neural network classifier ensembles from imbalanced data

    Get PDF
    For the last decade it has become commonplace to evaluate machine learning techniques for network based intrusion detection on the KDD Cup '99 data set. This data set has served well to demonstrate that machine learning can be useful in intrusion detection. However, it has undergone some criticism in the literature, and it is out of date. Therefore, some researchers question the validity of the findings reported based on this data set. Furthermore, as identified in this thesis, there are also discrepancies in the findings reported in the literature. In some cases the results are contradictory. Consequently, it is difficult to analyse the current body of research to determine the value in the findings. This thesis reports on an empirical investigation to determine the underlying causes of the discrepancies. Several methodological factors, such as choice of data subset, validation method and data preprocessing, are identified and are found to affect the results significantly. These findings have also enabled a better interpretation of the current body of research. Furthermore, the criticisms in the literature are addressed and future use of the data set is discussed, which is important since researchers continue to use it due to a lack of better publicly available alternatives. Due to the nature of the intrusion detection domain, there is an extreme imbalance among the classes in the KDD Cup '99 data set, which poses a significant challenge to machine learning. In other domains, researchers have demonstrated that well known techniques such as Artificial Neural Networks (ANNs) and Decision Trees (DTs) often fail to learn the minor class(es) due to class imbalance. However, this has not been recognized as an issue in intrusion detection previously. This thesis reports on an empirical investigation that demonstrates that it is the class imbalance that causes the poor detection of some classes of intrusion reported in the literature. An alternative approach to training ANNs is proposed in this thesis, using Genetic Algorithms (GAs) to evolve the weights of the ANNs, referred to as an Evolutionary Neural Network (ENN). When employing evaluation functions that calculate the fitness proportionally to the instances of each class, thereby avoiding a bias towards the major class(es) in the data set, significantly improved true positive rates are obtained whilst maintaining a low false positive rate. These findings demonstrate that the issues of learning from imbalanced data are not due to limitations of the ANNs; rather the training algorithm. Moreover, the ENN is capable of detecting a class of intrusion that has been reported in the literature to be undetectable by ANNs. One limitation of the ENN is a lack of control of the classification trade-off the ANNs obtain. This is identified as a general issue with current approaches to creating classifiers. Striving to create a single best classifier that obtains the highest accuracy may give an unfruitful classification trade-off, which is demonstrated clearly in this thesis. Therefore, an extension of the ENN is proposed, using a Multi-Objective GA (MOGA), which treats the classification rate on each class as a separate objective. This approach produces a Pareto front of non-dominated solutions that exhibit different classification trade-offs, from which the user can select one with the desired properties. The multi-objective approach is also utilised to evolve classifier ensembles, which yields an improved Pareto front of solutions. Furthermore, the selection of classifier members for the ensembles is investigated, demonstrating how this affects the performance of the resultant ensembles. This is a key to explaining why some classifier combinations fail to give fruitful solutions.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Negative Selection with Antigen Feedback in Intrusion Detection

    No full text
    corecore