

Artificial Immune System based Security Algorithm for Mobile Ad Hoc Networks

 A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy

Lincy Elizebeth Jim

M.Tech in Electronics Design and Technology, National Institute of Technology, Calicut, India

B.Tech in Electronics and Communication, Cochin University of Science and Technology, India

School of Engineering

 College of Science, Engineering and Health

RMIT University

August 2017

Declaration

I certify that except where due acknowledgement has been made, the work is that of the author

alone; the work has not been submitted previously, in whole or in part, to qualify for any other

academic award; the content of the thesis is the result of work which has been carried out since

the official commencement date of the approved research program; any editorial work, paid or

unpaid, carried out by a third party is acknowledged; and, ethics procedures and guidelines

have been followed.

I acknowledge the support I have received for my research through the provision of an

Australian Government Research Training Program Scholarship

The work presented within this thesis holds no material or information that has been

accepted for the award in any university for any degree. To the best of my knowledge and

belief, this thesis does not contain any material written by another person except for the

places denoted by specific references. The content of this thesis is the product of research

work carried out at RMIT University, since the start of this research program.

Lincy Elizebeth Jim

31/08/2017

My PhD

It has been a constant battle, a battle where fears and emotions try to take

advantage of you, “Do not give up “ the voice says, “For the seeds you sow

today in your life will make great trees that will provide you comfort later!!”

It’s not everyone who have tread this path and for those trodden this path a

huge applause for all your hard work, dedication and patience!!!!

Always remember the darkest hour is always before dawn!

“This is dedicated to my God who kept me moving forward with

perseverance”

My appreciation and thanks go to:

My husband, kids and my parents,

For their love, endless support and sacrifice

Acknowledgements

I would like to acknowledge the financial, academic and technical support of the School of

Engineering, RMIT University, and its staff. I would like to acknowledge the opportunity

given to me by my primary supervisor, Associate Professor Mark A Gregory, in order to

undertake this PhD. He undoubtedly had the most profound influence on the achievements

during my PhD research. On that note, I would like to thank him for showing patient support,

constant encouragement, and assistance throughout my research program. Most importantly, I

am thankful to him for easing me into this program and for trusting my capabilities during the

research tenure. I deeply acknowledge Professor Henry Wu for his engagement in many

constructive discussions over email and critical reviews on my model prior to finalize the

result. I also appreciate the many anonymous reviewers of my peer-reviewed published

journal and conference proceedings. Their detailed, insightful and sometimes tough

comments helped me to look at every fine detail of the project that improve the quality of the

work immeasurably.

I would like to extend a special note of thanks to my dearest husband Mr. Jim Chacko for his

tremendous patience and support during the entire stretch of this PhD program. I would also

like to thank my parents for providing their constant support throughout my life. To my little

children Johna Susan Jim and Jaiden Jim, who have been affected in every way possible by

this quest and helped me maintain straight thinking with their innocence. Thank you very

much for your valuable prayers. My love for the both of you darlings can never be measured.

God bless you. Finally, for moral support I extend many thanks to my beloved father, Mr.

Elavinamannil Thomas Kuriakose and my mother, Mrs. Lisy Kuriakose as well as my brother

Mr. Lejoe Thomas Kuriakose and sister in law Dr. Biji Lejoe, as well as my dearest friends

Mr. Peter Paily and Ms. Ann Manoj for which my mere expression of thanks likewise does

not suffice.

Abstract

Securing Mobile Ad hoc Networks (MANET) that are a collection of mobile, decentralized,

and self-organized nodes is a challenging task. The most fundamental aspect of a MANET is

its lack of infrastructure, and most design issues and challenges stem from this characteristic.

The lack of a centralized control mechanism brings added difficulty in fault detection and

correction. The dynamically changing nature of mobile nodes causes the formation of an

unpredictable topology. This varying topology causes frequent traffic routing changes,

network partitioning and packet losses. The various attacks that can be carried out on

MANETs challenge the security capabilities of the mobile wireless network in which nodes

can join, leave and move dynamically. The Human Immune System (HIS) provides a

foundation upon which Artificial Immune algorithms are based. The algorithms can be used

to secure both host-based and network-based systems. However, it is not only important to

utilize the HIS during the development of Artificial Immune System (AIS) based algorithms

as much as it is important to introduce an algorithm with high performance. Therefore,

creating a balance between utilizing HIS and AIS-based intrusion detection algorithms is a

crucial issue that is important to investigate.

The immune system is a key to the defence of a host against foreign objects or pathogens.

Proper functioning of the immune system is necessary to maintain host homeostasis. The

cells that play a fundamental role in this defence process are known as Dendritic Cells (DC).

The AIS based Dendritic Cell Algorithm is widely known for its large number of applications

and well established in the literature.

The dynamic, distributed topology of a MANET provides many challenges, including

decentralized infrastructure wherein each node can act as a host, router and relay for traffic.

MANETs are a suitable solution for distributed regional, military and emergency networks.

MANETs do not utilize fixed infrastructure except where a connection to a carrier network is

required, and MANET nodes provide the transmission capability to receive, transmit and

route traffic from a sender node to the destination node. In the HIS, cells can distinguish

between a range of issues including foreign body attacks as well as cellular senescence.

The primary purpose of this research is to improve the security of MANET using the AIS

framework. This research presents a new defence approach using AIS which mimics the

strategy of the HIS combined with Danger Theory. The proposed framework is known as the

Artificial Immune System based Security Algorithm (AISBA).

This research also modelled participating nodes as a DC and proposed various signals to

indicate the MANET communications state. Two trust models were introduced based on AIS

signals and effective communication. The trust models proposed in this research helped to

distinguish between a “good node” as well as a “selfish node”.

A new MANET security attack was identified titled the Packet Storage Time attack wherein

the attacker node modifies its queue time to make the packets stay longer than necessary and

then circulates stale packets in the network. This attack is detected using the proposed

AISBA.

This research, performed extensive simulations with results to support the effectiveness of the

proposed framework, and statistical analysis was done which showed the false positive and

false negative probability falls below 5%.

Finally, two variations of the AISBA were proposed and investigated, including the Grudger

based Artificial Immune System Algorithm - to stimulate selfish nodes to cooperate for the

benefit of the MANET and Pain reduction based Artificial Immune System Algorithm - to

model Pain analogous to HIS.

Table of Contents

ARTIFICIAL IMMUNE SYSTEM BASED SECURITY ALGORITHM FOR MOBILE AD

HOC NETWORKS ... ERROR! BOOKMARK NOT DEFINED.

Statement ... Error! Bookmark not defined.

Acknowledgements .. 4

Abstract... 6

Table of Contents.. 9

List of Figures ... 12

List of Tables .. 14

List of Acronyms and Abbreviations .. 15

CHAPTER 1 INTRODUCTION .. 16

1.1 Introduction ... 17

1.2 Research Problem .. 18

1.3 Research Aims ... 20

1.4 Objective ... 21

1.5 Research Contribution ... 22

1.6 Publications ... 23

1.7 Thesis Composition ... 25

CHAPTER 2 LITERATURE REVIEW ... 27

2.1 Overview ... 28

2.2 MANET Background .. 28

2.3 MANET Security Attacks ... 31

2.3.1 Replay attack ... 32

2.3.2 Blackhole attack .. 32

2.3.3 Flooding attack .. 33

2.3.4 Wormhole attack ... 33

2.4 Analogy between MANET and HIS .. 33

2.5 Related approaches in MANET utilizing Hop Count .. 34

2.5.1 Multipath Hop-Count Analysis ... 34

2.5.2 Past Interaction Social Analysis .. 35

2.5.3 Probability to Deliver .. 36

2.5.4 Node location .. 37

2.5.5 Hop-count in Wormhole routes ... 37

2.5.6 Routing protocols using hop mechanism ... 38

2.6 Tradeoff between Selfishness and Altruism in MANET ... 39

2.7 Artificial Immune Systems .. 41

2.8 AIS Algorithms ... 44

2.8.1 Negative Selection ... 44

2.8.2 Artificial Immune Networks .. 46

2.8.3 Clonal Selection Algorithms ... 48

2.8.4 Danger Theory based Algorithms .. 50

2.8.5 Dendritic Cell Algorithms ... 52

2.9 MANET and HIS ... 56

2.9.1 Introduction and Need for AIS Conceptualization in MANET ... 57

2.9.2 Developments in AIS Based MANET ... 58

2.10 Interaction between pain, nervous system, and immune system ... 74

2.11 Summary ... 75

CHAPTER 3 ANALYSIS OF MANET NODE STATE ... 77

3.1 Overview ... 78

3.2 Analysis of MANET nodes ... 78

3.2.1 Node Movement Probability ... 79

3.2.2 Node State Classification... 80

3.2.3 Hop-Count versus Probability of Communication/Node Nearness ... 83

3.2.4 Delivery Time versus Delivery Cost ... 84

3.2.5 Routing Overhead versus Node Velocity .. 84

3.3 Summary ... 85

CHAPTER 4 AIS ENHANCED SECURITY .. 86

4.1 Overview ... 87

4.2 Artificial Immune System Based Algorithm ... 87

4.2.1 Inspiration .. 87

4.3 AISBA Trust Model .. 89

4.3.1 Trust Condition Evaluation ... 92

4.3.2 Trust Threshold based on Interactions ... 97

4.4 Simulation and Results .. 101

4.5 Statistical Analysis .. 104

4.6 Summary ... 106

CHAPTER 5 ROUTING ATTACK - PACKET STORAGE TIME.. 107

5.1 Overview ... 108

5.2 Proposed attack-packet storage time ... 108

5.3 AIS Algorithm ... 110

5.4 Simulation and Results .. 113

5.5 Summary ... 117

CHAPTER 6 SELFISH NODE REHABILITATION ... 118

6.1 Overview ... 119

6.2 Modeling of Grudger Artificial Immune System Algorithm ... 119

6.3 Simulation results and analysis .. 126

6.4 Summary ... 129

CHAPTER 7 AIS PAIN MODELLING .. 131

7.1 Overview ... 132

7.2 Modeling Trust for Pain Abstraction ... 132

7.3 Modeling the Pain Reduction Artificial Immune System Algorithm .. 136

7.4 Simulation and Results .. 140

7.5 Summary ... 143

CHAPTER 8 CONCLUSION AND FUTURE WORK ... 144

BIBLIOGRAPHY .. 148

APPENDIX 1 AISBA.CC ... 159

APPENDIX 2 AISBA-ROUTING-PROTOCOL.CC .. 164

APPENDIX 3 VALUE OF NODE NEARNESS FACOR(K) .. 208

List of Figures

Figure 2-1 Node hops for normal and wormhole traffic ... 30
Figure 2-2 MANET security attacks .. 32
Figure 2-3 Colluding nodes in Wormhole Attack .. 35
Figure 2-4 Hop-count metric for wormhole ... 38
Figure 2-5 Danger Theory model ... 41
Figure 2-6 Dendritic Cell Algorithm Schematic... 54
Figure 2-7 MANET security goals ... 59
Figure 2-8 Detection system ... 60
Figure 2-9 Immune libraries ... 66
Figure 3-1 Node positions .. 79
Figure 3-2 State diagram for L and R states ... 80
Figure 3-3 Node states .. 80
Figure 3-4 Hop-count versus probability of communication .. 83
Figure 3-5 Delivery Time versus Delivery Cost ... 84
Figure 3-6 Routing overhead versus Node Velocity .. 85
Figure 4-1 Proposed AISBA Model ... 90
Figure 4-2 Trust Condition Number line model ... 92
Figure 4-3 Trust Model .. 93
Figure 4-4 Effect of PAMP strength on packet loss ratio ... 95
Figure 4-5 AISBA Sliding Window Implementation ... 98
Figure 4-6 Effect of interactions on Trust Value .. 99
Figure 4-7 Node Behavioral Sectors .. 100
Figure 4-8 Malicious Node Effect on Packet Delivery ... 102
Figure 4-9 Malicious Node Detection Rate .. 102
Figure 4-10 Packet Delivery Ratio corresponding to Malicious nodes .. 103
Figure 4-11 True Detection corresponding to Malicious Nodes .. 104
Figure 4-12 Effect of Weight of PAMP and Trust Threshold on max (fpp,fpn) .. 106
Figure 5-1 MANET scenario .. 109
Figure 5-2 Proposed AIS algorithm .. 110
Figure 5-3 Proposed AIS Algorithm flowchart .. 113
Figure 5-4 Effective Energy v/s Hop Count ... 116
Figure 5-5 Compatibility v/s Cost .. 116
Figure 5-6 E2E v/s Number of nodes ... 116
Figure 5-7 PST Attack-Packer loss v/s Number of nodes .. 117
Figure 6-1 GrAIS model ... 122
Figure 6-2 GrAIS model event flow ... 123
Figure 6-3 Trust values for Workload1 .. 128
Figure 6-4 Trust values for Workload2 .. 129
Figure 6-5 Trust values for Workload3 .. 129
Figure 7-1 Pain and Inflammation Conceptualization in MANET ... 137
Figure 7-2 Proposed PrAIS algorithm flowchart .. 139
Figure 7-3 Inflammation v/s Pause time ... 141
Figure 7-4 Packet delivery ratio v/s Pause time ... 142
Figure 7-5 E2E v/s Pause time ... 142
Figure 7-6 Routing overhead v/s Pause time .. 143

List of Tables

Table 4-1 Trust Component Value Assignments .. 95
Table 4-2 Simulated Parameters ... 101
Table 5-1 Algorithm Pseudo Code ... 114
Table 5-2 Simulated Parameters ... 115
Table 6-1 Simulated Parameters ... 127
Table 7-1 Simulated Parameters ... 141

List of Acronyms and Abbreviations

AIS Artificial Immune System

AISBA Artificial Immune System Based Security Algorithm

DC Dendritic Cell

DS Danger Signal

GrAIS Grudger Based Artificial Immune System Algorithm

HIS Human Immune System

MANET Mobile Ad hoc Network

PST Packet Storage Time Attack

PAMP Pathogen Associated Molecular Pattern

PrAIS Pain Reduction Artificial Immune System Algorithm

SS Safe Signal

IS Identifier Signal

SC Secure Signal

WL WorkLoad

Chapter 1 INTRODUCTION

1.1 Introduction

Wireless communications is a key technology that permits consumers to participate in the

global digital economy as they go about their daily activities. Fixed and mobile wireless

communications have evolved rapidly as demand for telecommunications has increased and

today the rate of technological change is happening faster than ever before. Mobile ad hoc

networks (MANETs) are a form of wireless communications that consist of an assemblage of

wireless mobile nodes which dynamically interchange data amongst themselves without the

dependence on a fixed base station or a wired backbone network. The goal of MANET is to

sustain reliable mobile communications by amalgamating the network routing and relay

functionality into the mobile nodes. The limited transmission range of the mobile nodes

means that multiple hops could be required to exchange information with other nodes [2].

During the last decade, studies have been carried out on MANET routing that have resulted in

numerous mature routing protocols. However, in most cases, the protocols require a trusted

MANET environment, which is difficult to achieve. In many situations, the environment is

susceptible to a range of security and other issues. For example, various behavioural patterns

can be exhibited in nodes; some nodes can be selfish, malicious, or compromised by

attackers. Various strategies have been advocated to secure the MANET routing protocols to

identify and mitigate the various forms of attack, however, MANET security remains an

active research topic [3]. In this thesis, a literature review is provided that identifies the

MANET security challenges and an Artificial Immune System (AIS) approach is used to

secure MANET from selected security related attacks.

The MANET nodes that are in transmission range of each other are called neighbours.

Neighbours should be able to communicate with each other [2,3], however, when a node

needs to forward data to other non-neighbouring nodes, the data might be routed through a

sequence of multiple hops, with intermediate nodes acting as routers or relays. The success of

MANET strongly depends on whether the nodes can be trusted.

1.2 Research Problem

MANETs are evolving and the threat landscape has increased, making the security of

MANET a research focus. Mobility provides advantages and the ad hoc network nature of

MANETs adds to the advantages, however an insecure MANET would negate many of the

advantages. Ad hoc networks may be deployed in various terrain and hazardous conditions

and even hostile environments where the device may be compromised, faulty or

unserviceable.

 Resource-constrained nodes. MANET nodes are typically battery powered and have

limited storage and processing capability. Moreover, they may be situated in areas

where it is not possible to re-charge and thus have limited lifetimes. Because of these

limitations, they must be well designed to optimize energy-efficient operation within

the limits of the storage available and processing capability.

 Dynamic topology. The topology in an ad hoc network may change continuously due

to the node mobility. As nodes move in and out of range of each other, some links

break while new links between nodes are created. Because of these issues, MANETs

are prone to various faults.

 Node failures. Nodes may fail at any time due to different types of hazardous

environmental conditions. They may also drop out of the network either voluntarily or

when their energy supply is depleted.

 Link failures. Node faults and changing environmental conditions (e.g., increased

EMI) may cause links between nodes to degrade or fail.

 Route failures. When the network topology changes due to node mobility, nodes

being added or removed from the network or faults and failures, traffic routes become

out of date regularly and quickly. Depending upon the network transport protocol,

packets forwarded through stale routes may eventually be dropped or delayed; packets

may take a circuitous route before eventually arriving at the destination node.

MANET routing protocols should deal with these issues to be effective.

 Dynamic topology. Dynamic topology and changeable node membership may disturb

the trust relationship between nodes. The trust may also be disturbed if some of the

nodes are detected as compromised. This dynamic behaviour leads to the need for

distributed and adaptive security mechanisms.

 Adversary inside the network. The MANET nodes can freely join and leave the

network and if they’ve joined the network there is an anticipation that the nodes will

participate in the MANET, however, MANET nodes restrict power usage and this

could lead to a selfish node behavior. Selfish behaviour by MANET nodes can lead to

severely degraded performance making their behaviour mode detrimental in some

respects than an external security attack.

The following research challenges were identified:

 Applying the HIS concept to MANET to design a “bio immune MANET”

 Implementing a DC in a MANET context

 Utilising the HIS concept to address security concerns

 Variations to typical security attacks

 How to overcome selfish node behaviour

 Modelling pain in a MANET

1.3 Research Aims

The research carried out encompassed several of the MANET challenges with a focus on the

development of a robust and reliable security framework utilizing AIS concepts. The research

aims include:

1. In the current state of the art the nodes are in a protected state or human intervention

is required when facing security threats. These situations are impractical in a MANET

which is known for dynamic topology and node mobility. Therefore, a new and

innovative approach is necessary which can overcome the challenges of the existing

MANET design and rectify the drawbacks of the current state of the art. Integration of

an AIS scheme in MANET packet transmission in order to create AIS based routing

(Translate AIS signals to MANET signals) has the potential to be a valuable

framework.

2. Model an AIS based security algorithm. Each node is modelled as a DC that initiate

immune responses. Each DC node monitors the routing process and generates signals

indicating the presence or absence of danger.

3. Model the Packet Storage Time Attack.

4. Model the Grudger based Artificial Immune System based Algorithm that helps to

stimulate the cooperation of selfish nodes.

5. Model Pain Reduction Algorithm utilizing AIS concepts to alleviate pain in MANET

1.4 Objective

The objective of this research was to:

1. Analyse nodes based on their states and investigate the Probability of Communication

as this is important when modelling MANET nodes as DCs.

2. Implement an AIS based Security Algorithm (AISBA) and model the algorithm

performance using trust metrics and AIS signals.

3. Implement the Packet Storage Time (PST) attack and investigate its effect on

MANET.

4. Implement a Grudger based Artificial Immune System Algorithm (GrAIS) and model

the algorithm to see the effects of selfish node stimulation to cooperate in packet

transmission.

5. Implement a Pain reduction based Artificial Immune System Algorithm (PrAIS) and

model the algorithm to identify MANET Pain analogous to that found in the HIS.

1.5 Research Contribution

The research carried out successfully met the research aims and objectives. An improved AIS

based framework for MANET that incorporated solutions for several of the MANET

challenges was developed. An AISBA model was proposed and simulated using NS-3.

AISBA realizes a high detection rate and packet delivery ratio. The selfish nodes that usually

behave in an adversarial manner were stimulated to cooperate based on the GrAIS model.

Pain is a stimulus which indicates the cells in HIS are under stress or duress, this concept is

the first of its kind, namely that PrAIS was modelled in a MANET. Finally, a new routing

attack PST [59] was designed and simulations were carried out to validate the PST attacker

utilizing AIS principles.

The research contribution includes:

 A review of the literature and a thematic classification of various AIS algorithms. A

classification is proposed according to the challenges that AIS based MANET

schemes might attempt to solve, thus providing a more efficient understanding of the

proposed solution. In addition, the security attacks in MANET have also been detailed

thereby providing an understanding of the reason behind the investigation of a new

routing attack in MANET.

 AISBA has been designed with AIS signals to provide a secure routing algorithm to

detect selfish nodes. This is inspired from the HIS as the DCs in the Human body

provide a robust defence. To guarantee reliability and minimizing end-to-end latency,

Trust metrics have been modelled and utilized to provide secure routing for MANET

nodes. Extensive simulations demonstrate that AISBA yields a significant

improvement in detection rate and packet delivery ratio.

 A novel routing attack, PST, is implemented in MANET. In PST, the attacker

modifies the storage time of the packet so that it does not reach the intended

destination nodes. Utilizing AIS signals the source of the PST attack was identified.

 A variant of the AISBA, GrAIS, takes advantage of the idea of a Dawkins model of

birds and transforms the issue of selfish nodes non-cooperation by stimulating them to

cooperate by utilizing the concept of increasing workload. Simulation results show

that GrAIS yields significant improvements in the efficiency of packet delivery.

 The PrAIS approach models pain in MANET. This novel approach is the first of its

kind where pain that is analogous to what is found in the HIS is added to a MANET

architecture. PrAIS applies a Pain before action (Pba) and Pain after action (Paa) based

Pain Reduction approach, which uses the AIS signals, and trust among the nodes.

Extensive simulations have demonstrated the efficiency and effectiveness of the

proposed approach.

1.6 Publications

Peer reviewed publications either published or submitted for publication during the research

program.

Journal

1. L. E. Jim and M. A. Gregory, "A review of artificial immune system based security

frameworks for Manet," International Journal of Communications, Network and

System Sciences, vol. 9, p. 1, 2016. (PUBLISHED)

2. L. E. Jim and M. A. Gregory, "Utilisation of DANGER and PAMP signals to detect a

MANET Packet Storage Time Attack," Australian Journal of Telecommunications

and the Digital Economy, vol. 5, pp. 61-74, 2017. (PUBLISHED)

3. L. E. Jim and M. A. Gregory “AIS Based Danger Theory Framework to Detect

Selfish Nodes”. (SUBMITTED)

4. L. E. Jim and M. A. Gregory “A Grudger Based AIS Approach to Coerce Selfish

Node Cooperation in MANET”. (SUBMITTED)

Conference

5. L. E. Jim and M. A. Gregory, "State analysis of Mobile Ad Hoc Network nodes," in

Telecommunication Networks and Applications Conference (ITNAC), 2015

International, 2015, pp. 314-319. (PUBLISHED)

6. L. E. Jim and M. A. Gregory, "Packet Storage Time attack-a novel routing attack in

Mobile Ad hoc Networks," in Telecommunication Networks and Applications

Conference (ITNAC), 2016 27th International, 2016. (PUBLISHED)

7. L. E. Jim and M. A. Gregory, "Modelling of Pain in an Artificial Immune System

based MANET," in Telecommunication Networks and Applications Conference

(ITNAC), 2017 27th International, 2017. (ACCEPTED FOR PUBLICATION)

1.7 Thesis Composition

The research carried out included a literature review, identification of the research steps,

algorithm development, simulations, analysis of the simulation results, comparison and

discussion of the results with alternatives found in the literature and identification of future

work. The thesis chapters presenting the work carried out are summarized to provide a guide

to the thesis composition.

Chapter 1 presents an introduction to the research and includes research aims, objectives and

publications. The introduction presents the motivating factors behind the research, why it is

important and adds to the body of knowledge and briefly outlines the approach taken.

Chapter 2 includes a literature review that provides essential material about MANET and the

current state-of-the-art challenges to assist with understanding the taxonomy of AIS schemes.

The literature review is aided by the classification of the AIS algorithms and the work done in

MANET. In addition, a few of the pioneering works related to the research into AIS and

MANET are presented. Security attacks in MANET are briefly analysed. A brief overview

highlighting the trade-off between selfishness and altruism is presented. The analogy between

the MANET and HIS is also presented.

Chapter 3 provides the design and development of the AISBA framework and key steps are

identified in the chapter sections. Sections 3.4.1 and 3.4.2 briefly describes the nodes in a

four-quadrant model that was used for the research and presents the Hop count relation with

the Probability of Communication.

Chapter 4 includes the steps taken to detail the AISBA framework, using two types of Trust.

The signals are categorized namely the Safe Signal 1, Safe Signal 2, Danger Signal and

Pathogen Associated Molecular Pattern (PAMP) signal. The PAMP signal is utilized to

identify selfish nodes. These selfish nodes are identified by the high priority PAMP signal.

The trust model is applied in terms of Trust based on interaction as well as Trust generated

due to the signals for which nodes are modelled as DCs. Lastly, the statistical analysis in

terms of the false positives and false negatives is given in this chapter.

Chapter 5 presents PST, a novel routing attack in MANET, where the attacker node modifies

its storage time and thereby does not forward packets to the intended recipient nodes. This

attack has been evaluated against various metrics.

Chapter 6 presents the GrAIS Model as this research delves into the need for non-isolating

selfish nodes, but instead utilize them for the benefit of the MANET. The GrAIS model takes

its groundwork from the AISBA framework presented in Chapter 4 as well as the grudger

model of birds.

Chapter 7 deals with conceptualizing pain as a novel concept in MANET, where the nodes in

MANET are analogous to the cells in the HIS and thereby prone to pain. A node is said to be

in pain when the node’s trust and energy are compromised.

Chapter 8 concludes the thesis by providing a summary and a statement of potential future

work.

Chapter 2 LITERATURE REVIEW

2.1 Overview

The literature review provides background knowledge that underpins the research carried out,

highlights the techniques, methods and approaches that are the state-of-the-art in the research

topic area. A brief discussion of different AIS schemes from the current state-of-the-art is

provided to highlight the directions being explored. To give the readers an overview of AIS

algorithms, Negative Selection, Clonal Selection (CS), DC and Danger Theory are discussed.

This chapter is organized into six sections. MANET and the analogy between the MANET

and HIS is described in Section 2. An overview of MANET and AIS is provided in Section 3.

The concept of AIS is detailed in Section 4, along with insight into MANET and Danger

Theory. Section 5 provides details on selected AIS algorithms and their applications. The

motivation to use AIS and HIS in MANET is detailed in Section 6. Section7 describes the

research carried out into the use of AIS based techniques in MANET technologies. The

conclusion and summary are provided in Section 8 and 9 respectively.

Special attention was given to modelling the nodes for reasons made apparent in the state of

the art analysis of node modelling provided in Chapter 3. Key concepts in AIS include how

MANET protocols are utilized, especially utilizing AIS algorithms, are explained in detail

along with their pros and cons. Finally, the different state of the art techniques are briefly

described to illustrate how this technique is included in the AISBA framework. Through this

translation of individual techniques an efficient and reliable the AISBA framework is

achieved.

2.2 MANET Background

MANET is an aggregation of mobile, decentralized, and self-organized nodes. Securing

MANET is a challenge when every node forming the network is a potential menace that

could compromise communications using a plurality of attacks.

A MANET can become a self-organized mobile network without the need for fixed

infrastructure other than when a connection is needed to a carrier network [13]. Each node in

the network acts as both host and data transmitting router after a route discovery process

between the source and destination. The routing protocols that have been proposed so far,

including Ad Hoc on Demand Vector (AODV), Dynamic Source Routing (DSR), concentrate

on the route discovery establishment. MANET security is a concern due to the nature of the

distributed traffic management and the requirement that the trust be established with nodes

joining the rapidly changing topology.

There are potential weaknesses found in MANETs, and one potential weakness is the

susceptibility to a wormhole attack [14, 15] where attackers bypass normal traffic routes and

tunnel packets to another area of network. The wormhole route may suffer a lower hop count

than normal traffic routes and the attackers manipulate the MANET route priority to perform

eavesdropping, denial of service (DOS) and so on. Figure. 2-1 shows the traffic paths for

normal traffic and wormhole traffic.

Figure 2-1 Node hops for normal and wormhole traffic

MANET routing protocols are classified as either reactive or proactive according to the route

discovery technique used. On-demand protocols are reactive. The presence of a packet

available for transmission and the need for a route leads to the commencement of a route

discovery process. Table-driven protocols are proactive and routes are computed beforehand

and stored in a table so that there will be a route available whenever a packet is to be

transmitted. Routing protocols can be broadly classified into stability based, Quality of

Service (QoS) based and hop-count based. Hop-count based protocols try to optimize the

length of the route which is why a majority of the routing protocols proposed are based on the

hop-count metric [16]. The importance of wireless communication systems for reliable

mobile communications has increased significantly over the past decade. The dynamic

topology offered by MANET provides flexibility and manoeuvrability.

The DSR [2] protocol uses source routing rather than the hop-by-hop routing used by the

majority of MANET routing protocols, which eliminates the need for frequent route

advertisement and neighbour detection packets. Applying the concepts and principles of HIS

to the development of an AIS based algorithm provides an alternative approach to improve

network security in MANET.

2.3 MANET Security Attacks

In this section, an analogy between HIS and MANET is provided and a brief description of

the key MANET attacks [4] are given. MANET attacks can be classified into active and

passive attacks as seen in Figure. 2-2. Passive attacks involve snooping on the data

exchanged in the network without the intention to alter the traffic. This attack is difficult to

detect because the network operation is not affected. Passive attacks, gather information

about the network, traffic passing over the network or pry on the communication pattern

between two or more nodes. A passive attack may lead to an active attack. In a passive attack,

the confidentiality of the network could be compromised.

In an active attack, the attacker alters some aspect of the network or the data being exchanged

in the network thereby disrupting the normal functioning of the network. The malicious

behaviour involves packet modification, injection or destruction.

Figure 2-2 MANET security attacks

A brief description of the different types of attacks that occur in MANET is provided in the

following sections.

2.3.1 Replay attack

In a MANET, the topology changes permitting replay attacks where the attacker uses the

strategy of storing control messages previously sent by a node [5, 6]. The attacker node

resends the stored control messages which lead to genuine nodes updating their routing tables

with stale information. This disturbs the normal operation of the MANET.

2.3.2 Blackhole attack

In a black hole attack the attacking node sends a false routing message claiming that it has the

most conducive route to the destination whereby leading all the genuine nodes to forward

their packets to the rogue [7,8].

Attacks in
Manet

Passive Active

Internal External

2.3.3 Flooding attack

In a flooding attack the attacking node sends multiple RREQ messages to a destination node

that does not exist in the network [9, 10]. As the destination node does not exist, none of the

nodes will be able to send a Route Reply, leading to congestion and a network DOS attack.

2.3.4 Wormhole attack

Wormhole is a type of MANET attack [11] where the attacking node creates a connection to

remote nodes as if the two nodes are directly connected to each other. The two distant nodes

send false advertising messages to indicate they have a one hop symmetric link between each

other. This false information will propagate to other nodes across the network thus

undermining the shortest path routing calculations.

2.4 Analogy between MANET and HIS

The analogy between MANET and the HIS is as follows [12]:

 MANET can be considered a metaphor for the tissue of an organism; packets as

signals; cells as nodes

 Cells have limited processing, memory, and communication capacity – MANET

nodes are similarly resource constrained

 Biological Tissue comprises many cells – high-density MANET implies a substantial

number of client devices

 Each cellular phone is prone to failure - cells in biological tissue subject to pathogenic

attacks - MANET nodes are prone to failure

 Cells move and reorganize – MANET nodes move and rearrange

 Communication between cells is through the diffusion of signalling proteins and

matching of antigenic patterns which is analogous to MANET’s where

communication is through packet dissemination and matching

2.5 Related approaches in MANET utilizing Hop Count

2.5.1 Multipath Hop-Count Analysis

Multipath Hop-Count Analysis (MHA) is a multipath routing protocol proposed by Kuo et al.

that avoids wormhole attacks by using a hop-count analysis scheme as pictured in Figure. 2-3

[18]. MHA is designed to use split multipath routes, thereby causing the transmitted data to

be split into separate routes. In MHA, a random variable X is set which represents hop-count

values in the Route Reply (RREP) packets. A sample space U={x1,...xi,..xj..} is defined and

has a cumulative distribution function FX(x) where α and β represent the lower and upper

bound of the cumulative distribution function and s and t represent hop count boundaries.

Figure 2-3 Colluding nodes in Wormhole Attack

 xi, xj ϵ U; i, j, s, t ϵ N (2-1)

The route paths from RREP packets with hop-count xh satisfying xi ≤ xh ≤ xj where h ϵ N, xh

ϵ U are taken as legal paths in the MHA protocol.

2.5.2 Past Interaction Social Analysis

Hsu and Helmy [19, 20] observed that in a network, nodes do not encounter more than 50 per

cent of the overall population of the total nodes in a network. As a result, there is less chance

of a node encountering other nodes and nodes need to assess the probability that they will

encounter the destination node. The authors did an analysis based on network traces of

different university campus wireless networks. Their analysis showed that to build a

connected relationship graph node encounters are essential.

Haahr et al. [21] proposed social network metrics based on a social analysis of a node's past

interactions. Three components were locally evaluated: a node's "betweenness" centrality, a

node's social "similarity” to the destination node and a node's tie strength relationship with

the destination node. The centrality of a node in a network is a standard of how well

connected it is to other nodes in the network. “Betweenness” centrality calculates the

magnitude to which a node lies on the geodesic paths of other nodes.

2.5.3 Probability to Deliver

In the study carried out by Burgess et al. [22] messages are transmitted to nodes in the order

of probability for delivery; this is based on contact information. All messages will be

transmitted if the connection lasts long enough which in turn results in Epidemic Routing.

Lindgren et al. [17] proposed PRoPHET Routing, which is also probability based, using past

encounters to predict the probability of meeting a node again. Frequently encountered nodes

have an increased probability and older contacts become obsolete over time. The transitive

nature of encounters is utilized where nodes exchange, encounter probabilities and the

probability of indirectly encountering the destination is also evaluated.

The cost of the routing path is calculated by defining probability based on node encounters in

the study carried out by Khelil et al. and Tan et al. [23, 24].

Grossglauser and Vetterli [25] use "time passed since last encounter” to route packages to

destinations. The packet is forwarded to the node that encountered the destination more

recently than the source and other neighbouring nodes.

Ghosh et al. [26] propose a hub system, exploiting the fact that nodes tend to move between a

small set of locations identified as hubs. A set of hubs based on each node's movement profile

is available to each node on the network in the form of a probabilistic orbit. This probabilistic

orbit defines the probability with which a given node will visit a hub. Messages bound for a

node are routed toward one of these hubs.

2.5.4 Node location

A location based routing scheme by Lebrun et al. [27] utilizes the trajectories of nodes to

predict their future distance to the destination. This technique is also used to pass messages to

nodes moving in the direction of the destination

A virtual coordinate system by Leguay et al. [28] uses node coordinates which in turn contain

a set of probabilities, each representing the probability of encountering a node in a specific

position. The best available path is computed based on this data.

2.5.5 Hop-count in Wormhole routes

Sethi et al. [29] used a hop-count metric to analyse wormhole attacks. See Figure. 2-4 where

the advertised path from node a to node d passes through the nodes a, b, c and d giving a hop

count of three whereby the actual path from node a to node d passes through nodes a, b, e, f,

g, h and d making the actual path of length six hops. This difference in hop-count between

the advertised path and actual path can be useful for the detection of wormholes.

Choi et al. [30] suggested a scenario where nodes will keep track of the conduct of its

neighbours. RREQ is sent by a node to the destination using its neighbour list. However, if

the RREP is not received back within a stipulated time, the presence of a wormhole is

identified and the route is added to the source node's wormhole list. Each node maintains a

table which consists of a RREQ sequence number and neighbour node ID. After sending

RREQ, the source node sets the Wormhole Prevention Timer (WPT) and waits until it

overhears retransmission by the neighbour node. The maximum amount of time for a packet

to travel one-hop distance is WPT/2.

Figure 2-4 Hop-count metric for wormhole

2.5.6 Routing protocols using hop mechanism

Destination Sequenced Distance Vector (DSDV) [34] is a proactive routing protocol where

all routes to destination nodes, hop-count, and next-hop to the destination are maintained in a

table. The table is updated by the periodic exchange of messages between neighbouring

nodes. As paths are readily available to all destinations in network there is less delay

associated with the path set-up process. Another disadvantage is due to the need to regularly

update routing tables the node battery life is shortened.

Optimized Link State Routing (OLSR) [33] is a proactive routing protocol. The neighbors

and link are detected by Hello messages that are broadcast to discover single-hop neighbors.

Message flooding can be limited to nodes within a certain distance (in terms of number of

hops). Nodes can also examine the header of a message to get information pertaining to

distance (in terms of number of hops) of the message source.

DSR [31] is a reactive or on-demand routing protocol that discovers the routes only when it

has packets to be forwarded to the destination. The RREQ packets contain data regarding the

intermediate nodes and the hop-count. This protocol also optionally uses a flow ID option

that allows packets to be forwarded on a hop-by-hop basis.

AODV [32] is a reactive routing protocol where routes are established on demand. To send a

message to a destination, RREQ messages are broadcast to intermediate nodes. The

intermediate nodes in turn rebroadcast the messages to their neighbours. When a

neighbouring node receives a request and it already has a route to the desired destination, it

sends back a message to the source node through a temporary route thereby creating routes

from various neighbouring nodes. The source node then selects the route that has the lowest

hop-count.

2.6 Tradeoff between Selfishness and Altruism in MANET

Routing protocols developed for MANET can be classified as proactive, reactive and hybrid.

The effect of node selfishness on routing and node resource utilization efficiency has not

been studied adequately. In [35] misbehaviour in MANET was first identified and defined

and the focus of this work was to alleviate node misbehaviour. The research found in the

literature appears to focus on how to detect and isolate selfish nodes. These methods do not

penalize the selfish nodes nor to coerce the selfish nodes to forward packets. The malicious

nodes are rewarded if they’re identified and removed from routing paths. In [36] a review of

node selfishness in MANET is provided. This research summarizes existing approaches to

dealing with the selfishness problem and the authors provide a proposed solution to mitigate

the selfishness problem. The operation of DSR [37] is explored and as energy depletes node

selfishness occurs. Various types of selfishness are defined and the problems arising because

of selfish nodes co-existing in the network is investigated.

In [38] the data flow between the MANET nodes is observed and when a selfish node does

not forward a packet, the neighbour node waits for a pre-defined threshold number of packet

transmission failures to be exceeded before triggering an alarm.

In [39] the impact of selfish nodes on the MANET QoS is explored. This work analyses

parameters including throughput, average hop count and packets dropped. The hop count

increases as the selfish node concentration increases. The authors establish that there is an

increment in the number of packets dropped along with a substantial reduction in throughput

as the selfish node concentration increases.

In [40] the MANET nodes are encouraged to be altruistic and the nodes are given positive or

negative scores depending on their behaviour. The altruistic nodes utilize their energy to relay

for other nodes, but they relay for selfish nodes only once. This approach does not call for the

participation of selfish nodes for any communication.

In [113] the author employs a theoretical account that considers how birds clean each other of

parasites in hard to reach spots, thus helping with individual and group survival. The author

defines three different model behaviours:

1) Sucker - Birds that blindly help other birds without expecting anything in return.

2) Cheat - Birds that take advantage of all the help they can get but do not offer anything

in getting even.

3) Grudger - Birds that help others and recall who they have served. In case the same bird

does not reciprocate, they will not help that bird again.

2.7 Artificial Immune Systems

“AIS are intelligent and adaptive systems inspired by the immune system toward real-

world problem solving. AIS are adaptive systems inspired by theoretical immunology

and observed immune functions, principles and models, which are applied to complex

problem domains [41].”

Figure 2-5 Danger Theory model

A recent immunological discovery called Danger Theory now paves the way for more

efficient, second generation AIS. The Dendritic Cell Algorithm (DCA) [42] is a biologically

inspired technique, developed to detect intruders in computer networks. The DCA is based on

a metaphor of naturally occurring DCs, a type of cell which is native to the innate arm of the

immune system [41]. DCs are responsible for the initial detection of intruders, including

bacteria and parasites by responding to the harm done by the invading entity. Natural DCs

receive sensory input in the form of molecules, which can indicate if the tissue is healthy, or

in distress. These cells have the ability to combine the various signals from the tissue and to

produce their own output signals. The output of DCs instructs the immune system responder

cells to deal with the source of the potential damage. DCs are excellent candidate cells for

abstraction to network security as they are the body's own intrusion detection agents.

To improve the performance of AIS algorithms a “danger project” has been commenced

based mainly on the immunology Danger Theory, which states that the response type of the

immune system to the incoming pathogens occurs due to the existence of danger or safe

signals from the body tissues affected by the pathogen, as illustrated in Figure 2-5 [41].

DCA is a danger project contribution that utilizes the DC role in HIS as forensic navigators

and important anomaly detectors. DCs are defined as antigens presenting lymphocytes in the

innate immunity; these lymphocytes play a key role in either stimulating or suppressing the

adaptive immunity T-cells and hence controlling the immune system’s response.

The field of AIS has achieved importance as a branch of Computational Intelligence since its

inception in the 1990s. The four major AIS algorithms on which research is centred are: (1)

Negative Selection Algorithm (NSA); (2) Artificial Immune Networks (AIN); (3) CS

Algorithm; and (4) Danger Theory and DCA. AI brings together the disciplines of

Immunology, Computer Science and Engineering. Over the past decade research into the

Immune System has gained popularity as a vehicle for novel solutions to complex issues. The

highly distributed, adaptive nature of the immune system includes capabilities such as

learning, memory and pattern recognition, which are solid foundations for an artificial

equivalent. AIS outcomes require both integration of immunology and engineering to

transform the complex evolved mechanisms found in the HIS.

Forrest et al. [43] proposed a negative selection method to distinguish self from non-self,

based on the generation of T-cells. This approach was applied to the problem of virus

detection in a computer and raised the profile of negative selection approaches. Following the

work by Forrest et al. variations of the NSA have been developed with the essential

properties of the original NSA remaining.

AINs are another popular AIS approach that was based on the work by Farmer et al. into an

immune network model [44] and an early immune network algorithm was designed by Ishida

[45]. Timmis et al. [46] redefined the artificial immune network. Castro et al. [47] proposed

the Clonal Selection Algorithm (CLONALG) which is based on a CS principle processes like

those found in Genetic Algorithms including clone, mutation and reselection.

The AIS community has produced a multifaceted set of immune inspired algorithms to solve

computational as well as real world problems. Castro and Timmis [48] offered a detailed

analysis of the Immune System and a presentation of current AIS algorithms. Tarakanov et al.

[49] provided an insight into the mathematical basis of immunocomputing. Ishida [50]

reviewed immune network models and highlighted the benefits of each approach.

2.8 AIS Algorithms

Select AIS algorithms are described in this section.

2.8.1 Negative Selection

In the biotic or biological immune system T-cells are initially formed in the bone marrow and

on maturation they move to the thymus. The phase of T-cell evolution is characterized by

expressions provided by T-cell receptors. Whenever the Pre-T-cells and thymus cells interact

this land thymus cells interact this leads to Pre-T-cell multiplication and divergence. Then

these T-cells undergo negative selection to eliminate T-cells that are activated by self in the

thymus. Although variations of negative selection have been proposed, the process described

in [51, 52] remains in usage.

Gao et al. [53] proposed enlarging non-overlapping detectors to obtain non-self coverage. Let

the detector centre be Oj, then detector j will have a maximum radius of rj. The detectors with

large radii have higher fitness. Ma et al. [54] describe a mechanism to produce useful

detectors that are randomly produced and the unmatched antigen is placed into a detector

space called the feedback detector. The feedback detector will be eliminated in case it

matches self-strings. Once the feedback detector becomes mature it will be utilized to match

antigens. When the feedback detector acquires a match on further antigens, it becomes a

legitimate detector. Simple Evolutionary NSA (ENSA) and basic ENSA [54] are NSA

variations and the functionality of Simple ENSA is to generate detectors capable of

identifying corrupt data. When a detector seeks to match data it can lead to wayward or

abnormal changes in the detector and this detector will be discarded. The evolution of the

next generation of detectors takes place through mutation, positive selection and negative

selection. Such evolutionary inception loops to generate detectors until a wayward change is

noticed. In Basic ENSA, in addition to the next generation detector set a randomly generated

detector is also added. By including the additional detector searches can take place in the

global space as well. ENSA finds its use in hardware/software segregation in embedded

systems.

Caldas et al. [55] proposed a variant of the NSA where a repository database is used to store

perceptible performance indexes for an enterprise. There will be a set of cells known as

decision cells, which will be responsible for extracting decisions from the repository database

and provide feedback about the decision to the repository database. Each decision issue is

represented by a decision cell which in turn is composed of x decision receptors. The

approach proposed consists of two stages: learning and operation. In the learning stage, the

decision maker selects the decision cells based on the information in the repository database.

The cells form the initial reservoir of self-cells, that is a decision cache to be stored in the

repository database for later usage. In the operation stage, the decision creator requests

decision cells from the repository database and present decision related problems to the

decision cells for resolution.

Graaff et al. [56] proposed the Genetic Artificial Immune System (GAIS). Here the

counterpart of lymphocyte is known as an artificial lymphocyte. The four states in which an

artificial lymphocyte exists are: immature (no priority), mature (medium priority), memory

(high priority) and annihilated (low priority). The bit string of an artificial lymphocyte is

randomly generated and is made to undergo either positive selection or negative selection.

Based on the Hamming distance of the nearest self-pattern to the artificial lymphocyte, it will

be assigned a distance threshold value. Whenever a match happens with a non-self-pattern the

Hit counter of the artificial lymphocyte is incremented to find its matching ratio.

GAIS also uses Genetic Algorithms (GA) to evolve artificial lymphocytes. Each artificial

lymphocyte is related to a chromosome and the randomly generated artificial lymphocytes

will constitute an existing GA population.

Amaral et al. [57] uses GA to generate a detector in a real valued NSA. Every possible

detector set is linked to a chromosome. Each gene is a pointer to a y dimensional detector set.

The radius for each detector set is computed by using a decoding function and Monte Carlo

integration [58, 59] is used to calculate the volume of the detector set.

2.8.2 Artificial Immune Networks

Jerne [60] suggested that the immune system can attain immunological memory due to the

presence of B-cells. These B-cells prompt each other as well as restrain connected cells to

control over production of B-cells. This is required to keep a stable memory.

Hunt and Cooke [61] suggested a scheme comprising a bone marrow object, a network of B-

cell objects and antigen population. Bone marrow objects randomly initialize the B-cell

population. The antigen population that is present in the system will be randomly picked and

introduced to a spot in the B-cell network. Cloning of B-cell objects occur if they can bind to

the antigen population.

Pacheo et al. [62] designed an Abstract Immune System Algorithm. There are four strategies

necessary for the effectiveness of this model: (1) the affinity between the epitope of an

antibody or prototype of an antibody; (2) the restraining of an antibody during epitope

recognition; (3) the affinity between antigen and antibody; and (4) the nature of cells to die in

the absence of communication. A given antibody type will be prompted or deleted by

referring to the recruitment threshold or death threshold.

Omni-aiNet [63] is applied to solve singular and multi-objective problems. The advantages

identified were: (1) a new grid mechanism to control the spread of a solution in the objective

space; (2) adjusting the size of the search space based on a predefined suppression threshold;

and (3) axiomatically adapting the investigation of the search space.

Taking advantage of the multi-population property of aiNet, the Multi-objective Multi

population Artificial Immune Network (MOM-aiNet) for bi clustering was designed [64].

The advantage of MOM-aiNet is that several sets of non-subjugated solutions are returned in

contradiction to a single set of non-subjugated solutions. The subjugation is used to compare

the quality of solutions for a given issue, thereby enabling it to measure the solution set given

by MOM-aiNet. Out of the data set one row and one column is randomly chosen so that

MOM-aiNet produces y subpopulation of one bi cluster. In the algorithm for each

subpopulation y clones subject to the mutation process will be developed. Three steps are

involved in mutation which would be randomly chosen with equal probability: (1) delete a

row of the column; (2) incorporate a row; and (3) incorporate a column. Whenever the

number of non-subjugated elements becomes greater than y clones a distance based

restraining process occurs so that a small and locally diverse sub-population is maintained.

Stibor et al. explored the compression quality of aiNet [65]. Using the Parzen window

estimation and Kullback-Leibler divergence a similarity measure between the data set (input)

and aiNet dataset (output) was introduced. A Parzen window estimator helps find the

probability densities of the input and output datasets.

2.8.3 Clonal Selection Algorithms

According to the CS Theory when the original lymphocyte is activated by binding to the

antigen, clonal expansion of the original lymphocyte occurs. During the development of the

lymphocyte, if any clone with antigen receptors corresponds to the molecules of the

organism's own body, it will be eliminated. With the clonal expansion of B-cells the average

likeness increased for the antigen that sparked the clonal expansion through likeness

maturation. Thus, the B-cells more effectively respond to antigens. Somatic hyper-mutation

and the Selective mechanism lead to likeness maturation. Somatic hyper-mutation leads to a

miscellany of antibodies by introducing random changes to the genes. Only those genes with

a higher accord for the encountered antigen will survive. CLONALG was initially introduced

in [66] and described in [47,67].

Ciccazzo et al. [68] suggested a variant of CLONALG termed Elitist Immune Programming

(EIP). EIP is an extension of immune programming and the concept of elitism is borrowed

from the immune inspired algorithm and is introduced to EIP. A new category of hyper-

mutation operators and network based coding is used in EIP. Any hyper-mutation operator

can only act on one node or link at a time. This work leads to the proposition of ten ad hoc

network based hyper-mutation operators: add-parallel, add-series, delete component, mutate-

component-value, copy-component-value, add-random-component, mutate-component-kind,

link-modify, shrink and expand-node. The EIP algorithm was applied to a synthesis of

topology and size of analog electrical circuits. Based on the experiments the circuits designed

by EIP were an improvement over that achieved using Genetic Algorithms.

Halavati et al. [69] included symbiosis to CLONALG and uses specified antibodies, which

are an approximate solution only, as they may not contain the data required. Each antibody

will have just one property. Later the algorithm randomly selects an antibody to be included

in an assembly. By using repetitive steps an assembly with the required properties is built,

however, in instances where the algorithm is unable to build an assembly, antibodies with

random values are created for the missing component parts and a new assembly is created.

The technique of utilizing partially specified antibodies stems from the deduction that a

problem can be broken into smaller problems and solutions to these smaller problems may

provide an improved overall solution to the overarching problem.

The approach in [70] proposed a variation of CLONALG for software mutation and testing

that utilizes the notion of “memory individuals” that steer to the identification of an antigen

rather than utilizing the notion of the CLONALG memory individuals per antigen. An

antibody population is initialized with p tests either randomly generated or pre-specified. A

periodic check is done by the algorithm searching for antibodies that will kill at least one

mutant program. A Mutation Store is used to assess the freshness of an antibody and

antibodies with a higher similarity score are added to the memory set to be returned to the

tester. The productiveness of this method was compared against an elitist GA and the results

showed that the proposed methodology produces a higher mutation score with lower

computational cost.

The Trend Evaluation Algorithm (TEA) proposed by Wilson [71] is similar to CLONALG

however; it incorporates a long-term memory pool as well as short term memory pool by

multiplying all of the bound trackers. The processes of Apoptosis and Mutation in the TEA

occur across all population members. Consider the case where an antigen Ag containing 40

fictional price movements and ten Trends (T1-T10) is built to test the ability of the TEA to

identify price trends. Antigen Ag is divided into four subsets Ag1, Ag2, Ag3, and Ag4. Ag1

contains two simple trends T1 and T2 and the more complex trends are involved in Ag2, Ag3

and Ag4. Experiments were done to test the algorithm's capability to discern price trends as

well as to probe the algorithms influence over the long-term memory pool.

2.8.4 Danger Theory based Algorithms

Danger theory is another self/non-self theory that differs from other theories in how the

system should respond. The salient characteristic of Danger Theory stems from the principle

that the immune system does not respond to non-self but does respond to danger. This theory

evolves out of the consideration that there is no need to assail everything foreign. In this

theory,danger is measured by the distress signals sent by cells in the event of damage or

unnatural death.

Matzinger, proposed Danger Theory in 2002 [72] and highlighted that the "foreignness" of a

microbe is not the main factor that ignites a response and "selfness" is no assurance of

tolerance. The fundamental idea in Danger Theory states that antigen presenting cells are

triggered by danger/alarm signals from sore cells. Danger signals will not be sent by healthy

cells or by cells experiencing normal cell death.

The Two-Signal Model extended by Bretscher et al. [73] explains the Danger Theory in a

different way where two signals are needed to activate the lymphocytes: (1) antigen

recognition; and (2) co-stimulation. Signal 2 indicates that the antigen is threatening.

The Danger Theory has its own disadvantages and Aickelin et al. [74] proposed applications

of the Danger Theory that highlight:

 The presence of an Antigen Presenting Cell (APC) is required to present a danger

signal.

 A danger signal does not have to be dangerous.

 Danger signals can be positive or negative (presence or absence of signal).

 An estimate of nearness may be used to imitate the danger zone.

Conceptual ideas were also proposed on how the Danger Theory can be used for anomaly

detection. Founded on the Danger Theory, an immune response is always triggered by danger

signals. Low or high memory use, fraudulent disk activity and so forth could indicate danger

signals. The Immune System can react to the antigens in the danger zone once a danger signal

is produced. After the dangerous components are identified, they are then sent to a special

part of the system for further verification. Another application of the Danger Theory used in

intrusion detection can be found in [75].

Danger Theory has been applied to data mining problems [76]. Consider the case where a

user is browsing a set of documents where each document has a set of attributes. When AIS is

implemented the antibodies in the system are used to detect the attributes. Each document

browsed by the user will be dispensed to the antibodies. When the user expresses interest in

the present document a danger signal is raised and antibodies matching the antigen (attribute

in the present document) are triggered and become active. Wearisome document attributes

will endure the auto reactive antibodies. Finally, AIS learns to become a good filter when

searching for documents.

Prieto et al. [77] used a goalkeeper strategy in the Danger Theory Algorithm (DTAL) that

takes into account danger signals, lymphocytes and the danger zone. This technique was used

in robot soccer, when the ball is on the source side (tissue) an alarm signal (Signal 1) will be

triggered. When the ball (antigen) is taken by the opponent to the penalty side (danger zone)

Signal 2 will be triggered. When both signals are received the lymphocyte is actuated to clear

the ball. This strategy showed a performance above 90%.

The work in [78] highlighted an application of the Danger Theory to accentuate the

effectiveness of an e-mail classifier system. In web-mining the use of various types of media

may cause various signals to be released, but in an e-mail system an abnormal email may

release a "fascinating" signal of one category. The strong pertinence of these features

constitutes a form of the Danger Theory.

2.8.5 Dendritic Cell Algorithms

The main role of DCs as antigen presenting cells were identified by Steinman and Cohn [79]

where DCs are comprised of leukocytes which are present in all tissues. They are endowed

with a disparate hematopoietic lineage and function in various tissues. Inside various tissues,

DCs segregate and mature when triggered appropriately; later they relocate to secondary

lymphoid tissues where they present antigen to T-cells to induce an immune response.

The immature DCs occupy body surfaces and are commonly present in an immature state and

are unable to stimulate T-cells. Once the foreign pathogens are processed and obtained by the

immature DCs as seen in Figure 2-6, they migrate to the thymus and the spleen where the

immature DCs mature and stimulate an immune response. As explained in [80, 81] inflection

between the various states of DCs is enabled by the recognition of signals, including PAMP,

danger signals, apoptotic signals (safe signals) and inflammatory cytokines. These signals are

explained as (1) PAMPs activate the immune response, thereby protecting the host from

infection; (2) danger signals are released during tissue cell damage, their strength is lower

than PAMPs; (3) safe signals are given out when programmed/normal cell death occurs; and

(4) inflammatory cytokines are given out when general tissue distress occurs and amplify the

effect of the other three signals. The immune response of the T-cell is determined by the

corresponding weights of the four signal types. Semi-mature DCs have a suppressive effect

while mature DCs have an accentuating effect.

Figure 2-6 Dendritic Cell Algorithm Schematic

The first DCA was presented by Greensmith et al. [82] and it involved combining various

signals to investigate the current circumstance of the environment and non-parallel sampling

of another data stream (antigen). A fuzzy margin occurs in accordance with the concentration

of co-stimulatory molecules as an indicator for a DC to stop antigen collection and migrate to

a virtual lymph node. The DCA works on the input signals with presumed weights to produce

output signals. A value of 1 is assigned if the cumulative mature signal is greater than the

cumulative semi-mature signal and vice versa. The mature context presentation of that

antigen is calculated relative to the total number of antigens.

The DC is designed as a Libitissue tissue server [83]. There are three stages in this algorithm:

initialization, update and aggregation. Initialization deals with setting initial values and the

update stage is sub-divided into tissue update and the cell cycle. The Libtissue tissue server

comprises the tissue update and cell cycle. Data from the source is given to the tissue server

through the tissue client. The appearance of new data in the system leads to the provision of

input signals for the population of DCs. The cell cycle is a distinct process that occurs at a

user defined rate. When the antigen data is processed the cell cycle and tissue update process

stops. In the final stage aggregation of the collected antigens occurs together with analysis

and the Mature Context Antigen Value (MCAV) per antigen is derived.

Gu et al. [84] used DCA on the KDD 99 [85] data set after two additional functions were

added to the system for optimization: antigen multiplier and a moving time window. The

antigen multiplier makes several copies of the antigen, to overcome the problem of "antigen

deficiency” that can be given to DCs. On each iteration, new signals are calculated using the

moving time window. Based on the results the antigen multiplier and moving time window

have equal effect on the DCA using the KD 99 data set.

Oates et al. [86] devised a DCA approach for a robot classification problem. Robotic DCA is

designed as a stand-alone physiological module for compatibility with comprisal design. The

Advanced Robot Interface for Applications (Aria) library's [87] "wander" design is extended

with two extra modules: image processing and DCA execution. MCAV coefficients are

output by the DCA module approximately once per second. PAMP, safe and danger signals

are used as input to the DCA. PAMP originates from the image processing module and the

safe signal originates from the Laser Range Finder (LRF). A sonar array having a 360 degree

field of view (FOV) is the source of the danger signal and the antigen is an integer number

which can be uniquely identified by the segment of the test pen. The DCA approach used

helped the robot to steer away from obstacles in its path.

The authentic DCA is highly speculative and the Deterministic Dendritic Cell Algorithm

(dDCA) [82] attempts to overcome this by using two sets of input signals as well as antigens.

The DC is subjected to identical input signals. Here an array is used in order to store the

antigen value and count of times the DCs have collected the antigen. There are three

parameters in the dDCA-weight scheme for processing signals, outputting DC values and the

number of DCs.

The work in [88] depicts the affinity of DCA towards the architecture and operational

requirements of sensor networks. Based on this variation, ubiquitous DCA (UDCA) was

proposed to detect attacks on sensor networks and its features include:

Signals from multiple data sources are collected by DC. New output cytokines are

accumulated at the maturation stage of each DC. The linking of antigens with context

information is done by UDCA. The extent of node misbehaviour is detected by UDCA via

signals generated.

2.9 MANET and HIS

Fundamental aspects of an ad hoc wireless network include its lack of fixed infrastructure,

design and challenges including security [89] and the lack of a centralized control mechanism

adds to the complexity of fault and security intrusion detection and correction. The

dynamically changing nature of mobile nodes causes an unpredictable topology that requires

frequent route changes, network partitioning and protection from increased packet loss. The

security attacks on MANET networks utilize opportunities provided by the wireless mobile

infrastructure in which nodes can join and leave at will using dynamic requests [90]. Energy

efficient routing algorithms can be tricked into routing through compromised nodes if the

node indicates high power when the other battery powered nodes are showing varying power

levels [91]. The failure of one node may affect the entire MANET and this adds to the

network design complexity, especially as the probability of network partitioning increases as

node power levels fluctuate. Mobile node power supply limitations and energy depletion is a

major factor affecting the lifetime of the ad hoc network [92].

HIS has been identified as a source of models, functions, and concepts that inspire AIS

algorithms which can be used to secure both host-based and network-based systems [1].

However, it is not only important to utilize the HIS when creating AIS-based algorithms as

much as it is important to produce high performance algorithms [41]. Therefore, creating a

balance between utilizing HIS and introducing AIS-based intrusion detection algorithms are a

crucial issue that would be valuable to investigate because MANET properties raise security

issues to a level above those associated with fixed networks. The AIS properties such as

being self-healing, self-defensive and self-organizing provide an opportunity to meet the

challenges of securing MANET [93].

2.9.1 Introduction and Need for AIS Conceptualization in MANET

An ad hoc network is formed by a group of nodes that do not require any predefined

infrastructure to maintain network connectivity. One of the many advantages of MANET is

the absence of dedicated fixed nodes to support packet forwarding and routing. MANET

nodes act as both host and router. The application of MANETs span from military operations

to the commercial sector such as rescue/emergency missions. Ad hoc networks can also link

with a temporary multimedia network to share information amongst users in a conference or

classroom. Short-range MANET has simplified the connection between mobile devices,

thereby replacing the need for cumbersome cables.

This autonomous nature of MANET makes it vulnerable to malicious attacks, thereby making

MANET susceptible to active as well as passive attacks. In a MANET, every node must be

prepared for an encounter with an adversary either directly or indirectly. The mobility

characteristics of the ad hoc network enable the nodes to roam independently, thereby making

the task of identifying and tracking compromised nodes difficult. Security attacks on

MANET nodes can result in compromised nodes that function incorrectly and potentially

generate traffic with false routing information.

The AIS is derived from the natural HIS and is a branch of Artificial Intelligence. The

research carried out in the application of AIS helps to bridge the gap between engineering,

science and immunology. Immune system characteristics provide an attractive research focus

for applications in engineering and science. The evolution of AIS research has its roots in the

study carried out by Farmer, Packard and Perelson [44].

2.9.2 Developments in AIS Based MANET

The DCA ability to act as an anomaly detector algorithm inspires further investigation of the

biological model to introduce improved DC inspired algorithms [1], which could detect other

types of security attacks [6] in a MANET. In addition, many of the MANET characteristics

and properties are similar to the innate immunity abstract features; such as the openness and

susceptibility of each to different types of danger attacks [5].

Figure 2-7 MANET security goals

MANETs share the same basic security goals that occur in other network types. The need for

confidentiality, authenticity, integrity, availability, non-repudiation and access control as

illustrated in Figure 2-7, which is the same as in other network types [94] and is generally

determined by the importance and sensitivity of applications used or data transmitted.

Network control, management, and security goals are harder to achieve in a MANET than in

conventional networks [95] due to the mobile decentralized nature of the network.

Sarafijanovic et al. [96] investigated the use of AIS to detect node misbehaviour in MANET

using the DSR and the AIS algorithms with negative selection and CS. In this proposed

system as illustrated in Figure 2-8, each DSR node implements an instance of the detection

system, and runs it in two stages. In an initial stage, the detection system learns about the

normal behaviour of the nodes with respect to the DSR protocol. During this stage, the node

is supposed to be in a protected environment in which all nodes behave properly. From the

packets received or overheard, the node observes the behaviour of its neighbours and creates

positive antigens. Towards the end of this learning stage, the node runs the negative selection

process and creates its antibodies, known as Detectors.

Figure 2-8 Detection system

After the initial stage, the node may leave the protected environment and enter the second

stage where detection and classification are carried out. In this stage, the node may be

exposed to misbehaving nodes. The Detectors created in the learning stage are used to check

if newly collected antigens represent the behaviour of good or bad nodes. In case an antigen,

created for any neighbour during some time interval, is detected by any of the Detectors, the

neighbour is identified as doubtful in that time interval. If there are too many doubtful

intervals for a neighbour, that neighbour is classified as misbehaving. This triggers the CS

process in the node that made the classification. In this process, the node adapts its detectors

to improve misbehaviour detection.

The work carried out by Hoffmeyer et al. [97] uses the self-non-self model negative selection

process and some form of danger signal. In the system proposed, the Transmission Control

Protocol (TCP) connections play the role of self and non-self cells. TCP is a computer

networking protocol that provides reliable data packet exchange between two networked

devices that communicate over a multi-hop network. One connection is represented by a

triplet encoding the sender’s destination address, the receiver’s destination address, and the

receiver’s port number. A Detector is a bit sequence of the same length as the triplet and

matches a triplet if both have contiguous equal bits. Candidate Detectors are generated

randomly; in a learning phase, Detectors that match the correct (i.e., Self) triplets are

eliminated and this is done offline, by presenting only valid TCP connections. The Detectors

that are not eliminated have a finite lifetime and die unless they match a non self triplet, as in

the IS. The danger signal is also used and it is sent by humans as confirmation in case of

potential detection. This is a drawback, since human intervention is required to eliminate

false positives, but it allows the system to learn about changes in the self.

In the implementation of IDS [98] to secure MANETs the authors present an approach based

on the paradigm of HIS. This is achieved by using a Mobile Agent which they identify as the

Immune Agent (IA). The IA consists of four processes based on the scenarios encountered in

the wireless ad hoc domain.

 Detection process

This is triggered when a connection between two nodes is established.

 Classification process

The next security process is the classification of self or non-self.

 Blocking/Isolating Process

The aim of this process is to block and isolate a node which is classified as malicious based

on the standards stored in the IA.

 Recovery Process

The IA takes a snapshot of the data recovery file when it successfully attaches to the new

node that intends to join the wireless domain. When a change in the node’s system is detected

a classification for the pattern that caused the change is also determined. This approach uses

memory, where data has been fed into a database and the same data is fetched and used in the

recovery process. The following profiles are created for the purpose of a security approach

based on immune inspired properties:

 Gene Profile. This profile would contain the recurring events needed to establish a

connection system. This is similar to self-cells in the Immune system.

 Detector Profile. This profile is used to recognize non-self which is similar to HIS T-

cells.

 Non-Self Profile. This profile would contain events that harm the system.

The Immune agents capture the self and non-self patterns during the monitoring and

capturing phase and we learn that U = Sf ∪ Nf represents the collection of patterns monitored

while packets transfer, it contains both self and non-self patterns. Nf = {nf1, nf2… nfm}, Sf =

{sf1, sf2… sfn} represents the set of all self and non-self patterns captured by the Immune

Agent. To simulate the T-cells the Immune agent will be equipped with detectors that are

randomly generated. Ð = {d1, d2… dm} represents the set of the generated Detectors, Ð´=

{d´1, d´2…d´m} the set of matured Detectors.

The NSA is used to collect the matured Detectors to ensure that the generated Detectors do

not match any self. The next step is CS where a Detector will be cloned if it attains a score

after matching to non-self. The algorithm is as given below:

 Let: d´i score = 0

 For Nf = {nf1, nf2… nfm}; bind d´i to nfj, (for i, j=1, 2…, m);

 If d´i detects nfj, then d´i score++; end if

 While {d´i score≥ max score} do clone d´i // proliferation phase

 d´i = d˝i;

 If d˝i match sfi ;(1≤ i ≥n); then delete d˝i ;// negative selection

 Else Ð´ = Ð´ + d˝i // Update the Detectors Profile

To utilize the Danger Theory concept, the immune agent keeps a replica of the data necessary

to regain a node. Consider β, a system with components at time t: βt= {β 1, β 2.. βn }. A copy

of βt is available in the Immune Agent Database. Therefore, any change in the system

components can be identified. Let ε be a change that occurs in the system after time Δt. The

Immune Agent checks the system and observes βt+Δt = β ± ε. As ε is not recognized, it is a

suspect pattern and will be included in the non-self-set to be blocked in future. This approach

is not implemented and simulated so the accuracy of this approach cannot be validated.

Nauman et al. [99] proposed using a DC approach in combination with a BEE algorithm. The

scouts and foragers of the BEE algorithm are used in the DC formation. This algorithm uses a

dynamic detector set and the DCs are modelled to sample the antigens (scouts) from the body

tissues (node). During this phase, both self and non-self-antigens are sampled. At startup

random Detectors are generated which are in turn subjected to negative selection with regard

to self-antigens represented by the semi mature DCs.

Using negative selection to generate Detectors involves computational overhead and

generating Detectors in a dynamically changing environment like MANET is not viable.

According to Ye et al. [100] two IAs, the detection agent and counterattack agent are

entrusted with detection as well as reaction. The detecting agent may be viewed as a T-cell

lymphocyte while the counterattack agent may be viewed as an antibody. Whenever the

detection agent finds an invader, instructions are sent to the counterattack agents. The

behavioural patterns of nodes identified are as follows:

 Node Q received message P recorded as Recv (Q, P)

 Node Q sends message P recorded as Send (Q, P)

 Node Q keeps message P recorded as Keep (Q, P)

 Node Q modified message P recorded as Modify (Q, P)

 Node Q deletes message P recorded as Delete (Q, P)

 Node Q generates new message P recorded as Make (Q, P)

 Node Q verifies message P recorded as Verify (Q, P)

 Node Q stores message P recorded as Store (Q, P)

 Node Q broadcasts message P recorded as Broadcast (Q, P)

Message R is the reply of the message P recorded as Reply (P, R). The behaviour patterns of

attack nodes are kept in the Immune Memory Library to represent different attack methods:

 Method 1: Recv (Q, P), Delete (Q, P). Node Q receives the message P and deletes it

without transmitting it. This is an Interrupt Attack.

 Method 2: Recv (Q, P), Modify (Q, P), Send (Q, P). Node Q upon receiving the

message P modifies it and then transmits it. This is an Error Message Attack.

 Method 3: Recv (Q, P), Reply (P, R), Send (Q, P). Node Q receives message P and

sends the message via the wrong route. This is called a Black Hole Attack.

 Method 4: Recv (Q, P), Keep (Q, P), Send (Q, P). Node Q receives message P and

then transmits it after keeping the message for some time. This can ensue in a Hidden

Attack.

 Method 5: Make (Q, P), Broadcast (Q, P). Node Q makes and broadcasts a large

number of messages in a short time, which leads to node overload. This is called a

Denial of Service Attack.

 Method 6: Store (Q, P), Modify (Q, P), Send (Q, P). Node Q modifies the details of

the route and transmits again which will result in other nodes receiving error filled

routing messages.

The detection agent records the behaviour of each of the neighbouring nodes. When the node

behaviours do not match, they are analysed using the Immune Strategy Library.

Figure 2-9 Immune libraries

The creation of the Immune Memory Library and Immune Strategy Library as illustrated in

Figure 2-9 is not mentioned in detail in [100] and the Detection Agent cannot record the

behaviour of a particular node as there are other nodes in addition to the neighbouring nodes

which could be compromised. If the Detection Agent was to record each node’s behaviour

this would result in a considerable computational overhead. This has not been simulated so

the accuracy and feasibility of the approach is left to future work.

Fatemeh [101] suggested a combination of AIS and GAs that are used to adjust to alterations

in network topology and Spherical Detectors are generated to handle non-self-space. The

technique employed to generate Spherical Detectors is an area for future research that might

be employed to identify the equivalent to protein compound antigens that exist in body cells

alongside pathogens.

The innate immune system uses built in knowledge to combat against infections and a danger

signal means damage caused by self-cells due to antigens coming from non-self. In Danger

Theory, the recognition of pathogens is not enough to get a response from the adaptive

immune system, but an additional sense of danger is needed before the body reacts to any

infection caused by pathogens.

Nauman [102] proposes two approaches based on AIS called BeeAIS and BeeAIS-DC.

BeeAIS utilizes negative selection to detect anomalies in MANETs and with the use of

negative selection, the profile of the system behaviour during normal routing is found.

Antigens extracted from incoming traffic in the network are created from the packet header

data. Here the antigens are modelled as one of three different types; scout antigen used to

detect anomalies relating to scouts and forager antigens of two types used to detect changes

to the source path. Antibodies and Detectors are created by combining four gene values as

random numbers. Matching functions are when the interaction between antigen and antibody

is measured in terms of distance in Hamming shape space.

The two stages of BeeAIS operation are the Learning Phase and the Protection phase. In the

Learning Phase the system behaviour is identified under normal routing conditions where

each node monitors traffic in order to gather the information needed to make self-antigens.

When a scout is received, a node may form a scout antigen and when a forager is received;

forager antigens are made. A node could receive the same self-antigen many times. Hence it

matches the newly formed antigen with the antigens that have been previously collected from

the traffic flow.

After the end of the Learning Phase a set of Detectors are generated using a negative

selection process with the self-antigen set collected during the Learning Phase. The Detectors

will be generated randomly and only those that do not match with self-antigens are kept.

In the Protection Phase the nodes collect antigens from the incoming traffic and carry out

measurement of their affinity with the Detector sets. Whenever a match occurs, it indicates an

anomaly is present. However, this approach fails as the algorithm learns the system behaviour

only once and as a result, during the Protection Phase newly observed behaviour is declared

as malicious by the system.

Whenever a node receives a forward or backward scout it creates an antigen. After extracting

the relevant fields from the scout header an antigen is created. The fields which are extracted

include the scout source, destination, length of route and node ID of the previous hop. DCs

are formed when a node sees a scout and the DCs are initialized with the following attributes:

 DC Antigen: The sampled antigen from the scout is attached to the DC.

 DC Life: The DCs are assigned a short lifetime and they die a natural death after that.

 DC State: Upon instantiation, a DC is an immature DC and when antigens are

sampled and when safe signals are present, the DC transitions to a semi-mature state.

During the exposure to danger signals DCs transform to mature DCs.

As the system starts, a set of random Detectors is generated by the node and the Detectors

undergo a negative selection process during which antigens are identified. The Detectors that

match with antigens are eliminated and the resulting Detectors match with non-self-antigens.

Mature DCs are used to activate T-cells. During matching the T-cell detector is transformed

to become an activated Detector.

The approach proposed in [102] doesn’t describe the role of an activated Detector sufficiently

and the process carried out after the Detector becomes active is not adequately explained.

Negative selection requires a Learning Phase which is not practical in a dynamic MANET.

How the role of the Detector to curb malicious activities in the MANET is to occur is not

adequately explained.

Ansari et al. in [103] use the concepts of CS and danger signal for misbehaviour detection

using DSR. The protocol events of a node are mapped to HIS elements. The genes of a node

are designed based on the performance of the network, the node’s observations of

neighbouring nodes. These genes form the ground to detect if a node is misbehaving.

Antigens are represented by a pattern of observed events generated by the protocol.

The events generated at the monitored node when it receives a packet originating at sender

node are as given below

 i=RREQ sent

 j=RREP sent

 k=RERR sent

 l=DATA sent

 m=RREQ received

 n=RREP received

 o=RERR received

 p=DATA received

The antigen set is represented as:

 D={mmimmmimmjmimmplplp,plplplplplplplplplp}

 G1=Num (m)

 G2=Num (m*(i+j))

 G3=Num (p)

 G4=Num (p*l)

Where Gk denotes the kth gene, Num denotes the number of occurrences, * denotes “zero” or

more occurrence. Each bit in the antigen set D is termed as a nucleotide. Antibodies are

generated randomly after which they are passed for negative selection.

Ab1= {1010100011, 0001101100, 1100100010, 0110001010}

Ab2= {1010111000, 0101100100, 1010101010, 0110101110}

SelfAg= ({0000100000, 0000000100, 0000000010}, {0000000000, 0000000000, 0000100000,

0000010000})

SelfAg denotes self-antigen and the node saves this information when it is in the learning

phase. Whenever a node experiences packet loss a danger signal is generated. The criteria to

realize the self-antigen is not mentioned. The question arises if an antigen is generated by an

attacker node in the same time-frame. This would result in all nodes considering SelfAg to be

a trustworthy pattern and generate antibodies that cannot accurately detect misbehaving

nodes. Whenever a ‘1’ occurs in an antibody pattern which matches with the ‘1” in Self

antigen, the antibody will be deleted.

Sarafijanovic et al. [104] attempt to detect node misbehaviour by making the nodes learn

what normal behaviour is in a protected environment. In this scenario, a self-antigen pattern

would be generated and antibody patterns are deleted if there is ‘1’ in every position the

antigen has a ‘1’. Here again the question arises if the same antigen pattern could be

generated by an attacker node.

In the approach proposed by Kim et al. [105] each node extracts a set of feature vectors y out

of normal network traffic. Each feature vector is represented by a hyper sphere with a fixed

radius in the feature space. At each time slot ti t every node extracts a q dimensional

feature vector yi. and (2-2) describes the network state.

 yi = (yi
1
, yi

2
,…, yi

q
) (2-2)

Where yi
k
 [0, 1] is a measurable feature vector. The feature space is represented by Sp

[0.0, 1.0]
p
 where yi ϵ Sp is associated with an antigen.

A feature vector yi Sp at time t is termed normal if it belongs to a normal network state. To

generate a set of negative Detectors N(t) every negative Detector nj ϵ N(t) is defined as a

hypersphere (aj, bj) where aj is the centre of the hypersphere and bj is the radius.

Let P(t) be the set of positive antigens. The Niche NABC algorithm [106] takes P(t) as input

and generates a set N(t) of mature negative detectors. Immature food sources are created so

that there will be a minimum overlap with positive antigens. When the quality of food

sources cannot be improved further the food source will be abandoned. In this approach, there

is an offline learning phase and an online learning phase. The offline learning phase is run in

a protected environment and leads to the creation of negative Detectors. This approach does

not map a food source to any of the routing or MANET parameters.

Anass et al. [107] proposes a detection generation algorithm. In each generation, the DCs

deliver a set of elements that are of fixed size randomly chosen from the antigens. Based on

the context of the element which is presented a number of operations are established to allow

memory Detectors to detect intrusive behaviour. When the context of the element is

dangerous then the algorithm checks if the memory detectors can detect the antigen. If the

danger element is not detected by the memory Detector the algorithm checks if the mature

Detectors are able to detect this element. If there is a mature Detector which can detect the

element then this mature element is added to the group of memory Detectors. In case the

presented element is harmless the algorithm checks if this element is detectable by the

memory Detectors to remove the corresponding detector.

The context upon which the element is classified to be “dangerous” is not detailed. This

experiment is not validated hence it is not possible to verify the approach.

Visconti et al. [108] suggests a type 2 fuzzy set based algorithm for detecting misbehaving

nodes that is triggered by network danger signals and antigen presenting cells. The approach

in [109] is used in order to capture the real behaviour of a node and the experts provide the

Footprint of Uncertainty (FOU). A red region indicates misbehaviour of the network pattern,

a yellow region indicates suspicious behaviour and a white region indicates normal

behaviour. The binding process invokes the helper T-cells to measure the actual changes of

the network parameter and find the region (Red, Yellow, and White) to which the Interval

type 2 fuzzy parameter is closer. Therefore, to conclude if a node is good or bad I2FM is built

for the whole network based on all M network parameters. The proposed approach is a work

in progress.

In [110] an immune system approach has been proposed for securing MANET. The Immune

Agent consists of three profiles: gene profile, non-self-profile and Detector profile. The gene

profile consists of the frequently occurring events for connection establishment. The Detector

profile is similar to T-cells in the human body that detect the non-self. The non-self profile

contains events that harm the system. The Immune Agent captures and stores the information

pertaining to the protocol during the Training phase (Secure) as well as in the insecure phase.

The Immune agent will be equipped with Detectors that are randomly generated. The NSA

ensures that the generated Detectors do not match self. The Detectors that come out of the

negative selection stage are cloned whenever they attain a score detecting non-self.

The Combined Immune Theories Algorithm (CITA) [111] utilizes the basic principles of

well-known immune theories including DCA, CS, and NSA. This algorithm is compared with

the Secure Ad hoc on Demand Distance Vector algorithm (SAODV) [114] and improved

performance is demonstrated. DCA is used to obtain context information. DCs are associated

with a subset of neighbouring nodes called elements, which are responsible for DC

maturation. Element subsets are monitored using adjacent Immature Detectors (ID), adjacent

Mature Detectors (MTD) and Memory Detectors (MMD). The network is first configured

with trusted nodes during the learning phase. Each node will have a set of detectors. CITA

utilizes several parameters that are initialized during the learning phase, including the number

of detectors available and the definition of alarm signals.

2.10 Interaction between pain, nervous system, and immune system

Pain can be conceptualized as the alarm system for the body. When there is a threat of harm,

the brain interprets that threat and signals the alarm. This alarm stimulates an avalanche of

responses like a stress-response. One portion of the stress-response sets the activation mode of

the nervous system into flight or fight. In its most basic configuration, the nervous system

prepares the body to move away from or to fight a threat. The duration and magnitude of the

stress have a great influence on whether or not the immune system will be affected by this

avalanche, either suppressed or enhanced. Only once the alarm has been tripped does the

connection between the nervous system and immune system [112] come into play.

This link between the nervous system and the immune system is strong. The “fight or escape”

system is focused on one over-riding instinct: to survive. When tailed by a lion or burned by a

stove, the reactions and responses are short-term and immediate. To divert energy to muscles

for running or moving, the body can shut down more long-term, high-energy processes like

digestion and immunity functions. This kinship is more complex than a simple shut down

operation because during the initial stress-response the nervous system fine tunes and

enhances functions of immunity. Only as the stressor continues, the nervous system triggers

the shutdown of immunity and begins to dismantle it.

In MANET, which is analogous to HIS, pain can be modeled using factors like trust and

energy. These are two crucial factors that are required for the proper functioning of any

routing protocol, which benefits the network as a whole. The energy of a node participating in

the routing protocol is critical. Only if a client has sufficient energy can it duly forward/deliver

packets. A packet cannot be simply forwarded to a node just because a client has sufficient

energy. This is where the trust factor becomes important. A node should be deemed

trustworthy in order to receive packets from the source/intermediate node. This scenario has

been conceptualized in MANET through the research presented in the following chapters.

In some events, pain may enhance immunity or feed into an over-active immune system. The

interaction between pain, the nervous system and immune system is complex.

2.11 Summary

Techniques based on Immunity are becoming more popular and emerging as a new branch of

Artificial Intelligence. The NSA is being continuously applied and modified to solve

problems. This review highlighted that NSAs are utilized for new detector generation

schemes and a broad discussion is required between the biologists, scientists and engineers to

learn fresh ways of applying AIS. This chapter gives a critique of the various AIS approaches

applied to MANET and discusses how research is tackling the difficult issues surrounding

MANET security. Most of the approaches identified are either work in progress or have not

been validated demonstrating there is scope for further study.

The literature review provided in Chapter 2 has established the background principles,

algorithms and direction being taken to further develop AIS as an efficient approach to

MANET security. This review discusses the representative state-of-the-art AIS schemes.

The literature review has also provided a discussion along the relevant routing and MANET

protocols based on their relevance to the research project. A brief introduction of different

AIS principles, their classification and a concise discussion of the algorithms with common

active periods has been shown.

The chapter has also included a discussion on the different AIS techniques and its

applications in MANET as well as other fields.

Chapter 3 ANALYSIS OF MANET NODE STATE

3.1 Overview

This chapter provides research carried out to answer Research Question 1 on the design,

modelling and analysis of the proposed AIS framework in MANET. Here MANET is

analysed in terms of quadrants and the nodes are dispersed amongst the quadrants. In Section

3.2, the motivation for the node analysis is detailed. Section 3.3 presents and discusses

approaches that have utilized the transmission hop count. Section 3.4, takes advantage of the

idea of a Markov model and transforms the hop count metric into the probability of

communication or probability of node nearness. The relation between the hop count and the

probability of communication is illustrated. Section 3.5 concludes the chapter, highlighting

the importance of the hop count metric.

3.2 Analysis of MANET nodes

Consider a MANET consisting of several quadrants as seen in Figure 3-1, where the nodes

are dispersed within the quadrants. There can be numerous points N spread along the x axis

where N is a real number. A point C on the number line from –x to x is considered. Assuming

there is a node at point C, and the node moves along the x axis and when the node is at point

C the position of the node can be represented as CX. A node can also move along the positive

plane of the x axis and can be at positions such as CX+1, CX+2, etc. The node can also move

along the negative plane of x axis and can be at positions such as C-X, C-X-1, C-X-2, etc. At each

hop the node can move along the positive or negative plane (+x/-x) of the respective axis it is

present in. This movement of the node follows a Markov chain model known as the drunkard

model. Similarly, the node can move along +y/-y.

The movement along +x/-x can also be considered as moving along

 NodeLeft(L)/NodeRight(R) (3-1)

Similarly, the movement of the node along +y/-y can be considered as moving along

 NodeUp(U)/NodeDown(D) (3-2)

Figure 3-1 Node positions

If the node takes one hop (+1/-1) at a time to reach its immediate neighbour, there is a

probability of 0.5 when moving along +x/-x and +y/-y axes respectively.

3.2.1 Node Movement Probability

The node can either move by +1 hops or by -1 hops. By analysing (3-1) and (3-2) we can find

the probability that the node moves by +1/-1 hop as a square matrix of non-negative values.

Combining (3-1) and (3-2)provides (3-3) a doubly stochastic matrix which identifies with the

probability of node movement (PNMOVE).

PNMOVE =

(3-3)

Based on PNMOVE the different states, or the state transition due to node hops, can be

identified which gives the state diagram shown in Figure 3-2 for the node in ‘L’ state and ‘R’

state.

As shown in Figure 3-2 the L state is followed by the R state and similarly the U state is

followed by the D state. From this we get a transition matrix which is doubly stochastic.

This change of node state can be identified as a Markov chain whereby the node undergoes

transitions from one state to another. Considering a node hopping along CX+1, CX+2, CX+3, etc.

such that the future state is only dependent on the present state and independent of the past or

previous states, then P(Cn+1 =c|C1 =c1,C2=c2.........Cn=cn)= P(Cn+1 =c|Cn=cn) if both

conditional probabilities are well defined i.e. if P(C1 =c1,C2=c2,...,Cn=cn) >0.

Figure 3-2 State diagram for L and R states

3.2.2 Node State Classification

Figure 3-3 Node states

Consider nodes Na, Nb, Nc and Nd to be at states a, b, c, and d. In Figure 3-3 state b is

accessible from state a, ab, if
 > 0 for every n≥0. This implies there is a possibility of

reaching state b from state a in n hops. If state b is not accessible from state a then

 P
n

ab = 0 ∀ n≥0 (3-4)

Let us consider P (ever visit b|C0=a) i.e. the probability of going from state ‘a’ to ‘b’ in ‘n’

hops then

 (3-5)

The n hop transition probabilities satisfy the Chapman- Kolmogorov equation for any k such

that 0 ≤k ≤n then

 ∑

 (3-6)

Where S is the state space of the Markov chain and r is any intermediary state in between

state a and state b. If a is accessible from b and b is accessible from a, we say that a and b

communicate, which is an equivalence relation. The equivalence relations that can be

obtained are

 a↔b (3-7)

 a ↔ b implies b↔a (3-8)

 a↔ b and b ↔ c together implies a ↔c (3-9)

 a ↔ b; c ↔ d implies a ↔d (3-10)

Let’s look at (3-7) in more detail; Assume a ↔ b and b ↔ c this means there exists n ≥ 0 so

that

 > 0 (3-11)

And m ≥ 0 so that
 >0. It is now possible to get from state a to state c in m+n hops by

going from state a to state b in n hops and from b to c in m hops

 ≥

 (3-12)

 = and then
 =∑

 (3-13)

This accessibility relation divides states into classes and this shows that within each class all

states communicate with each other. Let D(t) be the distance in meters between a

neighbouring node and the node that last transmitted a RREQ/RREP message. The

positive/negative value indicates the interval –F(t) ≤D(t)≤F(t). L(t) is the maximum distance

the node can cover at time t. F(t) is the number of hops the node can make during L(t). Hop-

Count is a measure of distance in the network and is given by

(3-14)

Based on the hop count, the probability density function can be calculated as follows,

consider X and X0 to be node positions and consider the node to be at an initial position X0

√

⁄

(3-15)

(3-15) shows that the probability of finding the node at x(t) is Gaussian and as the motion of a

node is random, the node can be considered as a Brownian particle.

(3-16)

The nodes keep changing their states and the probabilities associated with state changes are

called Transition probabilities. The probability of going from state i to state j in a single step

is a single step transition. For a single step transition

 = (3-17)

Consider N to be the total number of network nodes

 ∑
 where 0 <n ≤N (3-18)

K is the node nearness factor. The probability of a node being able to reach its next hop

neighbour can be represented as the Probability of node nearness or Probability of

communication (Pcom). (3-16) can be rewritten as

 =

 (3-19)

As the probability ranges from 0 to 1 ,the ideal value for K after simulation and analysis, it

was identified that the value of node nearness factor K=2, and when K=2 performance

improved.

Figure 3-4 Hop-count versus probability of communication

3.2.3 Hop-Count versus Probability of Communication/Node Nearness

The results of a simulation using MATLAB and NS-3 are shown in Figure 3-4 and when the

probability of node nearness increases the distance the node travels is reduced thus

minimizing the number of hops taken to reach its neighbouring node. As the hop-count

increases the Probability of Communication/Node Nearness (Pcom) decreases which in turn

indicates the hops taken by the node increases.

3.2.4 Delivery Time versus Delivery Cost

An increasing number of hops from source to destination increases node battery consumption

due to an increased likelihood of retransmissions and the result is an increase in the delivery

cost [115,116]. For different values of Pcom, from Figure 3-5, it is shown that if the time to

deliver is high the associated delivery cost is also high. For an increasing value of Pcom there

is a decrease in delivery time as the node can communicate with the neighbouring node

faster.

3.2.5 Routing Overhead versus Node Velocity

As shown in Figure 3-6 for different values of Pcom as velocity is increased the routing

overhead increases. As the value of Probability of node nearness increases the routing

overhead reduces as there is a lower chance for a message delivery failure. As the node

moves towards its neighbour node for a higher value of Pcom, route discovery costs are

minimized.

Figure 3-5 Delivery Time versus Delivery Cost

Figure 3-6 Routing overhead versus Node Velocity

3.3 Summary

In this chapter, the node communication process is analysed based on their states and hop-

count. The analysis is based on the Markov random walk model and the importance of hop

count for efficient communication is analysed to understand the hop count dependency in

terms of the probability to reliably communicate to a neighbour node and other associated

impacts. An analysis of the results is presented along with a discussion of reliability and

scalability.

In this chapter, we have highlighted the importance of hop-count thereby leading to the

Probability of node nearness and observed from the analysis that Pcom for a node plays a

major role in network efficiency. In the following chapters, the hop-count metric has been

included in the development of improved security techniques thereby making MANET more

robust and secure.

Chapter 4 AIS ENHANCED SECURITY

4.1 Overview

In this chapter, a new approach using AIS is presented which mimics the strategy of the HIS

and Trust models to distinguish between a genuine node and selfish or compromised nodes.

The research presented responds to Research Question 2 and the proposed framework utilizes

the DCA principles. This algorithm utilizes the concept of Probability of Communication

described in Chapter 3, for the development of an AISBA and is organized into the following

five sections. Section 4.2 details existing MANET attacks. Section 4.3 describes the AIS

based detection scheme. Section 4.4 and 4.5 analyses the detection system followed by the

conclusion and areas that require future study in Section 4.6.

4.2 Artificial Immune System Based Algorithm

4.2.1 Inspiration

The immune system distinguishes between non–self harmful antigens and non–self harmless

antigens using specific mechanisms. The adaptive immune system and not the innate system

could be the natural system and able to spot danger signs because it is hard-wired through

evolution. In humans, however, due to genetic mutations that take place over time the

immune system may be put into a deficit state that could result in catastrophic failure or

contribute to an evolutionary update that incorporates the genetic mutations, with both

positive and negative outcomes.

In the adaptive immune system, white blood cells mediate the protection forces that might

identify as an army of specialized able forces that have been trained to identify enemies and

hence mount a defense. The protection forces work with the innate system to cleanse out the

damaged debris and rely on the natural system for alarms in the case of imminent danger as

well as re-training if necessary.

The damage signals are generated from the affected tissue, for example, a splinter results in

the destruction of many cells due to skin penetration. A splinter may be accompanied by

bacteria. The splinter is comparatively a non-self-harmless pathogen, while the bacteria are a

non-self substantially harmful pathogen. The signal that spontaneously notified the able

specialized forces comes from the dying cells. Cell death leads to the release of proteins that

are not supposed to be on the outside surface of a living cell. The released proteins in turn

alert the innate and adaptive systems about the necessity for a clean-up and immune response.

The nature of how the living cells died is investigated and the able specialized forces are

trained to carry out rectification activities. Therefore, the adaptive system will start to learn

about the non-self proteins it finds near the damage and in turn, will train more specialized

able forces near the abuse. The bacteria that followed the splinter can grow and lead to more

damage; they may also have some innate proteins which in turn help to hunt them down.

More signals will be generated raising the alarm level so that specialized able cells will hunt

more belligerently for threatening pathogens.

In some cases, the bacteria are vanquished rapidly, and all that remains is the splinter. Unlike

bacteria, the non-self splinter is not going to cause more damage; the damage has already

been done, and no more proteins will be released by damaged cells as they die. Minor

irritations may occur, but the remaining splinter may not be a bother causing more cell

damage causing the alarm to be raised again. The non-self and non-harmful splinter will still

be confronted by the specialized able cells and they, in turn, begin to learn that the proteins

associated with the splinter aren't all that harmful. Thereby the specialized cells start to

become allergic to the splinter proteins. This is how the HIS learns the difference between

harmful non-self pathogens and non-harmful ones. The reason behind the cell death is the key

to understanding if training the able specialized forces is required.

During normal cell death or apoptosis, the proteins are not released, but are bundled and

deactivated to avoid raising the alarm while being swept by the garbage collection teams of

the human body.

4.3 AISBA Trust Model

Unlike some of the prior work carried out into AIS, where the learning phase is carried out

once, there is a need in a dynamic topology like MANET to utilize an approach that permits

each phase to be carried out in an iterative and repetitive process. The proposed algorithm

follows a reactive approach as having a learning phase makes the algorithm have a large

computational overhead. As the MANET topology is dynamic, thereby it is not efficient to

learn things beforehand. If a node behaviour is not known before then that node is malicious

during that time interval as seen in Section 2.7. The blacklisted node could have a route error.

In such scenarios, designing a security algorithm based on the learning phase is inefficient.

Therefore, the security algorithm proposed in this paper is a reactive one which accurately

verifies genuine cases of route error and identifies a malicious node.

Figure 4-1 Proposed AISBA Model

In the proposed AISBA each node, as seen in Figure. 4-1, is modelled as a DC because DCs

are the first line of defence as well as HIS antigen presenting cells. The initiator Node A

sends a Route Request to the nodes in the network. The nodes that already have a path to the

destination will send back a Route Reply. Upon receipt of the Route Reply, the source node

sends its packet to the responder node. During this phase the source node expects the

responder node to acknowledge (ACK) packet receipt. In the case of a Route Error causing

the ACK to not be received, a Danger Signal alarm is raised upon which the initiator node is

notified. This leads to a scenario where the genuineness of the Route Error should be verified,

which will be explained in the upcoming sections. DCs in this model act as inquisitors,

considering the events around them. They identify the presence of an invader and then

present evidence of the invader to T-cells, which in turn activate the appropriate immune

cells to attack the intruder.

In a similar fashion the DC nodes, when they do not receive a response from the

neighbouring node, inform the source node and the source node sends the high priority

PAMP signal to validate the presence or absence of danger. In our trust model based on AIS,

four trust components are considered:

 Safe Signal 1 (SS1) - This is generated upon receipt of Route Reply

 Safe Signal 2 (SS2) - This is generated upon receipt of an ACK

 Danger Signal (DS) - Generated in case of route discrepancies i.e. Route Error

(RERR)

 PAMP - This signal helps validate the selfish behaviour of a node. PAMP activates

the immune response, thereby protecting the host from infections in HIS. In a

similar way PAMP, being a high priority signal, overwrites the node buffer, and

the attacker node will acknowledge receipt of PAMP.

The trust value
 (t) is evaluated by Node i towards Node j at time t, TC is the trust

component.
 (t) is represented as a real number in the range of [0, 1] as seen in Figure 4-2

where 1 indicates genuine/unselfish or normalcy of nodes, [0.5-0.8] indicates route error

discrepancies and [< 0.5] indicates selfishness.

 (4-1)

Where , are the weights related to the trust components, with

 + + + =1. Instead of assigning individual weights to each of the trust elements a

priority signal, PAMP, is used and a signal, SAFE, to indicate the nodes are behaving

correctly. The weight of the PAMP priority signal is shown by . The weight of the safe

signal is shown by . (4-1) can be rewritten as:

 (4-2)

The values of the weights are chosen to maximize the performance of the algorithm based on

Trust models which are evaluated in later sections.

Figure 4-2 Trust Condition Number line model

4.3.1 Trust Condition Evaluation

The calculation of trust at each node is an indicator of the confidence in the node reliability

[23]. The trust associated with a node should not be affected by network traffic, congestion

and delay. The timing information of each node interaction should not be strictly emphasized.

The use of a sliding window transmission approach reduces the effect of conditions arising

out of a network that affect the trust calculation. In most real-time communication scenarios,

utilizing sliding window mechanisms do not cause any delay in real-time packet delivery. We

use a timing window t to evaluate the number of successful and unsuccessful messages

between nodes.

Let us consider Node i to evaluate Node j based on its behaviour; thereby making Node i the

settlor and Node j the trustee.

 (4-3)

To calculate the trust threshold based on Trust conditions (between two nodes i and j:

 (4-4)

The trust relationship between nodes l, i and j as shown in Figure 4-3 is given by (l, j) = (l, i):

(i, j)

Figure 4-3 Trust Model

Let the Trust Purpose be defined as “the node should be genuine.” Let the trust model, as

seen in Figure 4-3, include node i in the network. The trust between node l and node i will be

direct therefore it’s a functional level of trust whereas the trust between node l and node j will

be indirect therefore it’s a referral level [24] of trust.

(4-5)

(4-5) can be rewritten as

 (4-6)

To compute
 ,we take into account the number of interactions between nodes i and j over

the maximum possible number of interactions that could occur with any neighbour node

during the interval [0,t]. We consider the following interaction types with regards to a

genuine /unselfish node, given that node i is the initiating node:

 Sending Request

 Receiving Reply

 Selection of node based on highest value of

 Acknowledgment

 PAMP signal (high priority signal)

The source node sends a request packet to the other nodes in the network, the nodes which

are closer to the destination node will reply. On receiving a response, the source node selects

the nodes with the highest value of . Once the packet has been forwarded to the node

with the highest value of the node, in turn, waits for an acknowledgment from the

corresponding node. In the instance of a selfish node, it will not transmit a reply. At this

juncture, the high priority PAMP signal plays a critical role. The node that did not receive a

response from its neighbour node informs the source node, which in turn leads to "Activate

DC" mode being switched on.

The initiator node then sends a PAMP signal (PAMPsend) and each node is required to

acknowledge receipt of PAMPsend by sending back a PAMP receive signal (PAMPrecv). The

selfish node that did not formerly acknowledge receipt of the packet will be forced to respond

with a PAMPrecv as the PAMP signal is a high priority message. The gist of the PAMP signal

strength on Packet loss ratio, in the presence of selfish nodes can be viewed in Figure. 4-4.

Let the average number of messages from Node i, with a selfish, discrepant (uncertain) and

normal node be x, y & z respectively.

If Node i requests a neighbour to forward a packet then the messages between Node i and

selfish Node j include reply, selection, acknowledgment, and PAMP signal (total of four) as

denoted by x. The anticipated number of messages between Node i and a selfish node can be

none as there is a probability that the packets will be dropped or forwarded which in turn

leads to two (reply, acknowledgment) follow-up messages as denoted by y. In the case of an

ordinary node as denoted by z, there can be two classes of communication, including where

Node j can be an intermediate node forwarding packets or Node j can be an unselfish node

that replies to a route request from Node i.

 x = 4

y = 0 + 2

z = 2 + 3= +

(4-7)

Figure 4-4 Effect of PAMP strength on packet loss ratio

Table 4-1 Trust Component Value Assignments

 Values

 ⁄

 ⁄ * ⁄

 ,

 ⁄ ⁄

Consequently, compute
 (t) as seen in Table 4-1, by assigning a status value of ⁄ to

selfish states in Node j, ⁄ for a discrepant node and ⁄ for a normal node. Once Node a

obtains
 for TC = Safe Signal1, Safe Signal2, Danger Signal, PAMP then is

calculated based on (4-2).

 (t) This measures the number of times a trustee node generated a route reply.

Here a settlor node evaluates the unselfish and honest behaviour of the trustee node.

This trust factor is calculated based on the number of interactions between the settlor

and trustee node.

 (t) This trust element is evaluated when the trustee node sends back an

acknowledgment of receipt of a packet.

 (t) In this case, the analysis is done by snooping on the packet transmission

activity of the trustee node.

 (t) This is analysed by observing if the susceptible node has acknowledged the

PAMP signal.

4.3.2 Trust Threshold based on Interactions

The Trust conditions are necessary to calculate the node reliability confidence. Traffic issues,

such as congestion and delay, should not be taken into account when the trust is to be

calculated. In other words, the trust evaluation should not rely exclusively on the network

traffic conditions. The sliding window mechanism is applied as it sees the relative

transmission time and downplays the consequence of degraded network traffic. The sliding

window approach is employed to assess the number of successful and unsuccessful messages

between the nodes and the timing windows (t for message transmission are recorded. After a

time unit has passed the window slides by one increment and discards the contents of the

previous time unit with no further action unless the ACK for the message transmitted in that

time increment has not been received. Based on the analysis of the network scenario the

window time duration can be varied. Let us consider an example, as depicted in Figure. 4-5,

where the time for the window varies.

The timing window length can be a variable and is determined based on the network

scenarios. After a time unit has passed the window slides by one increment and discards the

contents of the previous time unit with no further action unless the ACK for the message

transmitted in that time increment has not been received. Based on the analysis of the

network scenario the window time duration can be varied. Let us consider an example, as

depicted in Figure. 4-5, where the time for the window varies. In the below given example,

the length of the sliding window is three.

During the first-time unit t1, the number of efficient and inefficient interactions is 4 and 3

respectively, and during the entire t1, the total number of efficient and inefficient

interactions are 12 (sum of 4, 2 and 6) and 16 (sum 3, 5 and 8) respectively. Once the

transition from the first-time unit is completed the new time interval t2 is actioned. In this

case, t1 values (4, 3) are discarded and algorithm will be considering the next three values

(2, 5), (6, 8), and (7, 1).

Ef
f

4 2 6 7 2 4

Iff 3 5 8 1 8 3

 t1=Eff(12),Iff(16
)

 t2=Eff(15),Iff(14
)

 t3=Eff(15),Iff(17
)

 t4=Eff(13),Iff(12
)

Figure 4-5 AISBA Sliding Window Implementation

With the information gathered from the sliding window mechanism the time-based Trust

threshold value of Node j at Node i (that lies between 0 and 100 is defined as

()

(4-8)

Effi,j is the total number of effective interactions of Node i with Node j during t. Iffi,j is the

total number of ineffective interactions of Node i with Node j during t. Equation (4-8) is

designed in such a way that the Trust threshold would approach 1 very slowly with the

increase in effective interactions; therefore, it would take a longer time for Node i to increase

its trust value for another Node j.

Figure. 4-6 shows the variation of Trust threshold value against effective and ineffective

interactions. When the number of effective interactions is nil, then the Trust threshold value

will be zero.

Figure 4-6 Effect of interactions on Trust Value

Based on the calculations of the Trust threshold values as seen in Figure. 4-6, a node

classifies the behavioural state (Bst) of a node as shown in (4-9) with a denoting the median

of all the Trust threshold values contributed to by unselfish nodes, and b indicates the median

of all the Trust threshold values contributed to by the selfish nodes.

 ()

 {

}

(4-9)

Figure 4-7 Node Behavioral Sectors

The median value provides a typical outcome if a set of values includes an outlier, which is

an extreme value that differs largely from other values. The median is not significantly

affected by extremely large or small values, so it is used to provide a typical Trust threshold

value in a MANET that consists of selfish and unselfish nodes.

In a scenario where there are more altruistic nodes and a low number of selfish nodes the

mean value could be high as it would include the Trust threshold value of the unselfish nodes.

Both a and b are calculated as shown in (4-10) and (4-11).

 {

 (

 ̆

)

}

(4-10)

 {

(
 ̆

)

}

(4-11)

M denotes the set of unselfish nodes; P is the set of selfish nodes and n is the total number of

nodes containing selfish, unselfish and unsure nodes. The values of a and b are designed to be

robust and can change over time, as shown in Figure. 4-7, hence the boundaries for

selfishness or unselfishness can be dynamic. In the event of M or P becoming 0 then the

values of will be the same as the previous values . For the nodes with values

over 100, a will represent unselfish nodes, whereas for the nodes with values below 50, b will

represent selfish nodes. The Trust threshold value calculation will continue in this manner

after every unit of time.

4.4 Simulation and Results

The simulations were done using Network Simulator-3 version 3.23. The challenge was to

implement AISBA within the simulation environment. In the simulations, the nodes were

modelled as DCs and selfish nodes were introduced to provide an understanding of the

algorithm's effectiveness. As observed in Figure. 4-8, using the packet delivery ratio metric,

the algorithm performance was evaluated and AISBA provided a packet delivery ratio of

86.25%, while SAODV (Secure AODV) was found to average 36.45%. The performance

improvement found using AISBA, with this scenario when compared to SAODV, highlights

the potential for AIS algorithms to be effectively utilized in MANET. The packet delivery

ratio benefited from the detection and retained knowledge of malicious nodes.

Table 4-2 Simulated Parameters

Simulator Ns-3.23

Mobility Model Random waypoint

Simulation Time 950s

Number of nodes 150

Traffic Type UDP

Network Area 1500m*1500m

No.of malicious nodes 10-50

Mobility 20 m/s

Transmission Range 50m

Figure 4-8 Malicious Node Effect on Packet Delivery

Figure. 4-9 shows the AISBA detection rate against the number of malicious nodes in the

network. An average detection rate of 93.41% was achieved while for SAODV the detection

rate achieved was 85.34%. This comparison demonstrates that as the number of malicious

nodes increases, the DC nodes can identify and validate a valid route error as well as a

purposeful packet drop caused by the selfish nodes with the avail of the PAMP signal.

Figure 4-9 Malicious Node Detection Rate

Using the Packet delivery ratio metric as shown in Figure. 4-10 we can evaluate the

performance of the proposed security algorithm. AISBA shows higher packet delivery ratio

of 86.25%, while SAODV exhibits an average of 36.45%. The contribution of this paper is

that the use of bio-inspired algorithms gives better performance compared to SAODV. The

packet delivery ratio and detection rate are better even in the presence of malicious nodes.

Figure. 4-11 shows the Detection rate of AISBA against the number of malicious nodes. An

average of 93.41% of true detection is achieved while Secure AODV reaches 85.34%.

AISBA was evaluated against CITA-AODV. CITA-AODV utilizes the concept of learning

stage and learns misbehaviour during this stage, AISBA does not utilize a learning stage as

nodes in MANET have a dynamic topology therefore the behaviour of the mobile nodes is

not constant. This comparison shows that though the number of malicious nodes increases,

the DC nodes can identify and validate a valid route error as well as identify malicious nodes.

Figure 4-10 Packet Delivery Ratio corresponding to Malicious nodes

0

20

40

60

80

100

5 15 25 35 45 50

P
ac

ke
t

D
el

iv
er

y
R

at
io

(%
)

Number of Mallicious Nodes

AODV SAODV CITA-AODV AISBA

Figure 4-11 True Detection corresponding to Malicious Nodes

4.5 Statistical Analysis

Consider that the trust value towards Node k is a random variable X following the normal

distribution with n-1 degrees of freedom. This random variable is related to the sample mean,

population mean and the standard deviation as follows:

 ̅̅ ̅̅ ̅

√

(4-12)

Where
 ̅̅ ̅̅ ̅ is sample mean,

 population mean and
 the standard deviation of

Node j as observed by Node i. The probability that Node j is identified as a selfish node at

time t is

 (t) =P (
) (

 ̅̅ ̅̅ ̅̅

√

) (4-13)

The analysis of the false positive probability is done by calculating (t) under the scenario

AODV

CITA-AODV

0

20

40

60

80

100

5 15 25 35 45 50

D
et

ec
ti

o
n

 R
at

es
(%

)

Number of Mallicious Nodes

AODV SAODV CITA-AODV AISBA

that node j is an altruistic/unselfish node whereby the false negative probability is analysed

by calculating (1- (t)) when node j is selfish or compromised.

(

 ̅̅ ̅̅ ̅

√)

 (4-14)

During calculation of false positive probability the
 = 0 and

 = 0, There is neither

danger nor PAMP signals involved as the nodes are genuine. Therefore, (4-14) is rewritten as

(

 ̅̅ ̅̅ ̅̅

 ̅̅ ̅̅ ̅̅

√)

 (4-15)

Conversely, during calculation of false negative probability (1- (t)) the safe signals are

absent, i.e.
 = 0 and

 = 0. Therefore, the false negative probability is given by:

(

 ̅̅ ̅̅ ̅

 ̅̅ ̅̅ ̅̅ ̅̅

√)

 (4-16)

Figure 4-12 Effect of Weight of PAMP and Trust Threshold on max (fpp,fpn)

While developing this AIS based detection algorithm, the significance of keeping a balance

was kept in mind. We observe that for an absolute value of the false positive

probability and the false negative probability is minimized. The optimal value for the Trust

threshold is 0.5 and the value for Weight of PAMP (wPAMP) is 0.6 as seen in Figure 4-12, so

that the false positive and false negative probabilities fall below 5%.

4.6 Summary

The algorithm presented in this chapter aims to provide a bio inspired approach to security.

This bio centric approach to MANET security makes it an interesting and challenging subject

for further research.

Chapter 5 ROUTING ATTACK - PACKET

STORAGE TIME

5.1 Overview

In this chapter, a novel MANET routing attack based on a Packet Storage Time (PST) is

presented in response to Research Question 3. An attacking node modifies its storage time

and thereby does not forward packets to the intended recipient nodes until some point after

the delivery would have normally occurred. In the HIS, cells can discern between a range of

matters, including foreign body attacks as well as cellular senescence. This chapter

demonstrates a technique that uses the AIS, mimicking the strategy of the HIS, to identify the

origin of a PST routing attack.

5.2 Proposed attack-packet storage time

Consider a MANET topology as shown in Figure 5-1, where the ad hoc networks challenge

to establish a route between the existing nodes is presented. In Figure 5-1, MN1 is the source

node and MN7 is the destination node. The intermediate nodes are MN2-MN6. In this

scenario, consider the following available routes:

 MN1-MN2-MN6-MN7

 MN1-MN5-MN7

 MN1-MN4-MN3-MN7

When a route is needed, the source node should take into account the battery power or energy

of the participating nodes that provide a route reply.

Figure 5-1 MANET scenario

In this scenario, a problem was identified where MN5 is an attacker/selfish node which do not

want to expend energy to forward packets. This node is particularly interested in giving a

RREP as it wants to maintain an updated routing table.

The PST attack is a novel concept introduced for the first time in MANET where each mobile

node is incorporated with a buffer/queue. In this type of attack, the attacker modifies its own

buffer/queue time to congest the network. When the packets are maintained for a longer time

than intended by each node, the packets become stale and the circulation of stale packets in

the network goes to battery power wastage by the actual nodes.

Figure 5-2 Proposed AIS algorithm

5.3 AIS Algorithm

A model based on the Danger Theory principle wherein each node is modelled as a DC is

proposed. The presence or absence of danger is detected by the DC nodes, thereby identifying

danger by indicating the presence of a malicious node. The DC nodes monitor the activity

occurring in a MANET to report any malicious node. The PAMP signal is utilized here to

signify the presence of a malicious node in the network. Based on these concepts a

mathematical model is built. The nearby nodes have to expend less energy to communicate.

The battery life/energy of each DC node plays an important role while establishing routes.

During route establishment, the energy of each node needs to be considered. Consider x to be

an energy dependent variable. The energy associated with the source destination and

intermediate nodes is assigned a weight which is dependent on the percentage of battery

power that would be used during a route request and route reply communication. Based on

the above concept, the below given equation is formulated.

 f(x) =αns + βnd +2 n (5-1)

Where: α+β+γ=1 and α, β, γ ϵ [0, 1] and n is the average of the energy among intermediate

nodes, is the source node energy, is the destination node energy, α is the source node

weight factor, β is the destination node weight factor, and γ is the intermediate nodes weight

factor. Consider the Effective Energy (EE) of node k

 k = F (nk,hk)=EEnode(k) = * (5-2)

where hk is the number of hops from node k to node s, and F (nk,hk) ≈ EEnode(k) should satisfy

the postulates:

 If node k is far away from source node s, node k should have to take larger number of

hops and more energy would be utilised which results in larger function value.

 If node k is closer to node s, node k should have to take lesser number of hops and

lesser energy would be utilised which results in a smaller function value.

The effective mean energy of all the intermediate nodes is as follows

 =

∑

 (5-3)

Combining (5-2) and (5-3) gives the Node Energy Momentous function

 f(x)=αns +βnd +

 ∑

 (5-4)

From (5-2) we get the Compatibility function

 Ĉ=1/F(nk,hk) (5-5)

As Compatibility Ĉ increases the cost to establish the route between source and destination

decreases, which also implies that the node k has energy available for routing. In a MANET,

the source node initiates a route discovery whenever it has to send a packet. The proposed

AISBA model consists of the following stages as shown in Figure 5-2:

Normal. Consider the proposed AIS model as shown in Figure 5-2. Initially the source

initiates a route discovery in order to send a packet to a destination node and computes

compatibility of the node from which it receives a RREP. The source node does not receive

an acknowledgement (ACK) from the node that provided the RREP.

Attacker Detection. The source sends a high priority packet PAMP message to the attacker

node and the attacker node is forced to acknowledge receipt of the PAMP (PAMP is a high

priority signal) which indicates the presence of an attacker but this is not yet confirmed.

Attacker Confirmation. The source computes the node Effective Energy (EEnode) of the

attacker node and compares the value with its own energy. If the EEnode happens to be greater

than EEsource the presence of the attacker is confirmed.

The algorithm flowchart and pseudo code is described as shown in Figure 5-3. and Table 5-1.

The source node broadcasts a RREQ and computes node compatibility for the nodes from

which a RREP is received. The source node begins to send the packet and if an ACK is not

received a high priority PAMP is sent. If the node is an attacker and it does respond with an

ACK; this indicates the presence of the attacker node. The next step taken by the source is to

compute the EE of the attacker, and a high EE value is used to confirm the presence of the

attacker. This is also symbolically represented in the flowchart as shown in Figure 5-3.

Source

broadcasts

RREQ

Source

sends Packet

Intermediate

node RREP

Check ACK

received

Send PAMP

Intermediate

node genuine

Check

PAMPr
Link failure

Attacker

Confirmed

Source

computes

Compatibility

Attacker

Detected

Yes

No

No

Yes

If EEnode >=
Source

Figure 5-3 Proposed AIS Algorithm flowchart

5.4 Simulation and Results

The ns-3.23 simulator was used to detect and confirm the presence of a PST attacker using

the AODV protocol. Extensive simulations were carried out using ns-3.23 to verify the

mathematical formulation presented. The simulation parameters used are shown in Table 5-2.

As can be seen in Figure 5-4 as the hop count increases in the network, the EE consumption

by the mobile node is higher. As compatibility increases the cost to establish the route

between the source and destination will decrease as can be seen in Figure 5-5. The route cost

is a metric which is the ratio of transmitted control packets to the transmitted data packets.

An increase in compatibility decreases the cost.

Table 5-1 Algorithm Pseudo Code

The average end-to-end delay increases as shown in Figure 5-6 and during the PST the

attacker delays the packet delivery by modifying the packet storage time or queue time

whereas in an AIS based AISBA model the presence of an attacker is detected and confirmed

thereby the packet will be forwarded via a routing path that does not contain the PST

1. Source Node broadcasts RREQ

(a) Nodesrc broadcasts RREQ

(b) Nodeintermed sends RREP

2. Compute Compatiblity(Nodesrc,Nodeintermed,Packet P)

(a) Nodesrc computes compatibility of Nodeintermed;

(b) Nodesrcsends packet

(c) Nodesrc does not receive Ack;

3. SendPAMP(Nodesrc,Nodeintermed,PAMPpacket PAMPp)

(a) Nodesrc sends PAMP,

(b) Nodeintermed acknowledges PAMP

(c) The presence of attacker detected

4. Compute Effective energy of intermediate node

(a) EEnode(intermed) is computed by Source ,

(b) if EEnode(intermed) >= Nodesrc, the presence of attacker is confirmed.

(c) Isolate the attacker node

attacker. Hence the average end-to-end delay will be slightly higher for AISBA.

Table 5-2 Simulated Parameters

Simulator Ns-3.23

Mobility Model Random waypoint

Simulation Time 500s

Number of nodes 10-50

Traffic Type UDP

Network Area 600m*600m

Mobility 6 m/s

Pause Time 5s

Transmission Range 50m

As can be seen in Figure 5-7, a PST attack causes packet loss to increase as the number of

nodes increase whereas with the AIS based algorithm the packet loss is lower due to the

proposed security improvement.

Figure 5-4 Effective Energy v/s Hop Count

Figure 5-5 Compatibility v/s Cost

Figure 5-6 E2E v/s Number of nodes

Figure 5-7 PST Attack-Packer loss v/s Number of nodes

5.5 Summary

The novel routing attack presented in this chapter modified the packet storage time in a node

buffer to prolong packet delivery and route stale packets in the network. The AIS algorithm

developed used three stages to detect and confirm the presence of a PST attacker.

Chapter 6 SELFISH NODE REHABILITATION

6.1 Overview

This chapter provides a description of the Grudger Artificial Immune System framework

(GrAIS) in response to Research Question 4. Selfish nodes limit the effectiveness of MANET

and it is reasonable in certain situations to adopt an approach that isolates selfish nodes as

they’re identified or to encourage selfish nodes to switch their behaviour before isolation is

imposed. MANET is a communications network that can be utilized for disaster management,

military and rescue operations. In each of these scenarios, for MANET to be effective there is

a need to limit the number of selfish nodes.

MANET effectiveness is increased when the nodes within the network are active participants,

thereby reducing the amount of traffic that is resent due to nodes failing to relay traffic as

requested.

This chapter is divided into three sections. Section 6.2 describes the proposed GrAIS. In

Section 6.3, simulation results for scenarios with different mission critical workloads are

presented. Lastly, Section 6.4 concludes the chapter.

6.2 Modeling of Grudger Artificial Immune System Algorithm

The motivation for the GrAIS framework stems from the observation that it is not beneficial

to the operation of a MANET to ignore or isolate selfish nodes. Initially all nodes in the

network have the same classification and over time some nodes tend to become selfish. One

of the reasons for nodes to become selfish is due to the relay load that the node may have

experienced. Traffic workload has a direct effect on energy consumption and as energy

reduces nodes can become selfish for various reasons, including observation of the number

and state of neighbouring nodes. The good nodes tend to overlook selfish nodes and continue

to render service to the selfish nodes irrespective of any service in return. The proposal is that

for high traffic volumes the routing task should be carried out by all nodes, including selfish

nodes. In Section 2.4 a model is presented that provided the motivation for the formulation of

the GrAIS.

The routing model proposed in this paper categorizes good nodes into a sucker group, cheat

nodes into selfish and DC nodes into a grudger group. In the proposed GrAIS model as seen

in Figure. 6-1, each node is modelled as a Grudger Dendritic Cell (gDC). This DC node is

analogous to the HIS DCs. In HIS, DCs are the first line of defence. The initiator gDC node

sends a Route Request to the nodes in the network. The nodes that already have a path to the

destination will send back a Route Reply. Upon receipt of the Route Reply, the source gDC

node calculates the Pcom of those nodes from which a Route Reply was obtained. The packet

is sent to the node that responded with the highest Pcom value.

During this phase, the source node expects nodes to ACK packet receipt. In the case of a

selfish node that does not send an ACK, a high priority PAMP signal is raised by the gDC

node and the initiator node is also notified. The flow chart of the GrAis model can be seen in

Figure 6-2.The selfish node is forced to acknowledge receipt of high priority PAMP signal as

this high priority packet overwrites the selfish node’s buffer and there upon the packet signal

will be transmitted as high priority by the previous gDC node.

In a similar fashion the gDC nodes, when they do not receive a response from the

intermediate selfish node, inform the sender node and raises the high priority PAMP signal to

validate the presence or absence of a selfish node. In our AIS based trust model, three trust

signals are proposed:

 Safe Signal 1 (SS1) - This is generated upon receipt of Route Reply

 Safe Signal 2 (SS2) - This is generated upon receipt of an ACK

 PAMP - This signal helps validate selfish node behaviour. PAMP activates the immune

response, thereby protecting the host from infections in HIS. In a similar way PAMP,

being a high priority signal, overwrites the node buffer, and the selfish node will

acknowledge receipt of the PAMP.

The trust value
 (t) is evaluated by Node i towards Node j at time t, TP is the trust

purpose.
 (t) is represented as a real number in the range [0, 1], where 1 indicates unselfish

nodes, [0.5-0.8] indicates route error discrepancies and [< 0.5] indicates a selfish behaviour.

 (6-1)

Where w1, w2, w3 are the weights related to the trust components, with w1+w2+w3=1. Instead

of assigning individual weights to each of the trust elements a priority signal, PAMP, is used

and a signal, SAFE, to indicate the nodes are behaving correctly. The weight of the PAMP

priority signal is shown by wPAMP. The weight of the safe signal is shown by wSAFE. Equation

(6-1) can be rewritten as:

 (6-2)

Figure 6-1 GrAIS model

The interaction types between nodes are shown along with the incorporation of the immune response trust

model

A sliding window transmission approach is used to decrease the effect of conditions arising

out of a network that could affect the trust calculation. A timing window t is used to

determine the number of successful and unsuccessful packets sent between nodes.

Let us consider a scenario where Node a evaluates Node b based on its behaviour; thereby

making Node a trustor and Node b the trustee. Node c sits beyond Node b. The trust

relationship between nodes a, b and c is given by (a, b) = (a, b): (b, c).

Let the Trust Purpose be defined as “the node should be good.” The trust between Node a and

Node b will be direct therefore it’s a functional level of trust whereas the trust between Node

a and Node c will be indirect as well as an exponential decay factor of trust is also considered

therefore it’s a referral level [24] of trust.

 (6-3)

Figure 6-2 GrAIS model event flow

To compute
 , consider the number of interactions between nodes a, b and c over the

maximum possible number of interactions that could occur with any neighbor node during

the interval [0, t]. The hop count measure calculated by Pcom and the Effective Energy of each

node (EEnode) is detrimental during the interaction between nodes in the GrAIS model. In this

approach, the following categories of interaction with regards to an unselfish node, given that

Node a is the initiating node is considered:

 Sending Request

 Receiving Reply

 Selection of node based on highest value of Pcom

 Send Packet

 If no ACK, send PAMP

 If PAMP received, classify node as selfish node.

 gDC node will resend packet to selfish node

Pcom is an important factor while evaluating the trust purpose (
) between any two

nodes as the packet will be sent to the node that responds with a route reply and highest Pcom

value. In this approach
 between any two neighbouring nodes is computed by taking

into account the number of communications between nodes a and b over the maximum

possible number of interactions that could occur with any neighbour node during the interval

[0,t]. The trust purpose for Safe Signal 1 is computed by taking the ratio of the total number

of route replies (NRREP) received with the total number of route requests sent (NRREQ). The trust

purpose for Safe Signal 2 is computed by taking the ratio of the total number of

acknowledgement packets (NACK) received by the sender with the route reply packets sent by

the destination/intermediate (NRREP) node. The trust purpose for the PAMP signal is computed

by taking the ratio of the total number of PAMP sent for every route reply received by the

sender and no acknowledgement sent by the destination/neighbour node.

 [

] (6-4)

 [

] (6-5)

 [

] (6-6)

The intermediate node informs the source node of a neighbouring node that appears to be

selfish. The source node sends a PAMP signal to overwrite the selfish node buffer and this

selfish node is added to a blacklist to prevent it being used in future communications if it

does not respond to the PAMP signal. The high priority PAMP signal plays a vital role in this

process. The "Activate DC" mode that is switched on due to a selfish node being identified

sets in motion the response process. The effect of the PAMP signal in the presence of selfish

nodes and its impact on packet loss ratio can be seen in Chapter 4. As the PAMP works to

deal with the selfish nodes, the packet loss ratio is reduced.

The source node sends a PAMP signal, PAMPsend and each node should acknowledge receipt

by sending back a PAMP receive signal, PAMPrecv. The selfish nodes that do not formerly

acknowledge receipt of the packet will be forced to respond with a PAMP receive signal,

PAMPrecv, as the PAMP signal is a high priority message and it overwrites the node buffer.

 (t): Measures the number of times any intermediate (trustee) node generated a

route reply. Here a settlor node evaluates the unselfish and honest behavior of the

trustee node. This trust component is computed based on the number of interactions

between the trustor and trustee node.

 (t): The trust element is evaluated when the trustee node sends back an

acknowledgment of receipt of a packet.

 (t): Analysed by observing if the intermediate node received no

acknowledgement to the data packet but it did send a route reply earlier and then the PAMP

signal is sent to validate selfish node behaviour.

The GrAIS utilizes the concept of a Price of Anarchy [9] for load calculation. Consider that

there are N nodes in the network. In the GrAIS model, nodes that perform a routing task

employ a trust purpose
 between any two nodes a, b. The EEnode of b and Trust value of

Node b as observed by Node a is taken into consideration. Therefore, the Workload (WL) in a

routing task undertaken by any Node b is

 (6-7)

The workload is dependent on the energy of a node or inversely proportional to node energy

and trust. (6-7) shows that as workload increases the nodes expend more energy to carry out

networking tasks. As the node energy consumption increases the trust value could reduce.

6.3 Simulation results and analysis

The simulations were carried out using NS-3 and MATLAB. Energy-aware workload [13]

distribution is the most efficient approach to reduce energy consumption and stimulate

cooperation of selfish nodes. In the traditional MANET applications, the workloads are very

simple and wireless communication is usually the most energy intensive process. However,

as the MANET applications become more complex, it becomes necessary to efficiently

distribute the workloads by considering both the trust, hop count and communication energy

consumption. In this research, workload in terms of the trust metric and energy consumption

during packet transmission was considered. The workload in terms of packet transmission

was considered to reveal the tradeoff between sucker (good) nodes and selfish (cheat) nodes.

Table 6-1 Simulated Parameters

Simulator Ns-3.23

Mobility Model Random waypoint

Simulation Time 1000s

Number of selfish nodes 10-50

Number of nodes 150

Traffic Type UDP

Network Area 300m*1500m

Packet size 130 bytes

Mobility 20 m/s

Transmission Range 50m

In the simulations, there are three workload scenarios explored with the packet delivery

workload increasing from Workload1 to Workload3.

In Figure 6-3 and Figure 6-4, it can be observed that initially good nodes maintain trust while

the selfish nodes choose to conserve their energy. As the workload is initially light and all

nodes have more energy, the unselfish characteristic amongst participating nodes becomes a

crucial factor when determining trust. The prominent drop in trust amongst the good nodes

was observed at t = 300 min when the good nodes had depleted their energy to a point where

they began to look for alternative pathways that would conserve the energy of known good

nodes.

The GrAis model performs better as time progresses due to selfish nodes being forced to co-

operate. The selfish node maintains trust for a longer t as it would have conserved energy to

this point.

Figure 6-3 Trust values for Workload1

In Figure 6-4, the trend is similar to Figure 6-3, except that the time during which good nodes

start to show a dip in trust occurs earlier than when it occurred in the GrAIS model. This is

due to the workload increase from Workload1 to Workload2 where the energy consumption

increases and good nodes diminish their energy store at a corresponding rate whilst cheat

nodes act to retain energy.

The GrAIS model facilitates traffic flows using selfish nodes and as a result the GrAIS model

can function more effectively as time progresses when compared to a model that relies upon

good nodes to transfer traffic flows.

In Figure 6-5, a new trend is seen with the cheat nodes acting to conserve energy earlier due

to the higher workload and this result in a lack of cooperation from the point where trust dips.

The GrAIS model approaches the good node model by forcing the selfish nodes to cooperate

with the help of the high priority PAMP signal.

Figure 6-4 Trust values for Workload2

Figure 6-5 Trust values for Workload3

6.4 Summary

The GrAIS model utilizes the principles of AIS and probability to create a model

incorporating good and selfish nodes to combat selfishness in MANET. The results obtained

from the simulations have shown that the GrAIS model outcomes are an improvement over

models that ignore or isolate selfish nodes as time progresses in spite of increasing workload.

A balance between energy utilization, due to good nodes transferring traffic, and energy

conservation, due to selfish nodes refusing to transfer traffic, has been achieved by forcing

selfish nodes to participate at an appropriate point in the MANET life cycle. A MANET that

combines selfishness and unselfishness can be shown to be beneficial when resources,

particularly energy, become limited. As future work, a more complex model could be

developed exclusively for higher workloads by considering the stability of the GrAIS model

over a longer time interval.

Chapter 7 AIS PAIN MODELLING

7.1 Overview

This chapter provides an investigation of AIS pain modelling in response to Research

Question 5. The most prominent characteristic of most systems is self-preservation, which is

the instinct with which an animal can fight against pain. Most pain is a discomfort but can

reach a level that reflects the degree of injury or reflective concern about an event. This

discomfort in a MANET can be modelled with the help of key parameters like trust, energy

and workload. A MANET node behaves automatically like a sensory node in terms of

behavioural patterns like communication and information gathering with other network

nodes.

7.2 Modeling Trust for Pain Abstraction

To model the Trust Metric the trust amongst nodes is considered, with the nodes modelled as

DCs. When the DC nodes do not receive a response from a neighbouring node they inform

the source node and the source node sends the high priority PAMP signal to validate the

presence or absence of pain. In the AIS based trust model, four signals for trust purposes are

considered:

 Secure Signal 1 (SC1) - This signal is to confirm the receipt of Route Reply.

 Secure Signal 2 (SC2) - This signal is to confirm acknowledgement of data packet.

 Identifier Signal (IS) - This signal is initiated by the intermediate DC node when its

immediate neighbour node is the cause of pain in the network. This signal has priority

lesser than PAMP as it is the predecessor of PAMP. The signal is produced in the event

of route error.

 PAMP - This signal helps confirm the presence of selfish nodes. PAMP is a high

priority signal, overwrites the node buffer, and the selfish node (the node that caused

pain in the network) will acknowledge receipt of PAMP. This signal is initiated by the

source DC node.

The trust value
 (t) is evaluated by Node i towards Node j at time t, TP is the trust

purpose.
 (t) is represented as a real number in range of [0, 1] where 1 indicates good

nodes, [0.5-0.8] indicates route error/selfishness and [< 0.5] indicates pain and inflammation.

 (7-1)

Where , are the weights related to the trust components, with + + + =1.

Instead of assigning individual weights to each of the trust elements a priority signal, PAMP,

is used and a signal, SECURE, to indicate the nodes are behaving correctly. The weight of

the PAMP priority signal is shown by . IS is used to identify route error. The weight of

the IS is given by .The weight of the secure signals are shown by and .

Equation (7-1) can be rewritten as:

(7-2)

The values for the weights are chosen to maximize the performance of the Trust model. The

PAMP signal is assigned the highest weight Where

The calculation of trust at each node is an indicator of the confidence in node reliability. The

trust associated with a node should not be affected by network traffic, congestion and delay.

Let us consider Node x to evaluate Node y based on its past and present behaviour; thereby

making Node x the trustor and Node y the trustee.

 (7-3)

Let the Trust Purpose be defined as the node should be “unselfish.” To compute
 take

into account the number of communications between nodes x and y over the maximum

possible number of interactions that could occur with any neighbour node during the interval

[0, t]. The trust value for Secure Signal1 is the ratio of the total number of route replies (NRP)

received for every total number of route requests sent (NRQ). The trust value for Secure Signal

2 is the ratio of the total number of acknowledgement packets received for every

route reply received (.The trust value for the IS is the ratio of the total number of ISs

sent for every route reply received and no acknowledgement sent. The trust value for the

PAMP signal is the total number of PAMP sent for every IS sent.

 [

] (7-4)

 [

] (7-5)

 [

] (7-6)

The IS is used to identify route error or selfish nodes. When the IS is sent, if there is a

genuine case of route error there will not be acknowledgement of the IS and this will be

identified as a possible cause of route error. The intermediate node will inform the source

node, which in turn sends a high priority PAMP and this signal overwrites the selfish node

buffer and for future communication scenarios this selfish node could be blacklisted.

In the case of a selfish node, it will not send a response. It is, at this juncture, the high priority

PAMP signal that plays a vital role. The node that did not receive a response from its

neighbour node informs the source node, which in turn leads to "Activate DC" mode being

switched on.

The initiator node then sends a PAMP signal, PAMPsend and each node is required to

acknowledge receipt by sending back a PAMP receive signal, PAMPrecv. The selfish node

that did not formerly acknowledge receipt of the packet will be forced to respond with a

PAMPrecv, as the PAMP signal is a high priority message and it overwrites the node buffer.

Once Node x obtains
 for TP=Secure Signal1, Secure Signal2, Danger Signal, PAMP

then is calculated based on (7-2).

 (t): This measures the number of times any intermediate (trustee) node

generated a route reply. Here a settlor node evaluates the unselfish and honest

behavior of the trustee node. This trust component is computed based on the number

of interactions between the trustor and trustee node.

 (t): This trust element is evaluated when the trustee node sends back an

acknowledgment of receipt of a packet.

 (t): This signal is sent by the intermediate DC node. In this case, the analysis is

done by snooping on the packet transmission activity of the trustee node.

 (t): This is analysed by observing if the node was in pain and then then the PAMP

signal is sent to validate selfish behaviour in a node.

7.3 Modeling the Pain Reduction Artificial Immune System

Algorithm

The basic principle involved in pain modelling is understanding pain as an output of the brain

that is produced as a resultant of the body tissue in danger and the need to initiate an action.

Pain is never straightforward although it appears to be so. In the Pain Reduction based AIS

algorithm, the nodes are analogous to cells in the HIS, and lack of cooperation by any node

inflicts pain to the network. There are selfish MANET nodes that appear reluctant to forward

packets for other nodes as they do not want to drain their energy.

In this research pain in the network is caused due to selfish nodes as seen in Figure 7-1.

Energy consumption is a crucial factor in MANET. Four possible energy consumption states

are identified: Sending state (RREQ), Receiving state (RREP), selfish and failed. The first

two states are when the node is transmitting and receiving packets respectively, the selfish

state has greater effect on energy consumption than the transmitting and receiving states as

the node has elected to be selfish to preserve its energy. Nominally the energy cost of a

packet is proportional to the packet size. The work presented in [23] identifies an energy

consumption model that incorporates the cost of the receiving and sending traffic. The

analysis in this approach gives a basis of comparison of the overhead associated with routing

as well as data traffic.

The Energy Cost (Ecost) associated with each packet at a node is represented as the total of the

incremental costs (c) proportional to the packet size (s) and cost (d) associated with channel

acquisition.

 (7-7)

Where NS is the number of selfish nodes and NT is the number of network nodes. When

inflammation occurs, chemicals from the body's white blood cells are released into the blood

or affected tissues to protect the body from foreign substances. This release of chemicals

increases the blood flow to the area of injury or infection, and may result in skin coloration

and warmth. Some of the chemicals cause a fluid leak into the tissues, resulting in swelling.

This protective process may stimulate nerves and cause pain.

Figure 7-1 Pain and Inflammation Conceptualization in MANET

In MANET during node interaction, the nodes are analogous to DCs in the HIS, when the

nodes are stressed there should be a solution to overcome the pain and resulting

inflammation. Inflammation (Infl) is initiated upon tissue injury and sets off a cascade of

http://www.webmd.com/a-to-z-guides/rm-quiz-blood-basics
http://www.webmd.com/pain-management/guide/cause-chronic-pain

biochemical reactions that prime the nervous system for pain sensing. Therefore, taking steps

to ease inflammation is an effective means of interfering with the process of pain

sensitization. Similarly, when there is a decrease in the trust metric an increase in

inflammation occurs which indicates the network node is in pain. (7-8) shows the

Inflammation-trust relation in AIS based MANET.

 (7-8)

Pain was modelled using two categories: Pba and Paa. Firstly, the nodes are placed in an

environment with selfish nodes, when a node interacts with good nodes the Secure Signals

1&2 are produced due to receipt of Route Reply and acknowledgment of the data packet. In

the event of a good node communicating with a selfish node there will neither be receipt of

Route Reply nor acknowledgment and during this time the good node is in pain as it affects

the performance of the network as well.

Figure 7-2 Proposed PrAIS algorithm flowchart

To identify the presence of a selfish node, the PAMP signal is sent. If the node is selfish it is

forced to acknowledge receipt of PAMP. On the other hand, if the node is not able to send a

Route Reply or acknowledgment, DS is sent to identify the route error, since due to route

error the node will not be able to send a reply nor acknowledgment and therefore the

preceding nodes are informed of the route error. The flowchart of the proposed PrAIS can be

seen in Figure. 7-2. The pain equations Pba and Paa can be modelled as

 (

) (7-9)

Where Trust Purpose =SC1, SC2 in Pba

 (

) (7-10)

Where Trust Purpose =IS, PAMP in Paa. The Pain Reduction Equation (PRE) (7-11) forms the

crux of the PrAIS algorithm as it gives the change in pain after sending the PAMP and DS

signals so that the presence of selfish node or route error can be identified and validated.

 (7-11)

7.4 Simulation and Results

The ns-3.23 simulator was used to detect and confirm the presence of a PST attacker using

the AODV protocol. Extensive simulations were carried out using NS-3.23 to verify the

mathematical formulation presented. Pause time is used to describe the interval between the

mobility of nodes.By having a pause time of infiniteness implies that the node is stationary

and by having a pause time of zero implies that the node is highly mobile.Therefore with the

help of pause time it is possible to achieve a dynamicity of either high/medium or fixed

nodes.The simulation parameters used are shown in Table 7-1. Selfish nodes were also

introduced in the simulation.

As can be seen in Figure 7-3, as the trust reduces in the network, the Inflammation on the

node increases. As delays increase, node mobility decreases which causes uncertainty for any

two nodes to come in direct contact and create trust. Such a scenario that reduces mobility

causes decreasing trust and increasing inflammation. The network is subjected to selfish

nodes and in AODV, the packet delivery ratio will reduce as there is no antidote to curb

selfishness, whereas in PrAIS the presence of IS and PAMP alleviates pain thereby achieving

an improved packet delivery ratio, Figure.7-4.

The average end-to-end delay is the average time between data packets sent out from the

source node and received at the destination node. The end-to-end delay decreases for PrAIS

as shown in Figure 7-.5 as the selfish nodes are avoided due to PAMP signals whereas the

routing path taken by AODV will have selfish nodes thereby increasing the packet delivery

delay.

Figure 7-3 Inflammation v/s Pause time

As can be seen in Figure 7-6, the routing overhead is the ratio of route discovery packets to

the data packets sent by source. The routing overhead for PrAIS is lower as it chooses a route

avoiding selfish nodes resulting in less need to reconstruct routes during data transfer

whereas in AODV the need to initiate route discovery is higher, as the effect of selfish nodes

cannot be alleviated.

Table 7-1 Simulated Parameters

Simulator Ns-3.23

Mobility Model Random waypoint

Simulation Time 900s

Number of nodes 10-50

Traffic Type UDP

Network Area 300m*1500m

Mobility 20 m/s

Pause Time 0-500 s

Transmission Range 50m

Figure 7-4 Packet delivery ratio v/s Pause time

Figure 7-5 E2E v/s Pause time

Figure 7-6 Routing overhead v/s Pause time

7.5 Summary

In this chapter, the research introduced a new approach to dealing with MANET pain, which

is a HIS concept applied to MANET using AIS techniques. The factors used to identify pain

in MANET were Energy and Trust. MANET pain was alleviated with use of the novel PrAIS

algorithm.

Chapter 8 CONCLUSION AND FUTURE WORK

The research successfully answered the research questions and the results presented in this

thesis make a significant contribution to the body of knowledge in the application of AIS to

improve MANET security and performance. A new and novel algorithm has been presented

that improves MANET security whilst a variant improves performance by reducing the effect

of selfish nodes.

A review of the literature and a thematic classification of various AIS algorithms are

provided in Chapter 2. A classification is proposed according to the challenges that AIS

based MANET schemes might attempt to solve, thus providing a more efficient

understanding of the proposed solution. In addition, the security attacks in MANET have also

been detailed thereby providing an understanding of the reason behind the investigation of a

new routing attack in MANET.

In the current state of the art the nodes are in a protected state or human intervention is

required when facing security threats. These situations are impractical in a MANET which is

known for dynamic topology and node mobility. Therefore, a new and innovative approach is

necessary which can overcome the challenges of the existing MANET design and rectify the

drawbacks of the current state of the art. Integration of an AIS scheme in MANET packet

transmission to create AIS based routing (Translate AIS signals to MANET signals) has the

potential to be a valuable framework.

A model of an AIS based security algorithm was developed where each node is modelled as a

DC that initiates immune responses. Each DC node monitors the routing process and

generates signals indicating the presence or absence of danger.

AISBA was designed with AIS signals to provide a secure routing algorithm to detect selfish

nodes. This was inspired from the HIS as the DCs in the Human body provide a robust

defence. To guarantee reliability and minimizing end-to-end latency, Trust metrics have been

modelled and utilized to provide secure routing for MANET nodes. Extensive simulations

demonstrate that AISBA yields a significant improvement in detection rate and packet

delivery ratio.

A novel routing attack, PST, was conceptualised and modelled in a MANET. In PST, the

attacker modifies the storage time of the packet so that it does not reach the intended

destination nodes. Utilizing AIS signals the source of the PST attack was successfully

identified. The potential for PST to be detrimental to MANET is considerable and the

solution to this attack has been presented with an analysis that provides evidence that the

operation of MANETs is susceptible to malicious attack without an improved security

regime.

The GrAIS was developed in response to the loss of performance found when selfish nodes

fail to participate in MANET opertion. A variant of the AISBA, GrAIS, takes advantage of

the idea of a Dawkins model of birds and transforms the issue of selfish nodes non-

cooperation by stimulating them to cooperate by utilizing the concept of increasing workload.

Simulation results show that GrAIS yields significant improvements in the efficiency of

packet delivery.

The concept of pain was introduced and modelled for a MANET. The PrAIS is a new and

innovative approach to identifying and dealing with MANET pain, which is analogous to

what is found in the HIS. PrAIS applies a Pain before action (Pba) and Pain after action (Paa)

based Pain Reduction approach, which uses the AIS signals, and trust among the nodes.

Extensive simulations have demonstrated the efficiency and effectiveness of the proposed

approach.

There are considerable opportunities for future work in the area of applying HIS concepts to

AIS applied solutions to evolving issues with MANET. In MANET pain could, for example,

be broadened to incorporate other parameters apart from trust and energy. The AISBA

framework led to the formation of GrAIS and PrAIS algorithm. Similarly, the AISBA

framerwork could be broadened to pave the way for other AIS algorithms that focus on

improving MANET security.

BIBLIOGRAPHY

[1] F. Gu, J. Greensmith, and U. Aickelin, "The dendritic cell algorithm for intrusion

detection," Bio-Inspired Communications and Networking, IGI Global, pp. 84-102,

2011.

[2] Loo J.Mauri JL, Ortiz JH. Mobile Ad hoc networks: current status and future trend.

1st Edn, CRC Press Publisher.,ISBN-10: 1439856508, pp: 538, 2012.

[3] Giordano, S. "Mobile ad hoc networks." Handbook of wireless networks and mobile

computing: 325-346.2002,

[4] Jawandhiya Pradip M ,Ghonge, Mangesh ,M Ali, MS Deshpande, "A survey of

mobile ad hoc network attacks," International Journal of Engineering Science and

Technology 2(9): 4063-4071, 2010.

[5] Adjih, C., et al. “Attacks against OLSR: Distributed key management for security”.

2nd OLSR Interop and Workshop.2005.

[6] Goyal, P., et al. “Manet: vulnerabilities, challenges, attacks, application.” IJCEM

International Journal of Computational Engineering & Management 11(2011): pp 32-

37.2011.

[7] Bala, A., et al. “Performance analysis of MANET under blackhole attack.” First

International Conference on Networks and Communications, NETCOM'09,

IEEE.2009, pp. 141-145.

[8] Mistry, N., et al. “Improving AODV protocol against blackhole attacks.” international

multiconference of engineers and computer scientists.2010,Vol.2, March 2010.

[9] Bandyopadhyay, A., et al. “A simulation analysis of flooding attack in MANET using

NS-3.” Wireless Communication, Vehicular Technology, Information Theory and

Aerospace & Electronic Systems Technology (Wireless VITAE), 2nd International

Conference on, IEEE.2011.

[10] Yi, P., et al. "A new routing attack in mobile ad hoc networks." International Journal

of Information Technology ,vol.11no.2: pp 83-94.2005.

[11] Mahajan, V., et al. “Analysis of wormhole intrusion attacks in MANETS”. Military

Communications Conference . MILCOM . IEEE, November 2008,pp. 1-7.

[12] Abdelhaq, M., et al. Using dendritic cell algorithm to detect the resource consumption

attack over MANET. 181 CCIS: pp.429-442.2011.

[13] Karlsson, L. S. Dooley, and G. Pulkkis, "A new MANET wormhole detection

algorithm based on traversal time and hop count analysis," Sensors, vol. 11, pp.

11122-11140, 2011.

[14] R. Maulik and N. Chaki, "A study on wormhole attacks in MANET," International

Journal of Computer Information Systems and Industrial Management Applications

ISSN, pp. 2150-7988, 2011.

[15] N. Meghanathan, "Stability and hop count of node-disjoint and link-disjoint multi-

path routes in ad hoc networks," in Proceedings of the 3
rd

 International IEEE

Conference on Wireless and Mobile Computing, Networking and Communications,

2007. WiMOB 2007. pp. 42-42.

[16] K. Sridhar and M. C. Chan, "Stability and hop-count based approach for route

computation in MANET," in Computer Communications and Networks, 2005.

ICCCN 2005. Proceedings. 14th International Conference on, 2005, pp. 25-31.

[17] A. Lindgren, A. Doria, and O. Schele´n, “Probabilistic Routing in Intermittently

Connected Networks,” Proc. First Int’l Workshop Service Assurance with Partial and

Intermittent Resources (SAPIR ’04), pp. 239-254, Aug. 2004.

[18] S.-M. Jen, C.-S. Laih, and W.-C. Kuo, "A hop-count analysis scheme for avoiding

wormhole attacks in MANET," Sensors, vol. 9, pp. 5022-5039, 2009.

[19] W. Hsu and A. Helmy, “On Nodal Encounter Patterns in Wireless LAN Traces,”

Proc. Fourth Int’l Symp. Modeling and Optimization in Mobile, Ad Hoc, and

Wireless Networks (WiOpt ’06), pp. 1-10, Apr.2006.

[20] W.-J. Hsu and A. Helmy, ”Impact: Investigation of Mobile-User Patterns across

University Campuses Using WLAN Trace Analysis,“ Proc. IEEE INFOCOM, Aug.

2005.

[21] E. M. Daly and M. Haahr, "Social network analysis for information flow in

disconnected delay-tolerant MANETs," Mobile Computing, IEEE Transactions on,

vol. 8, pp. 606-621, 2009.

[22] J. Burgess, B. Gallagher, D. Jensen, and B.N. Levine, “Maxprop: Routing for

Vehicle-Based Disruption-Tolerant Networking,”Proc. IEEE INFOCOM, Mar. 2006.

[23] K. Tan, Q. Zhang, and W. Zhu, “Shortest Path Routing in Partially Connected Ad Hoc

Networks,” Proc. IEEE Global Telecomm. Conf.(GLOBECOM ’03), vol. 2, pp. 1038-

1042, Dec. 2003.

[24] A. Khelil, P.J. Marron, and K. Rothermel, “Contact-Based MobilityMetrics for Delay-

Tolerant Ad Hoc Networking,” Proc. 13th IEEE Int’l Symp. Modeling, Analysis, and

Simulation of Computer and Telecomm. Systems (MASCOTS ’05) pp. 435-444,

2005.

[25] M. Grossglauser and M. Vetterli, “Locating Nodes with Ease: Last Encounter Routing

in Ad Hoc Networks through Mobility Diffusion,” Proc. IEEE INFOCOM, vol. 3, pp.

1954-1964, 2003.

[26] J. Ghosh, H.Q. Ngo, and C. Qiao, “Mobility Profile Based Routing within

Intermittently Connected Mobile Ad Hoc Networks (ICMAN),” Proc. Int’l Conf.

Wireless,pp. 551-556, 2006.

[27] J. Lebrun, C.-N. Chuah, D. Ghosal, and M. Zhang, “Knowledge-Based Opportunistic

Forwarding in Vehicular Wireless Ad Hoc Networks,” Proc. IEEE 61st Conf.

Vehicular Technology (VTC-Spring’05), vol. 4, pp. 2289-2293, May 2005

[28] J. Leguay, T. Friedman, and V. Conan, “Evaluating Mobility Pattern Space Routing

for DTNs,” Proc. IEEE INFOCOM, Apr. 2006.

[29] V. Mahajan, M. Natu, and A. Sethi, "Analysis of wormhole intrusion attacks in

MANETS," in Military Communications Conference, 2008. MILCOM 2008. IEEE,

2008, pp. 1-7.

[30] S. Choi, D. Kim, D. Lee, J. Jung. “WAP: Wormhole Attack Prevention Algorithm in

Mobile Ad Hoc Networks”. In International Conference on Sensor Networks,

Ubiquitous and Trustworthy Computing, pp. 343-348, 2008.

[31] C. Perkins, E. Belding-Royer, and S. Das, "Ad hoc on-demand distance vector

(AODV) routing," 2070-1721, 2003.

[32] D. Vivian, E.A.P. Alchieri, C.B. Westphall. “Evaluation of QoS Metrics in Ad Hoc

Networks with the use of Secure Routing Protocols”. In Network Operations and

Management Symposium, pp. 1-14, 2006.

[33] T. Clausen and P. Jacquet, "Optimized link state routing protocol (OLSR)," 2070-

1721, 2003.

[34] E. M. Royer and C.-K. Toh, "A review of current routing protocols for ad hoc mobile

wireless networks," IEEE personal communications, vol. 6, pp. 46-55, 1999.

[35] S. Marti, T. J. Giuli, K. Lai, and M. Baker, "Mitigating routing misbehavior in mobile

ad hoc networks," in Proceedings of the 6th annual international conference on

Mobile computing and networking, 2000, pp. 255-265.

[36] Y. Yoo and D. P. Agrawal, "Why does it pay to be selfish in a MANET?," IEEE

Wireless Communications, vol. 13, pp. 87-97, 2006.

[37] D. G. Kampitaki, E. D. Karapistoli, and A. A. Economides, "Evaluating selfishness

impact on MANETs," in Telecommunications and Multimedia (TEMU), 2014

International Conference on, 2014, pp. 64-68.

[38] S. Buchegger and J.Y. Le Boudec, "Nodes bearing grudges: Towards routing security,

fairness, and robustness in mobile ad hoc networks," in Parallel, Distributed and

Network-based Processing, 2002. Proceedings. 10th Euromicro Workshop on, 2002,

pp. 403-410.

[39] S. Gupta, C. Nagpal, and C. Singla, "Impact of selfish node concentration in

MANETs," International Journal of Wireless & Mobile Networks (IJWMN) Vol, vol.

3, pp. 29-37, 2011.

[40] M. T. Tran and V. Simon, "Can altruism spare energy in ad hoc networking?" in

Proceedings of the 9th International Conference on Advances in Mobile Computing

and Multimedia, 2011, pp. 214-217.

[41] Maha Abdelhaq, Rosilah Hassan, Mahamod Ismail, Raed Alsaqour, Daud Israf

“Detecting Sleep Deprivation Attack over MANET Using a Danger Theory –Based

Algorithm” International Journal on New Computer Architectures and Their

Applications (IJNCAA) 1(3): pp. 534-541 The Society of Digital Information and

Wireless Communications, 2011 (ISSN: 2220-9085)

[42] Julie Greensmith University of Nottingham “The Dendritic Cell Algorithm” Thesis

submitted for the degree of Doctor of Philosophy

[43] S. Forrest, A.S. Perelson, L. Allen, R. Cherukuri, Self–nonself discrimination in a

computer, IEEE Symposium on Research in Security and Privacy, Los Alamitos,CA,

1994.

[44] J.D. Farmer, N.H. Packard, A.S. Perelson, The immune system, adaptation, and

machine learning, Physica D 22 (1986),pp. 187–204.

[45] Y. Ishida, Fully distributed diagnosis by PDP learning algorithm: towards immune

network PDP model, IEEE International Joint Conference on Neural Networks, San

Diego, USA, 1990.

[46] J. Timmis, M. Neal, J. Hunt, An artificial immune system for data analysis,

Biosystems 55 (2000) ,pp. 143–150

[47] L.N.D. Castro, F.J.V. Zuben, The clonal selection algorithm with engineering

applications, Genetic and Evolutionary Computation Conference (GECCO’00)–

Workshop Proceedings, Las Vegas, Nevada, USA, 2000.

[48] L.N.D. Castro, J. Timmis, Artificial Immune Systems: A New Computational

Intelligence Approach, Springer-Verlag, London, 2002.

[49] A.O. Tarakanov, V.A. Skormin, S.P. Sokolova, Immunocomputing: Principles and

Applications, Springer, New York, 2003.

[50] Y. Ishida, Immunity-based Systems: A Design Perspective,Springer, 2004.

[51] D. Dasgupta, An overview of artificial immune systems in: D.Dasgupta

(Ed.),Artificial Immune Systems and Their Applications, Springer-Verlag, 1998, pp.

3–19.

[52] G. Levy, Where numerics matter: matter: an introduction to quasi-random numbers,

Financial Engineering News (2002).

[53] X.Z. Gao, S.J. Ovaska, X. Wang, Genetic algorithms-based detector generation in

negative selection algorithm, in: 2006 IEEE Mountain Workshop on Adaptive and

Learning Systems, 2006.

[54] W. Ma, D. Tran, D. Sharma, Negative selection with antigen feedback in intrusion

detection, in: 7th international conference on Artificial Immune Systems, Phuket,

Thailand, 2008.

[55] B. Caldas, M. Pita, F. Buarque, How to obtain appropriate executive decisions using

artificial immunologic systems, in: 6th International Conference on Artificial Immune

Systems (ICARIS 2007), Santos, Brazil, 2007.

[56] A.J. Graaff, A.P. Engelbrecht, Optimized coverage of non-self with evolved

lymphocytes in an artificial immune system International Journal of Computational

Intelligence Research (IJCIR) 2 (2006) ,pp. 127–150.

[57] J.L.M. Amaral, J.F.M. Amaral, R. Tanscheit, Real-valued negative selection

algorithm with a Quasi-Monte Carlo genetic detector generation, in: 6th International

Conference on Artificial Immune Systems (ICARIS 2007), Santos, Brazil, 2007.

[58] U. Aickelin, S. Cayzer, The danger theory and its application to artificial immune

systems, in: The 1st International Conference on Artificial Immune Systems (ICARIS

2002), Canterbury, England, 2002.

[59] J Greensmith, U. Aickelin, J. Twycross, Detecting danger: applying a novel

immunological concept to intrusion detection systems, in: 6th International

Conference in Adaptive Computing in Design and Manufacture (ACDM 2004 Poster),

Bristol, UK, 2004.

[60] N.K. Jerne, Towards a network theory of the immune system, Annals of Immunology

(Paris) 125C (1974),pp.373–389.

[61] J.E. Hunt, D.E. Cooke, Learning using an artificial immune system, Journal of

Network and Computer Applications 19 (1996),pp. 189–212.

[62] J. Pacheco, J.F. Costa, The abstract immune system algorithm, in: 6th International

Conference on Unconventional Computation, Kingston, Canada, 2007.

[63] G.P. Coelho, F.J.V. Zuben, Omni-aiNet: an immune-inspired approach for

omnioptimization, in: 5th International Conference on Artificial Immune Systems

(ICARIS 2006), Oeiras, Portugal, 2006.

[64] G.P. Coelho,F.O.d. Franca, F.J.V. Zuben,A multi-objective multipopulation approach

for biclustering in:7th International Conference on Artificial Immune

Systems,Phuket,Thaileand 2008.

[65] T. Stibor, J. Timmis, An investigation on the compression quality of aiNet, in:IEEE

Symposium on Foundations of Computational Intelligence (FOCI 2007),2007.

[66] V. Cutello, G. Narzisi, G. Nicosia, and M. Pavone, "Clonal selection algorithms: a

comparative case study using effective mutation potentials," in International

Conference on Artificial Immune Systems, 2005, pp. 13-28.

[67] L.N.D. Castro, F.J.V. Zuben, Learning and optimization using the clonal selection

principle, IEEE Transactions on Evolutionary Computation, vol. 6, 2002, pp. 239–

251.

[68] A. Ciccazzo, P. Conca, G. Nicosia, and G. Stracquadanio, "An advanced clonal

selection algorithm with ad-hoc network-based hypermutation operators for synthesis

of topology and sizing of analog electrical circuits," in International Conference on

Artificial Immune Systems, 2008, pp. 60-70.

[69] R. Halavati, S.B. Shouraki, M.J. Heravi, B.J. Jashmi, An artificial immune system

with partially specified antibodies, in: 9th annual conference on Genetic and

evolutionary computation (GECCO 2007), London, England, 2007.

[70] P. May, J. Timmis, K. Mander, Immune and evolutionary approaches to software

mutation testing, in: 6th International Conference on Artificial Immune Systems

(ICARIS 2007), Santos, Brazil, 2007.

[71] W.O. Wilson, P. Birkin, U. Aickelin, Price trackers inspired by immune memory, in:

5th International Conference on Artificial Immune Systems (ICARIS 2006), Oeiras,

Portugal, 2006.

[72] P. Matzinger, The danger model: a renewed sense of self, Science 296 (2002),pp.

301–305.

[73] P. Bretscher, M. Cohn, A theory of self-non self discrimination, Science

169(1970),pp.1042–1049.

[74] U. Aickelin and S. Cayzer, "The danger theory and its application to artificial immune

systems," Browser Download This Paper, 2002.

[75] J. Greensmith, U. Aickelin, and J. Twycross, "Detecting danger: Applying a novel

immunological concept to intrusion detection systems," 2004.

[76] U. Aickelin and S. Cayzer, "The danger theory and its application to artificial immune

systems," Browser Download This Paper, 2002.

[77] C. E. Prieto, F. Nino, and G. Quintana, "A goalkeeper strategy in robot soccer based

on Danger Theory," in Evolutionary Computation, 2008. CEC 2008.(IEEE World

Congress on Computational Intelligence). IEEE Congress on, 2008, pp. 3443-3447.

[78] A. Secker, A. Freitas, and J. Timmis, "Towards a danger theory inspired artificial

immune system for web mining," Web Mining: Applications and Techniques, Idea

Group, pp. 145-168, 2005.

[79] R. M. Steinman and Z. A. Cohn, "Identification of a novel cell type in peripheral

lymphoid organs of mice," Journal of Experimental Medicine, vol. 137, pp. 1142-

1162, 1973.

[80] M. L. Kapsenberg, "Dendritic-cell control of pathogen-driven T-cell polarization,"

Nature Reviews Immunology, vol. 3, pp. 984-993, 2003.

[81] T. Jamie and U. Aickelin, "Towards a conceptual framework for innate immunity," in

3rd International Conference on Artificial Immune Systems (ICARIS 2004), Catania,

Italy, 2004.

[82] J. Greensmith and U. Aickelin, "The deterministic dendritic cell algorithm," in

International Conference on Artificial Immune Systems, 2008, pp. 291-302.

[83] J. Greensmith, U. Aickelin, and J. Twycross, "Articulation and clarification of the

dendritic cell algorithm," in International Conference on Artificial Immune Systems,

2006, pp. 404-417.

[84] F. Gu, J. Greensmith, and U. Aickelin, "Further exploration of the dendritic cell

algorithm: Antigen multiplier and time windows," in International Conference on

Artificial Immune Systems, 2008, pp. 142-153.

[85] H. G. Kayacik, A. N. Zincir-Heywood, and M. I. Heywood, "Selecting features for

intrusion detection: A feature relevance analysis on KDD 99 intrusion detection

datasets," in Proceedings of the third annual conference on privacy, security and trust,

2005.

[86] R. Oates, J. Greensmith, U. Aickelin, J. Garibaldi, and G. Kendall, "The application of

a dendritic cell algorithm to a robotic classifier," in Artificial Immune Systems, ed:

Springer, 2007, pp. 204-215.

[87] http://users.isy.liu.se/en/rt/andrecb/fidodido/doc/AriaReference.pdf

[88] J. Kim, P. Bentley, C. Wallenta, M. Ahmed, and S. Hailes, "Danger is ubiquitous:

Detecting malicious activities in sensor networks using the dendritic cell algorithm,"

in International Conference on Artificial Immune Systems, 2006, pp. 390-403.

http://users.isy.liu.se/en/rt/andrecb/fidodido/doc/AriaReference.pdf

[89] A. O. Bang and P. L. Ramteke, "Manet: history, challenges and applications,"

International Journal of Application or Innovation in Engineering & Management

(IJAIEM), vol. 2, pp. 249-251, 2013.

[90] R. Akbani, Defending against malicious nodes in closed MANETs through packet

authentication and a hybrid trust management system: The University of Texas at San

Antonio, 2009.

[91] Y. A. Mohamed and A. Abdullah, "I2MANET Security Logical Specification

Framework," Int. Arab J. Inf. Technol., vol. 9, pp. 495-503, 2012.

[92] F. Kargl, A. Geis, S. Schlott, and M. Weber, "Secure dynamic source routing," in

System Sciences, 2005. HICSS'05. Proceedings of the 38th Annual Hawaii

International Conference on, 2005, pp. 320c-320c.

[93] M. Abdelhaq, R. Hassan, M. Ismail, and D. Israf, "Detecting resource consumption

attack over MANET using an artificial immune algorithm," Research Journal of

Applied Sciences, Engineering and Technology, vol. 3, pp. 1026-1033, 2011.

[94] S. Kumari and M. Shrivastava, "Secure DSR protocol in MANET using energy

efficient intrusion detection system," International Journal, vol. 1, 2012.

[95] P. Goyal, V. Parmar, and R. Rishi, "Manet: vulnerabilities, challenges, attacks,

application," IJCEM International Journal of Computational Engineering &

Management, vol. 11, pp. 32-37, 2011.

[96] S. Sarafijanović and J.-Y. Le Boudec, "An artificial immune system for misbehavior

detection in mobile ad-hoc networks with virtual thymus, clustering, danger signal,

and memory detectors," in International Conference on Artificial Immune Systems,

2004, pp. 342-356.

[97] S. A. Hofmeyr and S. Forrest, "Architecture for an artificial immune system,"

Evolutionary computation, vol. 8, pp. 443-473, 2000.

[98] Y. A. Mohamed and A. B. Abdullah, "Implementation of IDS with response for

securing MANETs," in Information Technology (ITSim), 2010 International

Symposium in, 2010, pp. 660-665.

[99] N. Mazhar and M. Farooq, "A sense of danger: dendritic cells inspired artificial

immune system for manet security," in Proceedings of the 10th annual conference on

Genetic and evolutionary computation, 2008, pp. 63-70.

[100] X. Ye and J. Li, "A security architecture based on immune agents for MANET," in

Wireless Communication and Sensor Computing, 2010. ICWCSC 2010. International

Conference on, 2010, pp. 1-5.

[101] F. Barani, "A hybrid approach for dynamic intrusion detection in ad hoc networks

using genetic algorithm and artificial immune system," in Intelligent Systems (ICIS),

2014 Iranian Conference on, 2014, pp. 1-6.

[102] N. Mazhar, "Energy efficient security in MANETs: A comparison of cryptographic

and artificial immune systems," Pakistan Journal of Engineering and Applied

Sciences, 2016.

[103] M. S. A. Ansari and M. Inamullah, "Misbehavior detection in mobile ad hoc networks

using Artificial Immune System approach," in Advanced Networks and

Telecommunication Systems (ANTS), 2011 IEEE 5th International Conference on,

2011, pp. 1-6.

[104] S. Sarafijanovic and J.-Y. Le Boudec, "An artificial immune system approach with

secondary response for misbehavior detection in mobile ad hoc networks," IEEE

Transactions on Neural Networks, vol. 16, pp. 1076-1087, 2005.

[105] J. Kim and P. J. Bentley, "An evaluation of negative selection in an artificial immune

system for network intrusion detection," in Proceedings of the 3rd Annual Conference

on Genetic and Evolutionary Computation, 2001, pp. 1330-1337.

[106] F. Barani and M. Abadi, "An ABC-AIS hybrid approach to dynamic anomaly

detection in AODV-based MANETs," in Trust, Security and Privacy in Computing

and Communications (TrustCom), 2011 IEEE 10th International Conference on,

2011, pp. 714-720.

[107] A. Khannous, A. Rghioui, F. Elouaai, and M. Bouhorma, "Manet security: An

intrusion detection system based on the combination of negative selection and danger

theory concepts," in Next Generation Networks and Services (NGNS), 2014 Fifth

International Conference on, 2014, pp. 88-91.

[108] A. Visconti and H. Tahayori, "Detecting misbehaving nodes in MANET with an

artificial immune system based on type-2 fuzzy sets," in Internet Technology and

Secured Transactions, 2009. ICITST 2009. International Conference for, 2009, pp. 1-

2.

[109] J. M. Mendel, "Computing with words and its relationships with fuzzistics,"

Information Sciences, vol. 177, pp. 988-1006, 2007.

[110] Y. A. Mohamed and A. B. Abdullah, "Immune-inspired framework for securing

hybrid MANET," in Industrial Electronics & Applications, 2009. ISIEA 2009. IEEE

Symposium on, 2009, pp. 301-306.

[111] A. Khannous, A. Rghioui, F. Elouaai, and M. Bouhorma, "Securing MANETS using

the integration of concepts from diverse immune theories ," Journal of Theoretical and

Applied Information Technology, vol. 88, p. 35, 2016.

[112] K. D. Elgert, Immunology: understanding the immune system: John Wiley & Sons,

2009.

[113] R. Dawkins, The Selfish Gene. New York: Oxford, 2006.

[114] D. Cerri and A. Ghioni, "Securing AODV: the A-SAODV secure routing prototype,"

IEEE Communications Magazine, vol. 46, 2008.

[115] F. Ye et al., A scalable solution to minimum cost forwarding in large scale sensor

networks, in: Proceedings of International Conference on Computer Communications

and Networks (ICCCN), Dallas, TX, October 2001

[116] B. Yang, Y. Chen, X. Jiang, B. Yang, Y. Cai, and Y. Cai, "Packet delivery ratio/cost

in MANETs with erasure coding and packet replication," IEEE Trans. Veh. Technol.

IEEE Transactions on Vehicular Technology, vol. 64, pp. 2062-2070, 2015.

Appendix 1 aisba.cc

#include "ns3/aisba-module.h"

#include "ns3/core-module.h"

#include "ns3/network-module.h"

#include "ns3/internet-module.h"

#include "ns3/mobility-module.h"

#include "ns3/point-to-point-module.h"

#include "ns3/wifi-module.h"

#include "ns3/v4ping-helper.h"

#include <iostream>

#include <cmath>

// Lincy

#include "ns3/aisba-rtable.h"

using namespace ns3;

using namespace ns3::aisba;

*/

class AisbaExample

{

public:

 AisbaExample ();

 /// Configure script parameters, \return true on successful configuration

 bool Configure (int argc, char **argv);

 /// Run simulation

 void Run ();

 /// Report results

 void Report (std::ostream & os);

 /// Lincy

 //void activateDC();

private:

 // parameters

 /// Number of nodes

 uint32_t size;

 /// Distance between nodes, meters

 double step;

 /// Simulation time, seconds

 double totalTime;

 /// Write per-device PCAP traces if true

 bool pcap;

 /// Print routes if true

 bool printRoutes;

 // network

 NodeContainer nodes;

 NetDeviceContainer devices;

 Ipv4InterfaceContainer interfaces;

private:

 void CreateNodes ();

 void CreateDevices ();

 void InstallInternetStack ();

 void InstallApplications ();

};

int main (int argc, char **argv)

{

 AisbaExample test;

 if (!test.Configure (argc, argv))

 NS_FATAL_ERROR ("Configuration failed. Aborted.");

 test.Run ();

 test.Report (std::cout);

 return 0;

}

//---

AisbaExample::AisbaExample () :

 size (200),

 step (70),

 totalTime (10),

 pcap (true),

 printRoutes (true)

{

}

bool

AisbaExample::Configure (int argc, char **argv)

{

 //

 // LogComponentEnable("AisbaRoutingProtocol", LOG_LEVEL_ALL);

 SeedManager::SetSeed (12345);

 CommandLine cmd;

 cmd.AddValue ("pcap", "Write PCAP traces.", pcap);

 cmd.AddValue ("printRoutes", "Print routing table dumps.", printRoutes);

 cmd.AddValue ("size", "Number of nodes.", size);

 cmd.AddValue ("time", "Simulation time, s.", totalTime);

 cmd.AddValue ("step", "Grid step, m", step);

 cmd.Parse (argc, argv);

 return true;

}

void

AisbaExample::Run ()

{

// Config::SetDefault ("ns3::WifiRemoteStationManager::RtsCtsThreshold", UintegerValue (1)); // enable

rts cts all the time.

 CreateNodes ();

 CreateDevices ();

 InstallInternetStack ();

 InstallApplications ();

 std::cout << "Starting simulation for " << totalTime << " s ...\n";

 Simulator::Stop (Seconds (totalTime));

 Simulator::Run ();

 Simulator::Destroy ();

}

void

AisbaExample::Report (std::ostream &)

{

}

void

AisbaExample::CreateNodes ()

{

 std::cout << "Creating " << (unsigned)size << " nodes " << step << " m apart.\n";

 nodes.Create (size);

 // Name nodes

 for (uint32_t i = 0; i < size; ++i)

 {

 std::ostringstream os;

 os << "node-" << i;

 Names::Add (os.str (), nodes.Get (i));

 }

 // Create static grid

 MobilityHelper mobility;

 mobility.SetPositionAllocator ("ns3::GridPositionAllocator",

 "MinX", DoubleValue (0.0),

 "MinY", DoubleValue (0.0),

 "DeltaX", DoubleValue (step),

 "DeltaY", DoubleValue (0),

 "GridWidth", UintegerValue (size),

 "LayoutType", StringValue ("RowFirst"));

 mobility.SetMobilityModel ("ns3::ConstantPositionMobilityModel");

 mobility.Install (nodes);

}

void

AisbaExample::CreateDevices ()

{
 NqosWifiMacHelper wifiMac = NqosWifiMacHelper::Default ();

 wifiMac.SetType ("ns3::AdhocWifiMac");

 YansWifiPhyHelper wifiPhy = YansWifiPhyHelper::Default ();

 YansWifiChannelHelper wifiChannel = YansWifiChannelHelper::Default ();

 wifiPhy.SetChannel (wifiChannel.Create ());

 WifiHelper wifi = WifiHelper::Default ();

 wifi.SetRemoteStationManager ("ns3::ConstantRateWifiManager", "DataMode", StringValue

("OfdmRate6Mbps"), "RtsCtsThreshold", UintegerValue (0));

 devices = wifi.Install (wifiPhy, wifiMac, nodes);

 if (pcap)

 {

 wifiPhy.EnablePcapAll (std::string ("aisba"));

 }

}

void

AisbaExample::InstallInternetStack ()

{

 AisbaHelper aisba;

 // you can configure AODV attributes here using aisba.Set(name, value)

 InternetStackHelper stack;

 stack.SetRoutingHelper (aisba); // has effect on the next Install ()

 stack.Install (nodes);

 Ipv4AddressHelper address;

 address.SetBase ("10.0.0.0", "255.0.0.0");

 interfaces = address.Assign (devices);

 if (printRoutes)

 {

 Ptr<OutputStreamWrapper> routingStream = Create<OutputStreamWrapper> ("aisba.routes",

std::ios::out);

 aisba.PrintRoutingTableAllAt (Seconds (8), routingStream);

 }

}

void

AisbaExample::InstallApplications ()

{

 V4PingHelper ping (interfaces.GetAddress (size - 1));

 //V4PingHelper ping2(interfaces.GetAddress (size - 2));

 ping.SetAttribute ("Verbose", BooleanValue (true));

 //ping2.SetAttribute ("Verbose", BooleanValue (true));

 ApplicationContainer p = ping.Install (nodes.Get (0));

 // ApplicationContainer p2 = ping2.Install (nodes.Get (0));

 p.Start (Seconds (0));

 p.Stop (Seconds (totalTime) - Seconds (0.001));

 //p2.Start (Seconds (2));

 // p2.Stop (Seconds (totalTime) - Seconds (0.001));

 // move node away

 Ptr<Node> node = nodes.Get (size/2);

 Ptr<MobilityModel> mob = node->GetObject<MobilityModel> ();

 Simulator::Schedule (Seconds (totalTime/3), &MobilityModel::SetPosition, mob, Vector (1e5, 1e5,

1e5));

}

// Method added by Lincy

/*void AisbaExample::activateDC(){

 RoutingTableEntry _oRoutingTableEntry;

 if(_oRoutingTableEntry.GetFlag() ==INVALID)

 {

 std::cout<<"PAMP-DC .\n";

 }

 if(_oRoutingTableEntry.GetFlag() ==VALID)

 {

 std::cout << "DC - UP .\n";

 }

 if(_oRoutingTableEntry.GetFlag() ==IN_SEARCH)

 {

 std::cout << "PAMP - IN_SEARCH .\n";

 }

}*/

Appendix 2 aisba-routing-protocol.cc

#define NS_LOG_APPEND_CONTEXT \

 if (m_ipv4) { std::clog << "[node " << m_ipv4->GetObject<Node> ()->GetId () << "] "; }

#include "aisba-routing-protocol.h"

#include "ns3/log.h"

#include "ns3/boolean.h"

#include "ns3/random-variable-stream.h"

#include "ns3/inet-socket-address.h"

#include "ns3/trace-source-accessor.h"

#include "ns3/udp-socket-factory.h"

#include "ns3/wifi-net-device.h"

#include "ns3/adhoc-wifi-mac.h"

#include "ns3/string.h"

#include "ns3/pointer.h"

#include <algorithm>

#include <limits>

#include "aisba-rqueue.h"//lincy

namespace ns3

{

NS_LOG_COMPONENT_DEFINE ("AisbaRoutingProtocol");

namespace aisba

{

NS_OBJECT_ENSURE_REGISTERED (RoutingProtocol);

/// UDP Port for AISBA control traffic

const uint32_t RoutingProtocol::AISBA_PORT = 654;

//---

/// Tag used by AISBA implementation

class DeferredRouteOutputTag : public Tag

{

public:

 DeferredRouteOutputTag (int32_t o = -1) : Tag (), m_oif (o) {}

 static TypeId GetTypeId ()

 {

 static TypeId tid = TypeId ("ns3::aisba::DeferredRouteOutputTag").SetParent<Tag> ()

 .SetParent<Tag> ()

 .SetGroupName("Aisba")

 .AddConstructor<DeferredRouteOutputTag> ()

 ;

 return tid;

 }

 TypeId GetInstanceTypeId () const

 {

 return GetTypeId ();

 }

 int32_t GetInterface() const

 {

 return m_oif;

 }

 void SetInterface(int32_t oif)

 {

 m_oif = oif;

 }

 uint32_t GetSerializedSize () const

 {

 return sizeof(int32_t);

 }

 void Serialize (TagBuffer i) const

 {

 i.WriteU32 (m_oif);

 }

 void Deserialize (TagBuffer i)

 {

 m_oif = i.ReadU32 ();

 }

 void Print (std::ostream &os) const

 {

 os << "DeferredRouteOutputTag: output interface = " << m_oif;

 }

private:

 /// Positive if output device is fixed in RouteOutput

 int32_t m_oif;

};

NS_OBJECT_ENSURE_REGISTERED (DeferredRouteOutputTag);

//---

RoutingProtocol::RoutingProtocol () :

 RreqRetries (2),

 RreqRateLimit (10),

 RerrRateLimit (10),

 ActiveRouteTimeout (Seconds (3)),

 NetDiameter (35),

 NodeTraversalTime (MilliSeconds (40)),

 NetTraversalTime (Time ((2 * NetDiameter) * NodeTraversalTime)),

 PathDiscoveryTime (Time (2 * NetTraversalTime)),

 MyRouteTimeout (Time (2 * std::max (PathDiscoveryTime, ActiveRouteTimeout))),

 HelloInterval (Seconds (1)),

 AllowedHelloLoss (2),

 DeletePeriod (Time (5 * std::max (ActiveRouteTimeout, HelloInterval))),

 NextHopWait (NodeTraversalTime + MilliSeconds (10)),

 BlackListTimeout (Time (RreqRetries * NetTraversalTime)),

 MaxQueueLen (64),

 MaxQueueTime (Seconds (30)),

 DestinationOnly (false),

 GratuitousReply (true),

 EnableHello (false),

 m_routingTable (DeletePeriod),

 m_queue (MaxQueueLen, MaxQueueTime),

 m_requestId (0),

 m_seqNo (0),

 m_rreqIdCache (PathDiscoveryTime),

 m_dpd (PathDiscoveryTime),

 m_nb (HelloInterval),

 m_rreqCount (0),

 m_rerrCount (0),

 m_htimer (Timer::CANCEL_ON_DESTROY),

 m_rreqRateLimitTimer (Timer::CANCEL_ON_DESTROY),

 m_rerrRateLimitTimer (Timer::CANCEL_ON_DESTROY),

 m_lastBcastTime (Seconds (0))

{

 m_nb.SetCallback (MakeCallback (&RoutingProtocol::SendRerrWhenBreaksLinkToNextHop, taisba));

}

TypeId

RoutingProtocol::GetTypeId (void)

{

 static TypeId tid = TypeId ("ns3::aisba::RoutingProtocol")

 .SetParent<Ipv4RoutingProtocol> ()

 .SetGroupName("Aisba")

 .AddConstructor<RoutingProtocol> ()

 .AddAttribute ("HelloInterval", "HELLO messages emission interval.",

 TimeValue (Seconds (1)),

 MakeTimeAccessor (&RoutingProtocol::HelloInterval),

 MakeTimeChecker ())

 .AddAttribute ("RreqRetries", "Maximum number of retransmissions of RREQ to discover a route",

 UintegerValue (2),

 MakeUintegerAccessor (&RoutingProtocol::RreqRetries),

 MakeUintegerChecker<uint32_t> ())

 .AddAttribute ("RreqRateLimit", "Maximum number of RREQ per second.",

 UintegerValue (10),

 MakeUintegerAccessor (&RoutingProtocol::RreqRateLimit),

 MakeUintegerChecker<uint32_t> ())

 .AddAttribute ("RerrRateLimit", "Maximum number of RERR per second.",

 UintegerValue (10),

 MakeUintegerAccessor (&RoutingProtocol::RerrRateLimit),

 MakeUintegerChecker<uint32_t> ())

 .AddAttribute ("NodeTraversalTime", "Conservative estimate of the average one hop traversal time for

packets and should include "

 "queuing delays, interrupt processing times and transfer times.",

 TimeValue (MilliSeconds (40)),

 MakeTimeAccessor (&RoutingProtocol::NodeTraversalTime),

 MakeTimeChecker ())

 .AddAttribute ("NextHopWait", "Period of our waiting for the neighbour's RREP_ACK = 10 ms +

NodeTraversalTime",

 TimeValue (MilliSeconds (50)),

 MakeTimeAccessor (&RoutingProtocol::NextHopWait),

 MakeTimeChecker ())

 .AddAttribute ("ActiveRouteTimeout", "Period of time during which the route is considered to be valid",

 TimeValue (Seconds (3)),

 MakeTimeAccessor (&RoutingProtocol::ActiveRouteTimeout),

 MakeTimeChecker ())

 .AddAttribute ("MyRouteTimeout", "Value of lifetime field in RREP generating by taisba node = 2 *

max(ActiveRouteTimeout, PathDiscoveryTime)",

 TimeValue (Seconds (11.2)),

 MakeTimeAccessor (&RoutingProtocol::MyRouteTimeout),

 MakeTimeChecker ())

 .AddAttribute ("BlackListTimeout", "Time for which the node is put into the blacklist = RreqRetries *

NetTraversalTime",

 TimeValue (Seconds (5.6)),

 MakeTimeAccessor (&RoutingProtocol::BlackListTimeout),

 MakeTimeChecker ())

 .AddAttribute ("DeletePeriod", "DeletePeriod is intended to provide an upper bound on the time for which an

upstream node A "

 "can have a neighbor B as an active next hop for destination D, while B has invalidated the route to

D."

 " = 5 * max (HelloInterval, ActiveRouteTimeout)",

 TimeValue (Seconds (15)),

 MakeTimeAccessor (&RoutingProtocol::DeletePeriod),

 MakeTimeChecker ())

 .AddAttribute ("NetDiameter", "Net diameter measures the maximum possible number of hops between two

nodes in the network",

 UintegerValue (35),

 MakeUintegerAccessor (&RoutingProtocol::NetDiameter),

 MakeUintegerChecker<uint32_t> ())

 .AddAttribute ("NetTraversalTime", "Estimate of the average net traversal time = 2 * NodeTraversalTime *

NetDiameter",

 TimeValue (Seconds (2.8)),

 MakeTimeAccessor (&RoutingProtocol::NetTraversalTime),

 MakeTimeChecker ())

 .AddAttribute ("PathDiscoveryTime", "Estimate of maximum time needed to find route in network = 2 *

NetTraversalTime",

 TimeValue (Seconds (5.6)),

 MakeTimeAccessor (&RoutingProtocol::PathDiscoveryTime),

 MakeTimeChecker ())

 .AddAttribute ("MaxQueueLen", "Maximum number of packets that we allow a routing protocol to buffer.",

 UintegerValue (64),

 MakeUintegerAccessor (&RoutingProtocol::SetMaxQueueLen,

 &RoutingProtocol::GetMaxQueueLen),

 MakeUintegerChecker<uint32_t> ())

 .AddAttribute ("MaxQueueTime", "Maximum time packets can be queued (in seconds)",

 TimeValue (Seconds (30)),

 MakeTimeAccessor (&RoutingProtocol::SetMaxQueueTime,

 &RoutingProtocol::GetMaxQueueTime),

 MakeTimeChecker ())

 .AddAttribute ("AllowedHelloLoss", "Number of hello messages which may be loss for valid link.",

 UintegerValue (2),

 MakeUintegerAccessor (&RoutingProtocol::AllowedHelloLoss),

 MakeUintegerChecker<uint16_t> ())

 .AddAttribute ("GratuitousReply", "Indicates whether a gratuitous RREP should be unicast to the node

originated route discovery.",

 BooleanValue (true),

 MakeBooleanAccessor (&RoutingProtocol::SetGratuitousReplyFlag,

 &RoutingProtocol::GetGratuitousReplyFlag),

 MakeBooleanChecker ())

 .AddAttribute ("DestinationOnly", "Indicates only the destination may respond to taisba RREQ.",

 BooleanValue (false),

 MakeBooleanAccessor (&RoutingProtocol::SetDesinationOnlyFlag,

 &RoutingProtocol::GetDesinationOnlyFlag),

 MakeBooleanChecker ())

 .AddAttribute ("EnableHello", "Indicates whether a hello messages enable.",

 BooleanValue (true),

 MakeBooleanAccessor (&RoutingProtocol::SetHelloEnable,

 &RoutingProtocol::GetHelloEnable),

 MakeBooleanChecker ())

 .AddAttribute ("EnableBroadcast", "Indicates whether a broadcast data packets forwarding enable.",

 BooleanValue (true),

 MakeBooleanAccessor (&RoutingProtocol::SetBroadcastEnable,

 &RoutingProtocol::GetBroadcastEnable),

 MakeBooleanChecker ())

 .AddAttribute ("UniformRv",

 "Access to the underlying UniformRandomVariable",

 StringValue ("ns3::UniformRandomVariable"),

 MakePointerAccessor (&RoutingProtocol::m_uniformRandomVariable),

 MakePointerChecker<UniformRandomVariable> ())

 ;

 return tid;

}

void

RoutingProtocol::SetMaxQueueLen (uint32_t len)

{

 MaxQueueLen = len;

 m_queue.SetMaxQueueLen (len);

}

void

RoutingProtocol::SetMaxQueueTime (Time t)

{

 MaxQueueTime = t;

 m_queue.SetQueueTimeout (t);

}

RoutingProtocol::~RoutingProtocol ()

{

}

void

RoutingProtocol::DoDispose ()

{

 m_ipv4 = 0;

 for (std::map<Ptr<Socket>, Ipv4InterfaceAddress>::iterator iter =

 m_socketAddresses.begin (); iter != m_socketAddresses.end (); iter++)

 {

 iter->first->Close ();

 }

 m_socketAddresses.clear ();

 for (std::map<Ptr<Socket>, Ipv4InterfaceAddress>::iterator iter =

 m_socketSubnetBroadcastAddresses.begin (); iter != m_socketSubnetBroadcastAddresses.end (); iter++)

 {

 iter->first->Close ();

 }

 m_socketSubnetBroadcastAddresses.clear ();

 Ipv4RoutingProtocol::DoDispose ();

}

void

RoutingProtocol::PrintRoutingTable (Ptr<OutputStreamWrapper> stream) const

{

 *stream->GetStream () << "Node: " << m_ipv4->GetObject<Node> ()->GetId () << " Time: " <<

Simulator::Now ().GetSeconds () << "s ";

 m_routingTable.Print (stream);

}

int64_t

RoutingProtocol::AssignStreams (int64_t stream)

{

 NS_LOG_FUNCTION (taisba << stream);

 m_uniformRandomVariable->SetStream (stream);

 return 1;

}

void

RoutingProtocol::Start ()

{

 NS_LOG_FUNCTION (taisba);

 if (EnableHello)

 {

 m_nb.ScheduleTimer ();

 }

 m_rreqRateLimitTimer.SetFunction (&RoutingProtocol::RreqRateLimitTimerExpire,

 taisba);

 m_rreqRateLimitTimer.Schedule (Seconds (1));

 m_rerrRateLimitTimer.SetFunction (&RoutingProtocol::RerrRateLimitTimerExpire,

 taisba);

 m_rerrRateLimitTimer.Schedule (Seconds (1));

}

Ptr<Ipv4Route>

RoutingProtocol::RouteOutput (Ptr<Packet> p, const Ipv4Header &header,

 Ptr<NetDevice> oif, Socket::SocketErrno &sockerr)

{

 NS_LOG_FUNCTION (taisba << header << (oif ? oif->GetIfIndex () : 0));

 if (!p)

 {

 NS_LOG_DEBUG("Packet is == 0");

 return LoopbackRoute (header, oif); // later

 }

 if (m_socketAddresses.empty ())

 {

 sockerr = Socket::ERROR_NOROUTETOHOST;

 NS_LOG_LOGIC ("No aisba interfaces");

 Ptr<Ipv4Route> route;

 return route;

 }

 sockerr = Socket::ERROR_NOTERROR;

 Ptr<Ipv4Route> route;

 Ipv4Address dst = header.GetDestination ();

 RoutingTableEntry rt;

 if (m_routingTable.LookupValidRoute (dst, rt))

 {

 route = rt.GetRoute ();

 NS_ASSERT (route != 0);

 NS_LOG_DEBUG ("Exist route to " << route->GetDestination () << " from interface " << route-

>GetSource ());

 if (oif != 0 && route->GetOutputDevice () != oif)

 {

 NS_LOG_DEBUG ("Output device doesn't match. Dropped.");

 sockerr = Socket::ERROR_NOROUTETOHOST;

 return Ptr<Ipv4Route> ();

 }

 UpdateRouteLifeTime (dst, ActiveRouteTimeout);

 UpdateRouteLifeTime (route->GetGateway (), ActiveRouteTimeout);

 return route;

 }

 // Valid route not found, in taisba case we return loopback.

 // Actual route request will be deferred until packet will be fully formed,

 // routed to loopback, received from loopback and passed to RouteInput (see below)

 uint32_t iif = (oif ? m_ipv4->GetInterfaceForDevice (oif) : -1);

 DeferredRouteOutputTag tag (iif);

 NS_LOG_DEBUG ("Valid Route not found");

 if (!p->PeekPacketTag (tag))

 {

 p->AddPacketTag (tag);

 }

 return LoopbackRoute (header, oif);

}

void

RoutingProtocol::DeferredRouteOutput (Ptr<const Packet> p, const Ipv4Header & header,

 UnicastForwardCallback ucb, ErrorCallback ecb)

{

 NS_LOG_FUNCTION (taisba << p << header);

 NS_ASSERT (p != 0 && p != Ptr<Packet> ());

 QueueEntry newEntry (p, header, ucb, ecb);

 bool result = m_queue.Enqueue (newEntry);

 if (result)

 {

 NS_LOG_LOGIC ("Add packet " << p->GetUid () << " to queue. Protocol " << (uint16_t)

header.GetProtocol ());

 RoutingTableEntry rt;

 bool result = m_routingTable.LookupRoute (header.GetDestination (), rt);

 if(!result || ((rt.GetFlag () != IN_SEARCH) && result))

 {

 NS_LOG_LOGIC ("Send new RREQ for outbound packet to " <<header.GetDestination ());

 SendRequest (header.GetDestination ());

 }

 }

}

bool

RoutingProtocol::RouteInput (Ptr<const Packet> p, const Ipv4Header &header,

 Ptr<const NetDevice> idev, UnicastForwardCallback ucb,

 MulticastForwardCallback mcb, LocalDeliverCallback lcb, ErrorCallback ecb)

{

 NS_LOG_FUNCTION (taisba << p->GetUid () << header.GetDestination () << idev->GetAddress ());

 if (m_socketAddresses.empty ())

 {

 NS_LOG_LOGIC ("No aisba interfaces");

 return false;

 }

 NS_ASSERT (m_ipv4 != 0);

 NS_ASSERT (p != 0);

 // Check if input device supports IP

 NS_ASSERT (m_ipv4->GetInterfaceForDevice (idev) >= 0);

 int32_t iif = m_ipv4->GetInterfaceForDevice (idev);

 Ipv4Address dst = header.GetDestination ();

 Ipv4Address origin = header.GetSource ();

 // Deferred route request

 if (idev == m_lo)

 {

 DeferredRouteOutputTag tag;

 if (p->PeekPacketTag (tag))

 {

 DeferredRouteOutput (p, header, ucb, ecb);

 return true;

 }

 }

 // Duplicate of own packet

 if (IsMyOwnAddress (origin))

 //std::cout<<origin<<"duplicate";

 return true;

 // AISBA is not a multicast routing protocol

 if (dst.IsMulticast ())

 {

 return false;

 }

 // Broadcast local delivery/forwarding

 for (std::map<Ptr<Socket>, Ipv4InterfaceAddress>::const_iterator j =

 m_socketAddresses.begin (); j != m_socketAddresses.end (); ++j)

 {

 Ipv4InterfaceAddress iface = j->second;

 if (m_ipv4->GetInterfaceForAddress (iface.GetLocal ()) == iif)

 if (dst == iface.GetBroadcast () || dst.IsBroadcast ())

 {

 if (m_dpd.IsDuplicate (p, header))

 {

 NS_LOG_DEBUG ("Duplicated packet " << p->GetUid () << " from " << origin << ". Drop.");

 return true;

 }

 UpdateRouteLifeTime (origin, ActiveRouteTimeout);

 Ptr<Packet> packet = p->Copy ();

 if (lcb.IsNull () == false)

 {

 NS_LOG_LOGIC ("Broadcast local delivery to " << iface.GetLocal ());

 lcb (p, header, iif);

 // Fall through to additional processing

 }

 else

 {

 NS_LOG_ERROR ("Unable to deliver packet locally due to null callback " << p->GetUid () << "

from " << origin);

 ecb (p, header, Socket::ERROR_NOROUTETOHOST);

 }

 if (!EnableBroadcast)

 {

 return true;

 }

 if (header.GetTtl () > 1)

 {

 NS_LOG_LOGIC ("Forward broadcast. TTL " << (uint16_t) header.GetTtl ());

 RoutingTableEntry toBroadcast;

 if (m_routingTable.LookupRoute (dst, toBroadcast))

 {

 Ptr<Ipv4Route> route = toBroadcast.GetRoute ();

 ucb (route, packet, header);

 }

 else

 {

 NS_LOG_DEBUG ("No route to forward broadcast. Drop packet " << p->GetUid ());

 }

 }

 else

 {

 NS_LOG_DEBUG ("TTL exceeded. Drop packet " << p->GetUid ());

 }

 return true;

 }

 }

 // Unicast local delivery

 if (m_ipv4->IsDestinationAddress (dst, iif))

 {

 UpdateRouteLifeTime (origin, ActiveRouteTimeout);

 RoutingTableEntry toOrigin;

 if (m_routingTable.LookupValidRoute (origin, toOrigin))

 {

 UpdateRouteLifeTime (toOrigin.GetNextHop (), ActiveRouteTimeout);

 m_nb.Update (toOrigin.GetNextHop (), ActiveRouteTimeout);

 }

 if (lcb.IsNull () == false)

 {

 NS_LOG_LOGIC ("Unicast local delivery to " << dst);

 lcb (p, header, iif);

 }

 else

 {

 NS_LOG_ERROR ("Unable to deliver packet locally due to null callback " << p->GetUid () << " from "

<< origin);

 ecb (p, header, Socket::ERROR_NOROUTETOHOST);

 }

 return true;

 }

 // Forwarding

 return Forwarding (p, header, ucb, ecb);

}

bool

RoutingProtocol::Forwarding (Ptr<const Packet> p, const Ipv4Header & header,

 UnicastForwardCallback ucb, ErrorCallback ecb)

{

 NS_LOG_FUNCTION (taisba);

 Ipv4Address dst = header.GetDestination ();

 Ipv4Address origin = header.GetSource ();

 m_routingTable.Purge ();

 RoutingTableEntry toDst;

 if (m_routingTable.LookupRoute (dst, toDst))

 {

 if (toDst.GetFlag () == VALID)

 {

 Ptr<Ipv4Route> route = toDst.GetRoute ();

 NS_LOG_LOGIC (route->GetSource ()<<" forwarding to " << dst << " from " << origin << " packet " <<

p->GetUid ());

 // std::cout<< " all good";//lincy

 /*

 * Each time a route is used to forward a data packet, its Active Route

 * Lifetime field of the source, destination and the next hop on the

 * path to the destination is updated to be no less than the current

 * time plus ActiveRouteTimeout.

 */

 UpdateRouteLifeTime (origin, ActiveRouteTimeout);

 UpdateRouteLifeTime (dst, ActiveRouteTimeout);

 UpdateRouteLifeTime (route->GetGateway (), ActiveRouteTimeout);

 /*

 * Since the route between each originator and destination pair is expected to be symmetric, the

 * Active Route Lifetime for the previous hop, along the reverse path back to the IP source, is also

updated

 * to be no less than the current time plus ActiveRouteTimeout

 */

 RoutingTableEntry toOrigin;

 m_routingTable.LookupRoute (origin, toOrigin);

 UpdateRouteLifeTime (toOrigin.GetNextHop (), ActiveRouteTimeout);

 m_nb.Update (route->GetGateway (), ActiveRouteTimeout);

 m_nb.Update (toOrigin.GetNextHop (), ActiveRouteTimeout);

 ucb (route, p, header);

 //sendPAMPSignal (dst, route);

 return true;

 }

 else

 {

 if (toDst.GetValidSeqNo ())

 {

 SendRerrWhenNoRouteToForward (dst, toDst.GetSeqNo (), origin);

 std::cout<<"RERRWHENNOROUTETO FORWARD"<<dst<<origin<<"\n";//lincy

 //sendPAMPSignal(dst, origin);//lincy

 NS_LOG_DEBUG ("Drop packet " << p->GetUid () << " because no route to forward it.");

 return false;

 }

 }

 }

 NS_LOG_LOGIC ("route not found to "<< dst << ". Send RERR message.");

 NS_LOG_DEBUG ("Drop packet " << p->GetUid () << " because no route to forward it.");

 SendRerrWhenNoRouteToForward (dst, 0, origin);

 return false;

}

void

RoutingProtocol::SetIpv4 (Ptr<Ipv4> ipv4)

{

 NS_ASSERT (ipv4 != 0);

 NS_ASSERT (m_ipv4 == 0);

 m_ipv4 = ipv4;

 // Create lo route. It is asserted that the only one interface up for now is loopback

 NS_ASSERT (m_ipv4->GetNInterfaces () == 1 && m_ipv4->GetAddress (0, 0).GetLocal () == Ipv4Address

("127.0.0.1"));

 m_lo = m_ipv4->GetNetDevice (0);

 NS_ASSERT (m_lo != 0);

 // Remember lo route

 RoutingTableEntry rt (/*device=*/ m_lo, /*dst=*/ Ipv4Address::GetLoopback (), /*know seqno=*/ true,

/*seqno=*/ 0,

 /*iface=*/ Ipv4InterfaceAddress (Ipv4Address::GetLoopback (), Ipv4Mask

("255.0.0.0")),

 /*hops=*/ 1, /*next hop=*/ Ipv4Address::GetLoopback (),

 /*lifetime=*/ Simulator::GetMaximumSimulationTime ());

 m_routingTable.AddRoute (rt);

 Simulator::ScheduleNow (&RoutingProtocol::Start, taisba);

}

void

RoutingProtocol::NotifyInterfaceUp (uint32_t i)

{

 // Lincy Begins

 Ptr<Ipv4L3Protocol> l3K = m_ipv4->GetObject<Ipv4L3Protocol> ();

 Ipv4InterfaceAddress ifaceLocal = l3K->GetAddress(i,0);

 std::cout << ifaceLocal.GetLocal () << ": NODES Printing interface Is up\n";

 // Lincy Ends

 NS_LOG_FUNCTION (taisba << m_ipv4->GetAddress (i, 0).GetLocal ());

 Ptr<Ipv4L3Protocol> l3 = m_ipv4->GetObject<Ipv4L3Protocol> ();

 if (l3->GetNAddresses (i) > 1)

 {

 NS_LOG_WARN ("AISBA does not work with more then one address per each interface.");

 }

 Ipv4InterfaceAddress iface = l3->GetAddress (i, 0);

 if (iface.GetLocal () == Ipv4Address ("127.0.0.1"))

 return;

 // Create a socket to listen only on taisba interface

 Ptr<Socket> socket = Socket::CreateSocket (GetObject<Node> (),

 UdpSocketFactory::GetTypeId ());

 NS_ASSERT (socket != 0);

 socket->SetRecvCallback (MakeCallback (&RoutingProtocol::RecvAisba, taisba));

 socket->Bind (InetSocketAddress (Ipv4Address::GetAny (), AISBA_PORT));

 socket->BindToNetDevice (l3->GetNetDevice (i));

 socket->SetAllowBroadcast (true);

 socket->SetAttribute ("IpTtl", UintegerValue (1));

 m_socketAddresses.insert (std::make_pair (socket, iface));

 // create also a subnet broadcast socket

 socket = Socket::CreateSocket (GetObject<Node> (),

 UdpSocketFactory::GetTypeId ());

 NS_ASSERT (socket != 0);

 socket->SetRecvCallback (MakeCallback (&RoutingProtocol::RecvAisba, taisba));

 socket->Bind (InetSocketAddress (iface.GetBroadcast (), AISBA_PORT));

 socket->BindToNetDevice (l3->GetNetDevice (i));

 socket->SetAllowBroadcast (true);

 socket->SetAttribute ("IpTtl", UintegerValue (1));

 m_socketSubnetBroadcastAddresses.insert (std::make_pair (socket, iface));

 // Add local broadcast record to the routing table

 Ptr<NetDevice> dev = m_ipv4->GetNetDevice (m_ipv4->GetInterfaceForAddress (iface.GetLocal ()));

 RoutingTableEntry rt (/*device=*/ dev, /*dst=*/ iface.GetBroadcast (), /*know seqno=*/ true, /*seqno=*/ 0,

/*iface=*/ iface,

 /*hops=*/ 1, /*next hop=*/ iface.GetBroadcast (), /*lifetime=*/

Simulator::GetMaximumSimulationTime ());

 m_routingTable.AddRoute (rt);

 if (l3->GetInterface (i)->GetArpCache ())

 {

 m_nb.AddArpCache (l3->GetInterface (i)->GetArpCache ());

 }

 // Allow neighbor manager use taisba interface for layer 2 feedback if possible

 Ptr<WifiNetDevice> wifi = dev->GetObject<WifiNetDevice> ();

 if (wifi == 0)

 return;

 Ptr<WifiMac> mac = wifi->GetMac ();

 if (mac == 0)

 return;

 mac->TraceConnectWithoutContext ("TxErrHeader", m_nb.GetTxErrorCallback ());

}

void

RoutingProtocol::NotifyInterfaceDown (uint32_t i)

{

 //Lincy

 std::cout << "Lincy Printing LInk Is Donw";

 NS_LOG_FUNCTION (taisba << m_ipv4->GetAddress (i, 0).GetLocal ());

 // Disable layer 2 link state monitoring (if possible)

 Ptr<Ipv4L3Protocol> l3 = m_ipv4->GetObject<Ipv4L3Protocol> ();

 Ptr<NetDevice> dev = l3->GetNetDevice (i);

 Ptr<WifiNetDevice> wifi = dev->GetObject<WifiNetDevice> ();

 if (wifi != 0)

 {

 Ptr<WifiMac> mac = wifi->GetMac ()->GetObject<AdhocWifiMac> ();

 if (mac != 0)

 {

 mac->TraceDisconnectWithoutContext ("TxErrHeader",

 m_nb.GetTxErrorCallback ());

 m_nb.DelArpCache (l3->GetInterface (i)->GetArpCache ());

 }

 }

 // Close socket

 Ptr<Socket> socket = FindSocketWithInterfaceAddress (m_ipv4->GetAddress (i, 0));

 NS_ASSERT (socket);

 socket->Close ();

 m_socketAddresses.erase (socket);

 // Close socket

 socket = FindSubnetBroadcastSocketWithInterfaceAddress (m_ipv4->GetAddress (i, 0));

 NS_ASSERT (socket);

 socket->Close ();

 m_socketSubnetBroadcastAddresses.erase (socket);

 if (m_socketAddresses.empty ())

 {

 NS_LOG_LOGIC ("No aisba interfaces");

 m_htimer.Cancel ();

 m_nb.Clear ();

 m_routingTable.Clear ();

 return;

 }

 m_routingTable.DeleteAllRoutesFromInterface (m_ipv4->GetAddress (i, 0));

}

void

RoutingProtocol::NotifyAddAddress (uint32_t i, Ipv4InterfaceAddress address)

{

 NS_LOG_FUNCTION (taisba << " interface " << i << " address " << address);

 Ptr<Ipv4L3Protocol> l3 = m_ipv4->GetObject<Ipv4L3Protocol> ();

 if (!l3->IsUp (i))

 return;

 if (l3->GetNAddresses (i) == 1)

 {

 Ipv4InterfaceAddress iface = l3->GetAddress (i, 0);

 Ptr<Socket> socket = FindSocketWithInterfaceAddress (iface);

 if (!socket)

 {

 if (iface.GetLocal () == Ipv4Address ("127.0.0.1"))

 return;

 // Create a socket to listen only on taisba interface

 Ptr<Socket> socket = Socket::CreateSocket (GetObject<Node> (),

 UdpSocketFactory::GetTypeId ());

 NS_ASSERT (socket != 0);

 socket->SetRecvCallback (MakeCallback (&RoutingProtocol::RecvAisba,taisba));

 socket->Bind (InetSocketAddress (iface.GetLocal (), AISBA_PORT));

 socket->BindToNetDevice (l3->GetNetDevice (i));

 socket->SetAllowBroadcast (true);

 m_socketAddresses.insert (std::make_pair (socket, iface));

 // create also a subnet directed broadcast socket

 socket = Socket::CreateSocket (GetObject<Node> (),

 UdpSocketFactory::GetTypeId ());

 NS_ASSERT (socket != 0);

 socket->SetRecvCallback (MakeCallback (&RoutingProtocol::RecvAisba, taisba));

 socket->Bind (InetSocketAddress (iface.GetBroadcast (), AISBA_PORT));

 socket->BindToNetDevice (l3->GetNetDevice (i));

 socket->SetAllowBroadcast (true);

 socket->SetAttribute ("IpTtl", UintegerValue (1));

 m_socketSubnetBroadcastAddresses.insert (std::make_pair (socket, iface));

 // Add local broadcast record to the routing table

 Ptr<NetDevice> dev = m_ipv4->GetNetDevice (

 m_ipv4->GetInterfaceForAddress (iface.GetLocal ()));

 RoutingTableEntry rt (/*device=*/ dev, /*dst=*/ iface.GetBroadcast (), /*know seqno=*/ true,

 /*seqno=*/ 0, /*iface=*/ iface, /*hops=*/ 1,

 /*next hop=*/ iface.GetBroadcast (), /*lifetime=*/

Simulator::GetMaximumSimulationTime ());

 m_routingTable.AddRoute (rt);

 }

 }

 else

 {

 NS_LOG_LOGIC ("AISBA does not work with more then one address per each interface. Ignore added

address");

 }

}

void

RoutingProtocol::NotifyRemoveAddress (uint32_t i, Ipv4InterfaceAddress address)

{

 NS_LOG_FUNCTION (taisba);

 Ptr<Socket> socket = FindSocketWithInterfaceAddress (address);

 if (socket)

 {

 m_routingTable.DeleteAllRoutesFromInterface (address);

 socket->Close ();

 m_socketAddresses.erase (socket);

 Ptr<Socket> unicastSocket = FindSubnetBroadcastSocketWithInterfaceAddress (address);

 if (unicastSocket)

 {

 unicastSocket->Close ();

 m_socketAddresses.erase (unicastSocket);

 }

 Ptr<Ipv4L3Protocol> l3 = m_ipv4->GetObject<Ipv4L3Protocol> ();

 if (l3->GetNAddresses (i))

 {

 Ipv4InterfaceAddress iface = l3->GetAddress (i, 0);

 // Create a socket to listen only on taisba interface

 Ptr<Socket> socket = Socket::CreateSocket (GetObject<Node> (),

 UdpSocketFactory::GetTypeId ());

 NS_ASSERT (socket != 0);

 socket->SetRecvCallback (MakeCallback (&RoutingProtocol::RecvAisba, taisba));

 // Bind to any IP address so that broadcasts can be received

 socket->Bind (InetSocketAddress (iface.GetLocal (), AISBA_PORT));

 socket->BindToNetDevice (l3->GetNetDevice (i));

 socket->SetAllowBroadcast (true);

 socket->SetAttribute ("IpTtl", UintegerValue (1));

 m_socketAddresses.insert (std::make_pair (socket, iface));

 // create also a unicast socket

 socket = Socket::CreateSocket (GetObject<Node> (),

 UdpSocketFactory::GetTypeId ());

 NS_ASSERT (socket != 0);

 socket->SetRecvCallback (MakeCallback (&RoutingProtocol::RecvAisba, taisba));

 socket->Bind (InetSocketAddress (iface.GetBroadcast (), AISBA_PORT));

 socket->BindToNetDevice (l3->GetNetDevice (i));

 socket->SetAllowBroadcast (true);

 socket->SetAttribute ("IpTtl", UintegerValue (1));

 m_socketSubnetBroadcastAddresses.insert (std::make_pair (socket, iface));

 // Add local broadcast record to the routing table

 Ptr<NetDevice> dev = m_ipv4->GetNetDevice (m_ipv4->GetInterfaceForAddress (iface.GetLocal ()));

 RoutingTableEntry rt (/*device=*/ dev, /*dst=*/ iface.GetBroadcast (), /*know seqno=*/ true, /*seqno=*/

0, /*iface=*/ iface,

 /*hops=*/ 1, /*next hop=*/ iface.GetBroadcast (), /*lifetime=*/

Simulator::GetMaximumSimulationTime ());

 m_routingTable.AddRoute (rt);

 }

 if (m_socketAddresses.empty ())

 {

 NS_LOG_LOGIC ("No aisba interfaces");

 m_htimer.Cancel ();

 m_nb.Clear ();

 m_routingTable.Clear ();

 return;

 }

 }

 else

 {

 NS_LOG_LOGIC ("Remove address not participating in AISBA operation");

 }

}

bool

RoutingProtocol::IsMyOwnAddress (Ipv4Address src)

{

 NS_LOG_FUNCTION (taisba << src);

 for (std::map<Ptr<Socket>, Ipv4InterfaceAddress>::const_iterator j =

 m_socketAddresses.begin (); j != m_socketAddresses.end (); ++j)

 {

 Ipv4InterfaceAddress iface = j->second;

 //std::cout << "From isMyOwnAddress Method: "<<iface.GetLocal();

 if (src == iface.GetLocal ())

 {

 return true;

 }

 }

 return false;

}

Ptr<Ipv4Route>

RoutingProtocol::LoopbackRoute (const Ipv4Header & hdr, Ptr<NetDevice> oif) const

{

 NS_LOG_FUNCTION (taisba << hdr);

 NS_ASSERT (m_lo != 0);

 Ptr<Ipv4Route> rt = Create<Ipv4Route> ();

 rt->SetDestination (hdr.GetDestination ());

 //

 // Source address selection here is tricky. The loopback route is

 // returned when AISBA does not have a route; taisba causes the packet

 // to be looped back and handled (cached) in RouteInput() method

 // while a route is found. However, connection-oriented protocols

 // like TCP need to create an endpoint four-tuple (src, src port,

 // dst, dst port) and create a pseudo-header for checksumming. So,

 // AISBA needs to guess correctly what the eventual source address

 // will be.

 //

 // For single interface, single address nodes, taisba is not a problem.

 // When there are possibly multiple outgoing interfaces, the policy

 // implemented here is to pick the first available AISBA interface.

 // If RouteOutput() caller specified an outgoing interface, that

 // further constrains the selection of source address

 //

 std::map<Ptr<Socket>, Ipv4InterfaceAddress>::const_iterator j = m_socketAddresses.begin ();

 if (oif)

 {

 // Iterate to find an address on the oif device

 for (j = m_socketAddresses.begin (); j != m_socketAddresses.end (); ++j)

 {

 Ipv4Address addr = j->second.GetLocal ();

 int32_t interface = m_ipv4->GetInterfaceForAddress (addr);

 if (oif == m_ipv4->GetNetDevice (static_cast<uint32_t> (interface)))

 {

 rt->SetSource (addr);

 break;

 }

 }

 }

 else

 {

 rt->SetSource (j->second.GetLocal ());

 }

 NS_ASSERT_MSG (rt->GetSource () != Ipv4Address (), "Valid AISBA source address not found");

 rt->SetGateway (Ipv4Address ("127.0.0.1"));

 rt->SetOutputDevice (m_lo);

 return rt;

}

void

RoutingProtocol::SendRequest (Ipv4Address dst)

{

 NS_LOG_FUNCTION (taisba << dst);

 // A node SHOULD NOT originate more than RREQ_RATELIMIT RREQ messages per second.

 if (m_rreqCount == RreqRateLimit)

 {

 Simulator::Schedule (m_rreqRateLimitTimer.GetDelayLeft () + MicroSeconds (100),

 &RoutingProtocol::SendRequest, taisba, dst);

 return;

 }

 else

 m_rreqCount++;

 // std::cout<< m_rreqCount;//lincy

 // Create RREQ header

 RreqHeader rreqHeader;

 rreqHeader.SetDst (dst);

 RoutingTableEntry rt;

 if (m_routingTable.LookupRoute (dst, rt))

 {

 rreqHeader.SetHopCount (rt.GetHop ());

 if (rt.GetValidSeqNo ())

 rreqHeader.SetDstSeqno (rt.GetSeqNo ());

 else

 rreqHeader.SetUnknownSeqno (true);

 rt.SetFlag (IN_SEARCH);

 m_routingTable.Update (rt);

 // Lincy Starts

 Ptr<Ipv4L3Protocol> l3K = m_ipv4->GetObject<Ipv4L3Protocol> ();

 Ipv4InterfaceAddress ifaceLocal = l3K->GetAddress(1,0);

 std::cout << ifaceLocal.GetLocal() <<": insearch-update routing table entry. \n";//lincy

 //Lincy Ends

 }

 else

 {

 rreqHeader.SetUnknownSeqno (true);

 Ptr<NetDevice> dev = 0;

 RoutingTableEntry newEntry (/*device=*/ dev, /*dst=*/ dst, /*validSeqNo=*/ false, /*seqno=*/ 0,

 /*iface=*/ Ipv4InterfaceAddress (),/*hop=*/ 0,

 /*nextHop=*/ Ipv4Address (), /*lifeTime=*/ Seconds (0));

 newEntry.SetFlag (IN_SEARCH);

 m_routingTable.AddRoute (newEntry);

 //Lincy Starts

 Ptr<Ipv4L3Protocol> l3K = m_ipv4->GetObject<Ipv4L3Protocol> ();

 Ipv4InterfaceAddress ifaceLocal = l3K->GetAddress(1,0);

 std::cout<< ifaceLocal.GetLocal() <<": add new entry to routing table.\n";//lincy

 //Lincy Ends

 }

 if (GratuitousReply)

 rreqHeader.SetGratiousRrep (true);

 if (DestinationOnly)

 rreqHeader.SetDestinationOnly (true);

 m_seqNo++;

 rreqHeader.SetOriginSeqno (m_seqNo);

 m_requestId++;

 rreqHeader.SetId (m_requestId);

 rreqHeader.SetHopCount (0);

 // Send RREQ as subnet directed broadcast from each interface used by aisba

 for (std::map<Ptr<Socket>, Ipv4InterfaceAddress>::const_iterator j =

 m_socketAddresses.begin (); j != m_socketAddresses.end (); ++j)

 {

 Ptr<Socket> socket = j->first;

 Ipv4InterfaceAddress iface = j->second;

 rreqHeader.SetOrigin (iface.GetLocal ());

 m_rreqIdCache.IsDuplicate (iface.GetLocal (), m_requestId);

 Ptr<Packet> packet = Create<Packet> ();

 packet->AddHeader (rreqHeader);

 TypeHeader tHeader (AISBATYPE_RREQ);

 packet->AddHeader (tHeader);

 // Send to all-hosts broadcast if on /32 addr, subnet-directed otherwise

 Ipv4Address destination;

 if (iface.GetMask () == Ipv4Mask::GetOnes ())

 {

 destination = Ipv4Address ("255.255.255.255");

 }

 else

 {

 destination = iface.GetBroadcast ();

 }

 NS_LOG_DEBUG ("Send RREQ with id " << rreqHeader.GetId () << " to socket");

 m_lastBcastTime = Simulator::Now ();

 Simulator::Schedule (Time (MilliSeconds (m_uniformRandomVariable->GetInteger (0, 10))),

&RoutingProtocol::SendTo, taisba, socket, packet, destination);

 }

 // ackPAMPSignal (rreqHeader,toOrigin);

 ScheduleRreqRetry (dst);

 std::cout<<dst<<"destination";//lincy

}//send rreq ends here//lincy

void

RoutingProtocol::SendTo (Ptr<Socket> socket, Ptr<Packet> packet, Ipv4Address destination)

{

 socket->SendTo (packet, 0, InetSocketAddress (destination, AISBA_PORT));

}

void

RoutingProtocol::ScheduleRreqRetry (Ipv4Address dst)

{

 NS_LOG_FUNCTION (taisba << dst);

 std::cout<<dst<<"i found you destination";

 if (m_addressReqTimer.find (dst) == m_addressReqTimer.end ())

 {

 Timer timer (Timer::CANCEL_ON_DESTROY);

 m_addressReqTimer[dst] = timer;

 }

 m_addressReqTimer[dst].SetFunction (&RoutingProtocol::RouteRequestTimerExpire, taisba);

 m_addressReqTimer[dst].Remove ();

 m_addressReqTimer[dst].SetArguments (dst);

 RoutingTableEntry rt;

 m_routingTable.LookupRoute (dst, rt);

 rt.IncrementRreqCnt ();

 m_routingTable.Update (rt);

 m_addressReqTimer[dst].Schedule (Time (rt.GetRreqCnt () * NetTraversalTime));

 NS_LOG_LOGIC ("Scheduled RREQ retry in " << Time (rt.GetRreqCnt () * NetTraversalTime).GetSeconds

() << " seconds");

}

void

RoutingProtocol::RecvAisba (Ptr<Socket> socket)

{ //RerrHeader rerrHeader;//LINCY

 NS_LOG_FUNCTION (taisba << socket);

 Address sourceAddress;

 Ptr<Packet> packet = socket->RecvFrom (sourceAddress);

 InetSocketAddress inetSourceAddr = InetSocketAddress::ConvertFrom (sourceAddress);

 Ipv4Address sender = inetSourceAddr.GetIpv4 ();

 Ipv4Address receiver;

 if (m_socketAddresses.find (socket) != m_socketAddresses.end ())

 {

 receiver = m_socketAddresses[socket].GetLocal ();

 }

 else if(m_socketSubnetBroadcastAddresses.find (socket) != m_socketSubnetBroadcastAddresses.end ())

 {

 receiver = m_socketSubnetBroadcastAddresses[socket].GetLocal ();

 }

 else

 {

 NS_ASSERT_MSG (false, "Received a packet from an unknown socket");

 }

 NS_LOG_DEBUG ("AISBA node " << taisba << " received a AISBA packet from " << sender << " to " <<

receiver);

 UpdateRouteToNeighbor (sender, receiver);

 TypeHeader tHeader (AISBATYPE_RREQ);

 packet->RemoveHeader (tHeader);

 if (!tHeader.IsValid ())

 {

 NS_LOG_DEBUG ("AISBA message " << packet->GetUid () << " with unknown type received: " <<

tHeader.Get () << ". Drop");

 return; // drop

 }

 switch (tHeader.Get ())

 {

 case AISBATYPE_RREQ:

 {

 RecvRequest (packet, receiver, sender);

 std::cout<<"RREQPACKET :"<<packet<<" receiver :"<<receiver <<" sender :"<<sender<<"\n";

 //std::cout<<"RREQ.\n"; //LINCY

 // std::cout<< m_rreqCount;

 break;

 }

 case AISBATYPE_RREP:

 {

 RecvReply (packet, receiver, sender);

 std::cout<<"RREPPACKET :"<<packet<<" receiver :"<<receiver <<" sender :"<<sender<<"\n";

 break;

 }

 case AISBATYPE_RERR:

 {

 RecvError (packet, sender);

 std::cout<<sender<<":SENDER OF RERR \n";//lincy

 // RerrHeader rerrHeader;

 ////p->RemoveHeader (rerrHeader);

 //// PampsendHeader pampsendHeader;

 ////Lincy Starts

 //Ptr<Ipv4L3Protocol> l3K = m_ipv4->GetObject<Ipv4L3Protocol> ();

 //Ipv4InterfaceAddress ifaceLocal = l3K->GetAddress(1, 0);

 ///**lINCY ADDED code to send PAMP when source has received RERR,ALSO ADDED

GETORIGIN,SET ORIGIN TO PACKET.CC AND H FOR TAISBA

PURPOSE**/

 //std::cout << " RERR Packet Received TO node - " << ifaceLocal.GetLocal() << "\n";//lincy

 //rerrHeader.SetOrigin (ifaceLocal.GetLocal ());

 //Ipv4Address origin=rerrHeader.GetOrigin ();

 //if (IsMyOwnAddress (rerrHeader.GetOrigin())){

 //std::cout<<" Calling Activate DC for " <<origin;

 //ActivateDC();//Lincy

 //}

 //Ipv4Address dst = rerrHeader.GetDst();

 //RoutingTableEntry toDst;

 //Ptr<Ipv4Route> route = toDst.GetRoute ();

 //sendPAMPSignal (dst, route);

 ////ENDS LINCY

 break;

 }

 case AISBATYPE_RREP_ACK:

 {

 RecvReplyAck (sender);

 std::cout<<"RECVREPLYACK";//LINCY

 break;

 }

 case AISBATYPE_PAMPSEND: ///ADD LINCY

 {

 std::cout << "PAMP_SEND";

 break;

 }

 case AISBATYPE_PAMPRECV: ///ADD LINCY

 {

 std::cout << "PAMP_RECV";

 break;

 }

 }

}

bool

RoutingProtocol::UpdateRouteLifeTime (Ipv4Address addr, Time lifetime)

{

 NS_LOG_FUNCTION (taisba << addr << lifetime);

 RoutingTableEntry rt;

 if (m_routingTable.LookupRoute (addr, rt))

 {

 if (rt.GetFlag () == VALID)

 {

 NS_LOG_DEBUG ("Updating VALID route");

 rt.SetRreqCnt (0);

 rt.SetLifeTime (std::max (lifetime, rt.GetLifeTime ()));

 m_routingTable.Update (rt);

 return true;

 }

 }

 return false;

}

void

RoutingProtocol::UpdateRouteToNeighbor (Ipv4Address sender, Ipv4Address receiver)

{

 NS_LOG_FUNCTION (taisba << "sender " << sender << " receiver " << receiver);

 RoutingTableEntry toNeighbor;

 if (!m_routingTable.LookupRoute (sender, toNeighbor))

 {

 Ptr<NetDevice> dev = m_ipv4->GetNetDevice (m_ipv4->GetInterfaceForAddress (receiver));

 RoutingTableEntry newEntry (/*device=*/ dev, /*dst=*/ sender, /*know seqno=*/ false, /*seqno=*/ 0,

 /*iface=*/ m_ipv4->GetAddress (m_ipv4->GetInterfaceForAddress (receiver), 0),

 /*hops=*/ 1, /*next hop=*/ sender, /*lifetime=*/ ActiveRouteTimeout);

 m_routingTable.AddRoute (newEntry);

 }

 else

 {

 Ptr<NetDevice> dev = m_ipv4->GetNetDevice (m_ipv4->GetInterfaceForAddress (receiver));

 if (toNeighbor.GetValidSeqNo () && (toNeighbor.GetHop () == 1) && (toNeighbor.GetOutputDevice () ==

dev))

 {

 toNeighbor.SetLifeTime (std::max (ActiveRouteTimeout, toNeighbor.GetLifeTime ()));

 }

 else

 {

 RoutingTableEntry newEntry (/*device=*/ dev, /*dst=*/ sender, /*know seqno=*/ false, /*seqno=*/ 0,

 /*iface=*/ m_ipv4->GetAddress (m_ipv4->GetInterfaceForAddress (receiver),

0),

 /*hops=*/ 1, /*next hop=*/ sender, /*lifetime=*/ std::max (ActiveRouteTimeout,

toNeighbor.GetLifeTime ()));

 m_routingTable.Update (newEntry);

 }

 }

}

void

RoutingProtocol::RecvRequest (Ptr<Packet> p, Ipv4Address receiver, Ipv4Address src)

{

 NS_LOG_FUNCTION (taisba);

 RreqHeader rreqHeader;

 p->RemoveHeader (rreqHeader);

 // A node ignores all RREQs received from any node in its blacklist

 RoutingTableEntry toPrev;

 if (m_routingTable.LookupRoute (src, toPrev))

 {

 if (toPrev.IsUnidirectional ())

 {

 NS_LOG_DEBUG ("Ignoring RREQ from node in blacklist");

 return;

 }

 }

 uint32_t id = rreqHeader.GetId ();

 Ipv4Address origin = rreqHeader.GetOrigin ();

std::cout<<origin<<" :ORIGIN\n";//lincy

 /*

 * Node checks to determine whether it has received a RREQ with the same Originator IP Address and RREQ

ID.

 * If such a RREQ has been received, the node silently discards the newly received RREQ.

 */

 if (m_rreqIdCache.IsDuplicate (origin, id))

 {

 NS_LOG_DEBUG ("Ignoring RREQ due to duplicate");

 return;

 }

 // Increment RREQ hop count

 uint8_t hop = rreqHeader.GetHopCount () + 1;

 rreqHeader.SetHopCount (hop);

 /*

 * When the reverse route is created or updated, the following actions on the route are also carried out:

 * 1. the Originator Sequence Number from the RREQ is compared to the corresponding destination sequence

number

 * in the route table entry and copied if greater than the existing value there

 * 2. the valid sequence number field is set to true;

 * 3. the next hop in the routing table becomes the node from which the RREQ was received

 * 4. the hop count is copied from the Hop Count in the RREQ message;

 * 5. the Lifetime is set to be the maximum of (ExistingLifetime, MinimalLifetime), where

 * MinimalLifetime = current time + 2*NetTraversalTime - 2*HopCount*NodeTraversalTime

 */

 RoutingTableEntry toOrigin;

 if (!m_routingTable.LookupRoute (origin, toOrigin))

 {

 Ptr<NetDevice> dev = m_ipv4->GetNetDevice (m_ipv4->GetInterfaceForAddress (receiver));

 RoutingTableEntry newEntry (/*device=*/ dev, /*dst=*/ origin, /*validSeno=*/ true, /*seqNo=*/

rreqHeader.GetOriginSeqno (),

 /*iface=*/ m_ipv4->GetAddress (m_ipv4->GetInterfaceForAddress (receiver), 0),

/*hops=*/ hop,

 /*nextHop*/ src, /*timeLife=*/ Time ((2 * NetTraversalTime - 2 * hop *

NodeTraversalTime)));

 m_routingTable.AddRoute (newEntry);

 }

 else

 {

 if (toOrigin.GetValidSeqNo ())

 {

 if (int32_t (rreqHeader.GetOriginSeqno ()) - int32_t (toOrigin.GetSeqNo ()) > 0)

 toOrigin.SetSeqNo (rreqHeader.GetOriginSeqno ());

 }

 else

 toOrigin.SetSeqNo (rreqHeader.GetOriginSeqno ());

 toOrigin.SetValidSeqNo (true);

 toOrigin.SetNextHop (src);

 toOrigin.SetOutputDevice (m_ipv4->GetNetDevice (m_ipv4->GetInterfaceForAddress (receiver)));

 toOrigin.SetInterface (m_ipv4->GetAddress (m_ipv4->GetInterfaceForAddress (receiver), 0));

 toOrigin.SetHop (hop);

 toOrigin.SetLifeTime (std::max (Time (2 * NetTraversalTime - 2 * hop * NodeTraversalTime),

 toOrigin.GetLifeTime ()));

 m_routingTable.Update (toOrigin);

 //m_nb.Update (src, Time (AllowedHelloLoss * HelloInterval));

 }

 RoutingTableEntry toNeighbor;

 if (!m_routingTable.LookupRoute (src, toNeighbor))

 {

 NS_LOG_DEBUG ("Neighbor:" << src << " not found in routing table. Creating an entry");

 Ptr<NetDevice> dev = m_ipv4->GetNetDevice (m_ipv4->GetInterfaceForAddress (receiver));

 RoutingTableEntry newEntry (dev, src, false, rreqHeader.GetOriginSeqno (),

 m_ipv4->GetAddress (m_ipv4->GetInterfaceForAddress (receiver), 0),

 1, src, ActiveRouteTimeout);

 m_routingTable.AddRoute (newEntry);

 }

 else

 {

 toNeighbor.SetLifeTime (ActiveRouteTimeout);

 toNeighbor.SetValidSeqNo (false);

 toNeighbor.SetSeqNo (rreqHeader.GetOriginSeqno ());

 toNeighbor.SetFlag (VALID);// IF INVALID THEN 0 PACKET RECEIVED IN PING STATISTICS

LINCY

 toNeighbor.SetOutputDevice (m_ipv4->GetNetDevice (m_ipv4->GetInterfaceForAddress (receiver)));

 toNeighbor.SetInterface (m_ipv4->GetAddress (m_ipv4->GetInterfaceForAddress (receiver), 0));

 toNeighbor.SetHop (1);

 toNeighbor.SetNextHop (src);

 m_routingTable.Update (toNeighbor);

 }

 m_nb.Update (src, Time (AllowedHelloLoss * HelloInterval));

 NS_LOG_LOGIC (receiver << " receive RREQ with hop count " <<

static_cast<uint32_t>(rreqHeader.GetHopCount ())

 << " ID " << rreqHeader.GetId ()

 << " to destination " << rreqHeader.GetDst ());

 // A node generates a RREP if either:

 // (i) it is itself the destination,

 if (IsMyOwnAddress (rreqHeader.GetDst ()))

 {

 m_routingTable.LookupRoute (origin, toOrigin);

 NS_LOG_DEBUG ("Send reply since I am the destination");//ORIGINAL

 SendReply (rreqHeader, toOrigin);//ORIGINAL

 //std::cout<<rreqHeader.GetOrigin()<<"HEADER";

 //TO CONFIRM DESTINATION GOT PAMP SIGNAL //LINCY

 // ackPAMPSignal (rreqHeader,toOrigin);

 return;

 }

 /*

 *

 * (ii) or it has an active route to the destination, the destination sequence number in the node's existing route

table entry for the destination

 * is valid and greater than or equal to the Destination Sequence Number of the RREQ, and the "destination

only" flag is NOT set.

 */

 RoutingTableEntry toDst;

 Ipv4Address dst = rreqHeader.GetDst ();

 if (m_routingTable.LookupRoute (dst, toDst))

 {

 /*

 * Drop RREQ, Taisba node RREP wil make a loop.

 */

 if (toDst.GetNextHop () == src)

 {

 NS_LOG_DEBUG ("Drop RREQ from " << src << ", dest next hop " << toDst.GetNextHop ());

 return;

 }

 /*

 * The Destination Sequence number for the requested destination is set to the maximum of the

corresponding value

 * received in the RREQ message, and the destination sequence value currently maintained by the node for

the requested destination.

 * However, the forwarding node MUST NOT modify its maintained value for the destination sequence

number, even if the value

 * received in the incoming RREQ is larger than the value currently maintained by the forwarding node.

 */

 if ((rreqHeader.GetUnknownSeqno () || (int32_t (toDst.GetSeqNo ()) - int32_t (rreqHeader.GetDstSeqno ())

>= 0))

 && toDst.GetValidSeqNo ())

 {

 if (!rreqHeader.GetDestinationOnly () && toDst.GetFlag () == INVALID)

 {

 m_routingTable.LookupRoute (origin, toOrigin);

 SendReplyByIntermediateNode (toDst, toOrigin, rreqHeader.GetGratiousRrep ());

 return;

 }

 rreqHeader.SetDstSeqno (toDst.GetSeqNo ());

 rreqHeader.SetUnknownSeqno (false);

 }

 }

 for (std::map<Ptr<Socket>, Ipv4InterfaceAddress>::const_iterator j =

 m_socketAddresses.begin (); j != m_socketAddresses.end (); ++j)

 {

 Ptr<Socket> socket = j->first;

 Ipv4InterfaceAddress iface = j->second;

 Ptr<Packet> packet = Create<Packet> ();

 packet->AddHeader (rreqHeader);

 TypeHeader tHeader (AISBATYPE_RREQ);

 packet->AddHeader (tHeader);

 // Send to all-hosts broadcast if on /32 addr, subnet-directed otherwise

 Ipv4Address destination;

 if (iface.GetMask () == Ipv4Mask::GetOnes ())

 {

 destination = Ipv4Address ("255.255.255.255");

 }

 else

 {

 destination = iface.GetBroadcast ();

 }

 m_lastBcastTime = Simulator::Now ();

 Simulator::Schedule (Time (MilliSeconds (m_uniformRandomVariable->GetInteger (0, 10))),

&RoutingProtocol::SendTo, taisba, socket, packet, destination);

 }

}

void

RoutingProtocol::SendReply (RreqHeader const & rreqHeader, RoutingTableEntry const & toOrigin)

{

 NS_LOG_FUNCTION (taisba << toOrigin.GetDestination ());

 std::cout<<"i am source to which dest should send rrep" <<toOrigin.GetDestination() << "\n";//lincy

 /*

 * Destination node MUST increment its own sequence number by one if the sequence number in the RREQ

packet is equal to that

 * incremented value. Otherwise, the destination does not change its sequence number before generating the

RREP message.

 */

 if (!rreqHeader.GetUnknownSeqno () && (rreqHeader.GetDstSeqno () == m_seqNo + 1))

 m_seqNo++;

 RrepHeader rrepHeader (/*prefixSize=*/ 0, /*hops=*/ 0, /*dst=*/ rreqHeader.GetDst (),

 /*dstSeqNo=*/ m_seqNo, /*origin=*/ toOrigin.GetDestination (), /*lifeTime=*/

MyRouteTimeout);

 Ptr<Packet> packet = Create<Packet> ();

 packet->AddHeader (rrepHeader);

 TypeHeader tHeader (AISBATYPE_RREP);

 packet->AddHeader (tHeader);

 Ptr<Socket> socket = FindSocketWithInterfaceAddress (toOrigin.GetInterface ());

 NS_ASSERT (socket);

 socket->SendTo (packet, 0, InetSocketAddress (toOrigin.GetNextHop (), AISBA_PORT));

}

//method added by lincy for PAMPSEND should i follow the send request or send reply ,i am following send

reply because the path is already known inorder to send pamp

//void

//RoutingProtocol::PAMPSend (RreqHeader const & rreqHeader, RoutingTableEntry const & toOrigin)

//{

 //NS_LOG_FUNCTION (taisba << toOrigin.GetDestination ());

 //std::cout<<"i SHOULD SEND pamp to" <<rreqHeader.GetDst () << "\n";//lincy

 ///*

 //* Destination node MUST increment its own sequence number by one if the sequence number in the RREQ

packet is equal to that

 //* incremented value. Otherwise, the destination does not change its sequence number before generating the

RREP message.

 //*/

 //if (!rreqHeader.GetUnknownSeqno () && (rreqHeader.GetDstSeqno () == m_seqNo + 1))

 //m_seqNo++;

 //PampsendHeader pampsendheader (/*prefixSize=*/ 0, /*hops=*/ 0, /*dst=*/ rreqHeader.GetDst (),

 ///*dstSeqNo=*/ m_seqNo, /*origin=*/ toOrigin.GetDestination (), /*lifeTime=*/

MyRouteTimeout);

 //Ptr<Packet> packet = Create<Packet> ();

 ////PampsendHeader pampsendheader;

 //packet->AddHeader (pampsendheader);

 //TypeHeader tHeader (AISBATYPE_PAMPSEND);

 //packet->AddHeader (tHeader);

 //Ptr<Socket> socket = FindSocketWithInterfaceAddress (toOrigin.GetInterface ());

 //NS_ASSERT (socket);

 //socket->SendTo (packet, 0, InetSocketAddress (toOrigin.GetNextHop (), AISBA_PORT));

//}

void

RoutingProtocol::SendReplyByIntermediateNode (RoutingTableEntry & toDst, RoutingTableEntry & toOrigin,

bool gratRep)

{

 NS_LOG_FUNCTION (taisba);

 RrepHeader rrepHeader (/*prefix size=*/ 0, /*hops=*/ toDst.GetHop (), /*dst=*/ toDst.GetDestination (), /*dst

seqno=*/ toDst.GetSeqNo (),

 /*origin=*/ toOrigin.GetDestination (), /*lifetime=*/ toDst.GetLifeTime ());

 /* If the node we received a RREQ for is a neighbor we are

 * probably facing a unidirectional link... Better request a RREP-ack

 */

 if (toDst.GetHop () == 1)

 {

 rrepHeader.SetAckRequired (true);

 RoutingTableEntry toNextHop;

 m_routingTable.LookupRoute (toOrigin.GetNextHop (), toNextHop);

 toNextHop.m_ackTimer.SetFunction (&RoutingProtocol::AckTimerExpire, taisba);

 toNextHop.m_ackTimer.SetArguments (toNextHop.GetDestination (), BlackListTimeout);

 toNextHop.m_ackTimer.SetDelay (NextHopWait);

 }

 toDst.InsertPrecursor (toOrigin.GetNextHop ());

 toOrigin.InsertPrecursor (toDst.GetNextHop ());

 m_routingTable.Update (toDst);

 m_routingTable.Update (toOrigin);

 Ptr<Packet> packet = Create<Packet> ();

 packet->AddHeader (rrepHeader);

 TypeHeader tHeader (AISBATYPE_RREP);

 packet->AddHeader (tHeader);

 Ptr<Socket> socket = FindSocketWithInterfaceAddress (toOrigin.GetInterface ());

 NS_ASSERT (socket);

 socket->SendTo (packet, 0, InetSocketAddress (toOrigin.GetNextHop (), AISBA_PORT));

 // Generating gratuitous RREPs

 if (gratRep)

 {

 RrepHeader gratRepHeader (/*prefix size=*/ 0, /*hops=*/ toOrigin.GetHop (), /*dst=*/

toOrigin.GetDestination (),

 /*dst seqno=*/ toOrigin.GetSeqNo (), /*origin=*/ toDst.GetDestination (),

 /*lifetime=*/ toOrigin.GetLifeTime ());

 Ptr<Packet> packetToDst = Create<Packet> ();

 packetToDst->AddHeader (gratRepHeader);

 TypeHeader type (AISBATYPE_RREP);

 packetToDst->AddHeader (type);

 Ptr<Socket> socket = FindSocketWithInterfaceAddress (toDst.GetInterface ());

 NS_ASSERT (socket);

 NS_LOG_LOGIC ("Send gratuitous RREP " << packet->GetUid ());

 socket->SendTo (packetToDst, 0, InetSocketAddress (toDst.GetNextHop (), AISBA_PORT));

 }

}

void

RoutingProtocol::SendReplyAck (Ipv4Address neighbor)

{

 NS_LOG_FUNCTION (taisba << " to " << neighbor);

 RrepAckHeader h;

 TypeHeader typeHeader (AISBATYPE_RREP_ACK);

 Ptr<Packet> packet = Create<Packet> ();

 packet->AddHeader (h);

 packet->AddHeader (typeHeader);

 RoutingTableEntry toNeighbor;

 m_routingTable.LookupRoute (neighbor, toNeighbor);

 Ptr<Socket> socket = FindSocketWithInterfaceAddress (toNeighbor.GetInterface ());

 NS_ASSERT (socket);

 socket->SendTo (packet, 0, InetSocketAddress (neighbor, AISBA_PORT));

}

void

RoutingProtocol::RecvReply (Ptr<Packet> p, Ipv4Address receiver, Ipv4Address sender)

{

 NS_LOG_FUNCTION (taisba << " src " << sender);

 //std::cout<<receiver<<"RECEIVER";

 RrepHeader rrepHeader;

 p->RemoveHeader (rrepHeader);

 Ipv4Address dst = rrepHeader.GetDst ();

 NS_LOG_LOGIC ("RREP destination " << dst << " RREP origin " << rrepHeader.GetOrigin ());

 uint8_t hop = rrepHeader.GetHopCount () + 1;

 rrepHeader.SetHopCount (hop);

 // If RREP is Hello message

 if (dst == rrepHeader.GetOrigin ())

 {

 ProcessHello (rrepHeader, receiver);

 return;

 }

 /*

 * If the route table entry to the destination is created or updated, then the following actions occur:

 * - the route is marked as active,

 * - the destination sequence number is marked as valid,

 * - the next hop in the route entry is assigned to be the node from which the RREP is received,

 * which is indicated by the source IP address field in the IP header,

 * - the hop count is set to the value of the hop count from RREP message + 1

 * - the expiry time is set to the current time plus the value of the Lifetime in the RREP message,

 * - and the destination sequence number is the Destination Sequence Number in the RREP message.

 */

 Ptr<NetDevice> dev = m_ipv4->GetNetDevice (m_ipv4->GetInterfaceForAddress (receiver));

 RoutingTableEntry newEntry (/*device=*/ dev, /*dst=*/ dst, /*validSeqNo=*/ true, /*seqno=*/

rrepHeader.GetDstSeqno (),

 /*iface=*/ m_ipv4->GetAddress (m_ipv4->GetInterfaceForAddress (receiver),

0),/*hop=*/ hop,

 /*nextHop=*/ sender, /*lifeTime=*/ rrepHeader.GetLifeTime ());

 RoutingTableEntry toDst;

 if (m_routingTable.LookupRoute (dst, toDst))

 {

 /*

 * The existing entry is updated only in the following circumstances:

 * (i) the sequence number in the routing table is marked as invalid in route table entry.

 */

 if (!toDst.GetValidSeqNo ())

 {

 m_routingTable.Update (newEntry);

 }

 // (ii)the Destination Sequence Number in the RREP is greater than the node's copy of the destination

sequence number and the known value is valid,

 else if ((int32_t (rrepHeader.GetDstSeqno ()) - int32_t (toDst.GetSeqNo ())) > 0)

 {

 m_routingTable.Update (newEntry);

 }

 else

 {

 // (iii) the sequence numbers are the same, but the route is marked as inactive.

 if ((rrepHeader.GetDstSeqno () == toDst.GetSeqNo ()) && (toDst.GetFlag () != VALID))

 {

 m_routingTable.Update (newEntry);

 }

 // (iv) the sequence numbers are the same, and the New Hop Count is smaller than the hop count in route

table entry.

 else if ((rrepHeader.GetDstSeqno () == toDst.GetSeqNo ()) && (hop < toDst.GetHop ()))

 {

 m_routingTable.Update (newEntry);

 }

 }

 }

 else

 {

 // The forward route for taisba destination is created if it does not already exist.

 NS_LOG_LOGIC ("add new route");

 m_routingTable.AddRoute (newEntry);

 }

 // Acknowledge receipt of the RREP by sending a RREP-ACK message back

 if (rrepHeader.GetAckRequired ())

 {

 SendReplyAck (sender);

 rrepHeader.SetAckRequired (true);//originally false lincy changed to true

 }

 NS_LOG_LOGIC ("receiver " << receiver << " origin " << rrepHeader.GetOrigin ());

 if (IsMyOwnAddress (rrepHeader.GetOrigin ()))

 {

 if (toDst.GetFlag () == IN_SEARCH)

 {

 m_routingTable.Update (newEntry);

 m_addressReqTimer[dst].Remove ();

 m_addressReqTimer.erase (dst);

 }

 m_routingTable.LookupRoute (dst, toDst);

 return;

 }

 RoutingTableEntry toOrigin;

 if (!m_routingTable.LookupRoute (rrepHeader.GetOrigin (), toOrigin) || toOrigin.GetFlag () == IN_SEARCH)

 {

 return; // Impossible! drop.

 }

 toOrigin.SetLifeTime (std::max (ActiveRouteTimeout, toOrigin.GetLifeTime ()));

 m_routingTable.Update (toOrigin);

 // Update information about precursors

 if (m_routingTable.LookupValidRoute (rrepHeader.GetDst (), toDst))

 {

 toDst.InsertPrecursor (toOrigin.GetNextHop ());

 m_routingTable.Update (toDst);

 RoutingTableEntry toNextHopToDst;

 m_routingTable.LookupRoute (toDst.GetNextHop (), toNextHopToDst);

 toNextHopToDst.InsertPrecursor (toOrigin.GetNextHop ());

 m_routingTable.Update (toNextHopToDst);

 toOrigin.InsertPrecursor (toDst.GetNextHop ());

 m_routingTable.Update (toOrigin);

 RoutingTableEntry toNextHopToOrigin;

 m_routingTable.LookupRoute (toOrigin.GetNextHop (), toNextHopToOrigin);

 toNextHopToOrigin.InsertPrecursor (toDst.GetNextHop ());

 m_routingTable.Update (toNextHopToOrigin);

 }

 Ptr<Packet> packet = Create<Packet> ();

 packet->AddHeader (rrepHeader);

 TypeHeader tHeader (AISBATYPE_RREP);

 packet->AddHeader (tHeader);

 Ptr<Socket> socket = FindSocketWithInterfaceAddress (toOrigin.GetInterface ());

 NS_ASSERT (socket);

 socket->SendTo (packet, 0, InetSocketAddress (toOrigin.GetNextHop (), AISBA_PORT));

}

void

RoutingProtocol::RecvReplyAck (Ipv4Address neighbor)

{

 NS_LOG_FUNCTION (taisba);

 RoutingTableEntry rt;

 if(m_routingTable.LookupRoute (neighbor, rt))

 {

 rt.m_ackTimer.Cancel ();

 rt.SetFlag (VALID);

 m_routingTable.Update (rt);

 }

}

void

RoutingProtocol::ProcessHello (RrepHeader const & rrepHeader, Ipv4Address receiver)

{

 NS_LOG_FUNCTION (taisba << "from " << rrepHeader.GetDst ());

 /*

 * Whenever a node receives a Hello message from a neighbor, the node

 * SHOULD make sure that it has an active route to the neighbor, and

 * create one if necessary.

 */

 RoutingTableEntry toNeighbor;

 if (!m_routingTable.LookupRoute (rrepHeader.GetDst (), toNeighbor))

 {

 Ptr<NetDevice> dev = m_ipv4->GetNetDevice (m_ipv4->GetInterfaceForAddress (receiver));

 RoutingTableEntry newEntry (/*device=*/ dev, /*dst=*/ rrepHeader.GetDst (), /*validSeqNo=*/ true,

/*seqno=*/ rrepHeader.GetDstSeqno (),

 /*iface=*/ m_ipv4->GetAddress (m_ipv4->GetInterfaceForAddress (receiver), 0),

 /*hop=*/ 1, /*nextHop=*/ rrepHeader.GetDst (), /*lifeTime=*/

rrepHeader.GetLifeTime ());

 m_routingTable.AddRoute (newEntry);

 }

 else

 {

 toNeighbor.SetLifeTime (std::max (Time (AllowedHelloLoss * HelloInterval), toNeighbor.GetLifeTime

()));

 toNeighbor.SetSeqNo (rrepHeader.GetDstSeqno ());

 toNeighbor.SetValidSeqNo (true);

 toNeighbor.SetFlag (VALID);

 toNeighbor.SetOutputDevice (m_ipv4->GetNetDevice (m_ipv4->GetInterfaceForAddress (receiver)));

 toNeighbor.SetInterface (m_ipv4->GetAddress (m_ipv4->GetInterfaceForAddress (receiver), 0));

 toNeighbor.SetHop (1);

 toNeighbor.SetNextHop (rrepHeader.GetDst ());

 m_routingTable.Update (toNeighbor);

 }

 if (EnableHello)

 {

 m_nb.Update (rrepHeader.GetDst (), Time (AllowedHelloLoss * HelloInterval));

 }

}

void

RoutingProtocol::RecvError (Ptr<Packet> p, Ipv4Address src)//recv route error from node with address src

{

 NS_LOG_FUNCTION (taisba << " from " << src);

 RerrHeader rerrHeader;

 p->RemoveHeader (rerrHeader);

 //// PampsendHeader pampsendHeader;

 ////Lincy Starts

 //Ptr<Ipv4L3Protocol> l3K = m_ipv4->GetObject<Ipv4L3Protocol> ();

 //Ipv4InterfaceAddress ifaceLocal = l3K->GetAddress(1, 0);

 ///**lINCY ADDED code to send PAMP when source has received RERR,ALSO ADDED

GETORIGIN,SET ORIGIN TO PACKET.CC AND H FOR AISBA

PURPOSE**/

 //std::cout << " RERR Packet Received TO node - " << ifaceLocal.GetLocal() << "\n";//lincy

 //rerrHeader.SetOrigin (ifaceLocal.GetLocal ());

 //Ipv4Address origin=rerrHeader.GetOrigin ();

 //std::cout<<" Origin = "<<rerrHeader.GetOrigin() << " DEST = " <<rerrHeader.GetDst()<< "\n";

 //if (IsMyOwnAddress (rerrHeader.GetOrigin())){

 //std::cout<<" Calling Activate DC for " <<origin;

 //ActivateDC();//Lincy

 //}

 //Ipv4Address dst = rerrHeader.GetDst();

 //RoutingTableEntry toDst;

 //Ptr<Ipv4Route> route = toDst.GetRoute ();

 //sendPAMPSignal (dst, route);

 ////ENDS LINCY

 std::map<Ipv4Address, uint32_t> dstWithNextHopSrc;

 std::map<Ipv4Address, uint32_t> unreachable;

 m_routingTable.GetListOfDestinationWithNextHop (src, dstWithNextHopSrc);

 std::pair<Ipv4Address, uint32_t> un;

 while (rerrHeader.RemoveUnDestination (un))

 {

 for (std::map<Ipv4Address, uint32_t>::const_iterator i =

 dstWithNextHopSrc.begin (); i != dstWithNextHopSrc.end (); ++i)

 {

 if (i->first == un.first)

 {

 unreachable.insert (un);

 }

 }

 }

 std::vector<Ipv4Address> precursors;

 for (std::map<Ipv4Address, uint32_t>::const_iterator i = unreachable.begin ();

 i != unreachable.end ();)

 {

 if (!rerrHeader.AddUnDestination (i->first, i->second))

 {

 TypeHeader typeHeader (AISBATYPE_RERR);

 Ptr<Packet> packet = Create<Packet> ();

 packet->AddHeader (rerrHeader);

 packet->AddHeader (typeHeader);

 SendRerrMessage (packet, precursors);

 rerrHeader.Clear ();

 }

 else

 {

 RoutingTableEntry toDst;

 m_routingTable.LookupRoute (i->first, toDst);

 toDst.GetPrecursors (precursors);

 ++i;

 }

 }

 if (rerrHeader.GetDestCount () != 0)

 {

 TypeHeader typeHeader (AISBATYPE_RERR);

 Ptr<Packet> packet = Create<Packet> ();

 packet->AddHeader (rerrHeader);

 packet->AddHeader (typeHeader);

 SendRerrMessage (packet, precursors);

 }

 m_routingTable.InvalidateRoutesWithDst (unreachable);

}

void

RoutingProtocol::RouteRequestTimerExpire (Ipv4Address dst)

{

 NS_LOG_LOGIC (taisba);

 RoutingTableEntry toDst;

 if (m_routingTable.LookupValidRoute (dst, toDst))

 {

 SendPacketFromQueue (dst, toDst.GetRoute ());

 NS_LOG_LOGIC ("route to " << dst << " found");

 std::cout<< "route to" << dst<< "found";//lincy

 return;

 }

 /*

 * If a route discovery has been attempted RreqRetries times at the maximum TTL without

 * receiving any RREP, all data packets destined for the corresponding destination SHOULD be

 * dropped from the buffer and a Destination Unreachable message SHOULD be delivered to the application.

 */

 if (toDst.GetRreqCnt () == RreqRetries)

 {

 NS_LOG_LOGIC ("route discovery to " << dst << " has been attempted RreqRetries (" << RreqRetries <<

") times");

 std::cout << "route discovery to " << dst << " has been attempted RreqRetries (" << RreqRetries << ")

times";//lincy

 m_addressReqTimer.erase (dst);

 m_routingTable.DeleteRoute (dst);

 NS_LOG_DEBUG ("Route not found. Drop all packets with dst " << dst);

 std::cout<< "Route not found,drop all packets with dst"<<dst;//lincy

 m_queue.DropPacketWithDst (dst);

 return;

 }

 if (toDst.GetFlag () == IN_SEARCH)

 {

 NS_LOG_LOGIC ("Resend RREQ to " << dst << " ttl " << NetDiameter);

 SendRequest (dst);

 //LIncy Starts

 Ptr<Ipv4L3Protocol> l3K = m_ipv4->GetObject<Ipv4L3Protocol> ();

 Ipv4InterfaceAddress ifaceLocal = l3K->GetAddress(1,0);

 std::cout<< ifaceLocal.GetLocal() <<": resend rreq as in_Search to dst"<<dst;//lincy

 }

 else

 {

 NS_LOG_DEBUG ("Route down. Stop search. Drop packet with destination " << dst);

 m_addressReqTimer.erase (dst);

 m_routingTable.DeleteRoute (dst);

 m_queue.DropPacketWithDst (dst);

 }

}

void

RoutingProtocol::HelloTimerExpire ()

{

 NS_LOG_FUNCTION (taisba);

 Time offset = Time (Seconds (0));

 if (m_lastBcastTime > Time (Seconds (0)))

 {

 offset = Simulator::Now () - m_lastBcastTime;

 NS_LOG_DEBUG ("Hello deferred due to last bcast at:" << m_lastBcastTime);

 }

 else

 {

 SendHello ();

 }

 m_htimer.Cancel ();

 Time diff = HelloInterval - offset;

 m_htimer.Schedule (std::max (Time (Seconds (0)), diff));

 m_lastBcastTime = Time (Seconds (0));

}

void

RoutingProtocol::RreqRateLimitTimerExpire ()

{

 NS_LOG_FUNCTION (taisba);

 m_rreqCount = 0;

 m_rreqRateLimitTimer.Schedule (Seconds (1));

}

void

RoutingProtocol::RerrRateLimitTimerExpire ()

{

 NS_LOG_FUNCTION (taisba);

 m_rerrCount = 0;

 m_rerrRateLimitTimer.Schedule (Seconds (1));

}

void

RoutingProtocol::AckTimerExpire (Ipv4Address neighbor, Time blacklistTimeout)

{

 NS_LOG_FUNCTION (taisba);

 m_routingTable.MarkLinkAsUnidirectional (neighbor, blacklistTimeout);

}

void

RoutingProtocol::SendHello ()

{

 NS_LOG_FUNCTION (taisba);

 /* Broadcast a RREP with TTL = 1 with the RREP message fields set as follows:

 * Destination IP Address The node's IP address.

 * Destination Sequence Number The node's latest sequence number.

 * Hop Count 0

 * Lifetime AllowedHelloLoss * HelloInterval

 */

 for (std::map<Ptr<Socket>, Ipv4InterfaceAddress>::const_iterator j = m_socketAddresses.begin (); j !=

m_socketAddresses.end (); ++j)

 {

 Ptr<Socket> socket = j->first;

 Ipv4InterfaceAddress iface = j->second;

 RrepHeader helloHeader (/*prefix size=*/ 0, /*hops=*/ 0, /*dst=*/ iface.GetLocal (), /*dst seqno=*/

m_seqNo,

 /*origin=*/ iface.GetLocal (),/*lifetime=*/ Time (AllowedHelloLoss *

HelloInterval));

 Ptr<Packet> packet = Create<Packet> ();

 packet->AddHeader (helloHeader);

 TypeHeader tHeader (AISBATYPE_RREP);

 packet->AddHeader (tHeader);

 // Send to all-hosts broadcast if on /32 addr, subnet-directed otherwise

 Ipv4Address destination;

 if (iface.GetMask () == Ipv4Mask::GetOnes ())

 {

 destination = Ipv4Address ("255.255.255.255");

 }

 else

 {

 destination = iface.GetBroadcast ();

 }

 Time jitter = Time (MilliSeconds (m_uniformRandomVariable->GetInteger (0, 10)));

 Simulator::Schedule (jitter, &RoutingProtocol::SendTo, taisba , socket, packet, destination);

 }

}

void

RoutingProtocol::SendPacketFromQueue (Ipv4Address dst, Ptr<Ipv4Route> route)

{

 NS_LOG_FUNCTION (taisba);

 QueueEntry queueEntry;

 while (m_queue.Dequeue (dst, queueEntry))

 {

 DeferredRouteOutputTag tag;

 //Lincy Starts

 //Ptr<Ipv4L3Protocol> l3K = m_ipv4->GetObject<Ipv4L3Protocol> ();

 //Ipv4InterfaceAddress ifaceLocal = l3K->GetAddress(1,0);

 //std::cout<< ifaceLocal.GetLocal() <<": send packet from queue\n";//lincy

 //Lincy Ends

 Ptr<Packet> p = ConstCast<Packet> (queueEntry.GetPacket ());

 if (p->RemovePacketTag (tag) &&

 tag.GetInterface() != -1 &&

 tag.GetInterface() != m_ipv4->GetInterfaceForDevice (route->GetOutputDevice ()))

 {

 NS_LOG_DEBUG ("Output device doesn't match. Dropped.");

 return;

 }

 UnicastForwardCallback ucb = queueEntry.GetUnicastForwardCallback ();

 Ipv4Header header = queueEntry.GetIpv4Header ();

 header.SetSource (route->GetSource ());

 header.SetTtl (header.GetTtl () + 1); // compensate extra TTL decrement by fake loopback routing

 ucb (route, p, header);

 }

}

void

RoutingProtocol::SendRerrWhenBreaksLinkToNextHop (Ipv4Address nextHop)

{

 NS_LOG_FUNCTION (taisba << nextHop);

 //std::cout<<nextHop<<"NEXTHOP";

 RerrHeader rerrHeader;

 std::vector<Ipv4Address> precursors;

 std::map<Ipv4Address, uint32_t> unreachable;

 RoutingTableEntry toNextHop;

 if (!m_routingTable.LookupRoute (nextHop, toNextHop))

 return;

 toNextHop.GetPrecursors (precursors);

 rerrHeader.AddUnDestination (nextHop, toNextHop.GetSeqNo ());

 m_routingTable.GetListOfDestinationWithNextHop (nextHop, unreachable);

 for (std::map<Ipv4Address, uint32_t>::const_iterator i = unreachable.begin (); i

 != unreachable.end ();)

 {

 if (!rerrHeader.AddUnDestination (i->first, i->second))

 {

 NS_LOG_LOGIC ("Send RERR message with maximum size.");

 TypeHeader typeHeader (AISBATYPE_RERR);

 Ptr<Packet> packet = Create<Packet> ();

 packet->AddHeader (rerrHeader);

 packet->AddHeader (typeHeader);

 SendRerrMessage (packet, precursors);

 rerrHeader.Clear ();

 }

 else

 {

 RoutingTableEntry toDst;

 m_routingTable.LookupRoute (i->first, toDst);

 toDst.GetPrecursors (precursors);

 ++i;

 }

 }

 if (rerrHeader.GetDestCount () != 0)

 {

 TypeHeader typeHeader (AISBATYPE_RERR);

 Ptr<Packet> packet = Create<Packet> ();

 packet->AddHeader (rerrHeader);

 packet->AddHeader (typeHeader);

 SendRerrMessage (packet, precursors);

 }

 unreachable.insert (std::make_pair (nextHop, toNextHop.GetSeqNo ()));

 m_routingTable.InvalidateRoutesWithDst (unreachable);

}

void

RoutingProtocol::SendRerrWhenNoRouteToForward (Ipv4Address dst,

 uint32_t dstSeqNo, Ipv4Address origin)

{

 NS_LOG_FUNCTION (taisba);

 // A node SHOULD NOT originate more than RERR_RATELIMIT RERR messages per second.

 if (m_rerrCount == RerrRateLimit)

 {

 // Just make sure that the RerrRateLimit timer is running and will expire

 NS_ASSERT (m_rerrRateLimitTimer.IsRunning ());

 // discard the packet and return

 NS_LOG_LOGIC ("RerrRateLimit reached at " << Simulator::Now ().GetSeconds () << " with timer delay

left "

 << m_rerrRateLimitTimer.GetDelayLeft ().GetSeconds ()

 << "; suppressing RERR");

 return;

 }

 RerrHeader rerrHeader;

 rerrHeader.AddUnDestination (dst, dstSeqNo);

 RoutingTableEntry toOrigin;

 Ptr<Packet> packet = Create<Packet> ();

 packet->AddHeader (rerrHeader);

 packet->AddHeader (TypeHeader (AISBATYPE_RERR));

 if (m_routingTable.LookupValidRoute (origin, toOrigin))

 {

 //Lincy Starts

 Ptr<Ipv4L3Protocol> l3K = m_ipv4->GetObject<Ipv4L3Protocol> ();

 Ipv4InterfaceAddress ifaceLocal = l3K->GetAddress(1,0);

 //std::cout<< ifaceLocal.GetLocal() << ": " <<origin <<"hey i found you-origin

\n";//lincy

 //sendPAMPSignal();

 //Lincy Ends

 Ptr<Socket> socket = FindSocketWithInterfaceAddress (

 toOrigin.GetInterface ());

 NS_ASSERT (socket);

 NS_LOG_LOGIC ("Unicast RERR to the source of the data transmission");

 std::cout<< ifaceLocal.GetLocal() << ": " << "Unicast RERR to "<<origin <<"\n";//lincy

 std::cout<<origin<<"initiator of RREQ"<<"\n";//lincy

 RerrHeader rerrHeader;//lincy

 /**lINCY ADDED code to send PAMP when source has received RERR,ALSO ADDED

GETORIGIN,SET ORIGIN TO PACKET.CC AND H FOR TAISBA

PURPOSE**/

 // rerrHeader.SetOrigin (ifaceLocal.GetLocal ());

 // Ipv4Address origin=rerrHeader.GetOrigin ();

 // if (IsMyOwnAddress (origin)){

 std::cout<<" Calling Activate DC for " <<origin;

 ActivateDC(origin);//Lincy

 // }

 //SendRerrMessage (packet, precursors);

 //Ipv4Address dst = rerrHeader.GetDst();

 RoutingTableEntry toOrigin;

 Ptr<Ipv4Route> route = toOrigin.GetRoute ();

 sendPAMPSignal (origin, route);

 //ENDS LINCY

 //if (IsMyOwnAddress (origin)) //lincy

 //{ //(m_routingTable.LookupValidRoute (origin, toOrigin));

 ////sendPAMPSignal();

 //std::cout<<"JKJKJKJKJJJKJKKJKJKJKJKJKJKJKJK";

 //return;} //lincy

 socket->SendTo (packet, 0, InetSocketAddress (toOrigin.GetNextHop (), AISBA_PORT));

 }

 else

 {

 for (std::map<Ptr<Socket>, Ipv4InterfaceAddress>::const_iterator i =

 m_socketAddresses.begin (); i != m_socketAddresses.end (); ++i)

 {

 Ptr<Socket> socket = i->first;

 Ipv4InterfaceAddress iface = i->second;

 NS_ASSERT (socket);

 NS_LOG_LOGIC ("Broadcast RERR message from interface " << iface.GetLocal ());

 // Send to all-hosts broadcast if on /32 addr, subnet-directed otherwise

 Ipv4Address destination;

 if (iface.GetMask () == Ipv4Mask::GetOnes ())

 {

 destination = Ipv4Address ("255.255.255.255");

 }

 else

 {

 destination = iface.GetBroadcast ();

 }

 socket->SendTo (packet->Copy (), 0, InetSocketAddress (destination, AISBA_PORT));

 }

 }

}

void

RoutingProtocol::SendRerrMessage (Ptr<Packet> packet, std::vector<Ipv4Address> precursors)

{

 NS_LOG_FUNCTION (taisba);

 if (precursors.empty ())

 {

 NS_LOG_LOGIC ("No precursors");

 return;

 }

 // A node SHOULD NOT originate more than RERR_RATELIMIT RERR messages per second.

 if (m_rerrCount == RerrRateLimit)

 {

 // Just make sure that the RerrRateLimit timer is running and will expire

 NS_ASSERT (m_rerrRateLimitTimer.IsRunning ());

 // discard the packet and return

 NS_LOG_LOGIC ("RerrRateLimit reached at " << Simulator::Now ().GetSeconds () << " with timer delay

left "

 << m_rerrRateLimitTimer.GetDelayLeft ().GetSeconds ()

 << "; suppressing RERR");

 std::cout <<"RerrRateLimit reached at " << Simulator::Now ().GetSeconds () << "

with timer delay left "

 << m_rerrRateLimitTimer.GetDelayLeft ().GetSeconds ()

 << "; suppressing RERR";//lincy

 return;

 }

 // If there is only one precursor, RERR SHOULD be unicast toward that precursor

 if (precursors.size () == 1)

 {

 RoutingTableEntry toPrecursor;

 if (m_routingTable.LookupValidRoute (precursors.front (), toPrecursor))

 {

 Ptr<Socket> socket = FindSocketWithInterfaceAddress (toPrecursor.GetInterface ());

 NS_ASSERT (socket);

 NS_LOG_LOGIC ("one precursor => unicast RERR to " << toPrecursor.GetDestination () << " from " <<

toPrecursor.GetInterface ().GetLocal ());

 Simulator::Schedule (Time (MilliSeconds (m_uniformRandomVariable->GetInteger (0, 10))),

&RoutingProtocol::SendTo, taisba, socket, packet, precursors.front ());

 m_rerrCount++;

 }

 return;

 }

 // Should only transmit RERR on those interfaces which have precursor nodes for the broken route

 std::vector<Ipv4InterfaceAddress> ifaces;

 RoutingTableEntry toPrecursor;

 for (std::vector<Ipv4Address>::const_iterator i = precursors.begin (); i != precursors.end (); ++i)

 {

 if (m_routingTable.LookupValidRoute (*i, toPrecursor) &&

 std::find (ifaces.begin (), ifaces.end (), toPrecursor.GetInterface ()) == ifaces.end ())

 {

 ifaces.push_back (toPrecursor.GetInterface ());

 }

 }

 for (std::vector<Ipv4InterfaceAddress>::const_iterator i = ifaces.begin (); i != ifaces.end (); ++i)

 {

 Ptr<Socket> socket = FindSocketWithInterfaceAddress (*i);

 NS_ASSERT (socket);

 NS_LOG_LOGIC ("Broadcast RERR message from interface " << i->GetLocal ());

 // std::cout << "Broadcast RERR message from interface " << i->GetLocal () << std::endl;

 // Send to all-hosts broadcast if on /32 addr, subnet-directed otherwise

 Ptr<Packet> p = packet->Copy ();

 Ipv4Address destination;

 if (i->GetMask () == Ipv4Mask::GetOnes ())

 {

 destination = Ipv4Address ("255.255.255.255");

 }

 else

 {

 destination = i->GetBroadcast ();

 }

 Simulator::Schedule (Time (MilliSeconds (m_uniformRandomVariable->GetInteger (0, 10))),

&RoutingProtocol::SendTo, taisba, socket, p, destination);

 }

}

Ptr<Socket>

RoutingProtocol::FindSocketWithInterfaceAddress (Ipv4InterfaceAddress addr) const

{

 NS_LOG_FUNCTION (taisba << addr);

 for (std::map<Ptr<Socket>, Ipv4InterfaceAddress>::const_iterator j =

 m_socketAddresses.begin (); j != m_socketAddresses.end (); ++j)

 {

 Ptr<Socket> socket = j->first;

 Ipv4InterfaceAddress iface = j->second;

 if (iface == addr)

 return socket;

 }

 Ptr<Socket> socket;

 return socket;

}

Ptr<Socket>

RoutingProtocol::FindSubnetBroadcastSocketWithInterfaceAddress (Ipv4InterfaceAddress addr) const

{

 NS_LOG_FUNCTION (taisba << addr);

 for (std::map<Ptr<Socket>, Ipv4InterfaceAddress>::const_iterator j =

 m_socketSubnetBroadcastAddresses.begin (); j != m_socketSubnetBroadcastAddresses.end (); ++j)

 {

 Ptr<Socket> socket = j->first;

 Ipv4InterfaceAddress iface = j->second;

 if (iface == addr)

 return socket;

 }

 Ptr<Socket> socket;

 return socket;

}

void

RoutingProtocol::DoInitialize (void)

{

 NS_LOG_FUNCTION (taisba);

 uint32_t startTime;

 if (EnableHello)

 {

 m_htimer.SetFunction (&RoutingProtocol::HelloTimerExpire, taisba);

 startTime = m_uniformRandomVariable->GetInteger (0, 100);

 NS_LOG_DEBUG ("Starting at time " << startTime << "ms");

 m_htimer.Schedule (MilliSeconds (startTime));

 }

 Ipv4RoutingProtocol::DoInitialize ();

}

// Method added by Lincy

//void RoutingProtocol::sendPAMPSignal(){

 //RoutingTableEntry _oRoutingTableEntry;

 //Ptr<Ipv4L3Protocol> l3K = m_ipv4->GetObject<Ipv4L3Protocol> ();

 //Ipv4InterfaceAddress ifaceLocal = l3K->GetAddress(1,0);

 //std::cout << ifaceLocal.GetLocal() << ": " << "Talking from sendPAMPSignal Method\n";

//}

//////////////////SENDPAMPSIGANL///LINCY

//void

//RoutingProtocol::sendPAMPSignal (Ipv4Address dst, Ipv4Address origin)

//{

 //std::cout<<"ARE YOU REACHABLE"<<dst<<"\n";//LINCY

//}

void

RoutingProtocol::sendPAMPSignal (Ipv4Address dst, Ptr<Ipv4Route> route)

{

 //NS_LOG_FUNCTION (taisba);

 //QueueEntry queueEntry;

 //while (m_queue.Dequeue (dst, queueEntry))

 //{

 //DeferredRouteOutputTag tag;

 //Lincy Starts

 // Ptr<Ipv4L3Protocol> l3K = m_ipv4->GetObject<Ipv4L3Protocol> ();

//Ipv4InterfaceAddress ifaceLocal = l3K->GetAddress(1,0);

 // std::cout<< ifaceLocal.GetLocal() <<": send PAMP\n";//lincy

 RerrHeader rerrHeader;

 //Ptr<Ipv4L3Protocol> l3K = m_ipv4->GetObject<Ipv4L3Protocol> ();

 // Ipv4InterfaceAddress ifaceLocal = l3K->GetAddress(1,0);

// rerrHeader.SetOrigin (ifaceLocal.GetLocal ());

rerrHeader.SetOrigin(dst);

 Ipv4Address ac =rerrHeader.GetOrigin();

 std::cout<<"sendpamp" << ac;

 //Lincy Ends

 // RerrHeader rerrHeader;

 // rerrHeader.SetOrigin (ifaceLocal.GetLocal ());

 // Ipv4Address origin=rerrHeader.GetOrigin ();

 //if (IsMyOwnAddress (origin)){

 //ActivateDC();//Lincy

 //}

 // Ipv4Address dst = rerrHeader.GetDst();

 //Ipv4Address origin = rerrheader.GetOrigin();

 // m_routingTable.Purge ();

 //RoutingTableEntry toDst;

 // Ptr<Ipv4Route> routes = toDst.GetRoute ();

 // RoutingTableEntry toOrigin;

 // m_routingTable.LookupRoute (origin, toOrigin);

 // UpdateRouteLifeTime (toOrigin.GetNextHop (), ActiveRouteTimeout);

 // m_nb.Update (route->GetGateway (), ActiveRouteTimeout);

 // m_nb.Update (toOrigin.GetNextHop (), ActiveRouteTimeout);

 //PampsendHeader pampsendHeader;

 //Ptr<Packet> packet = Create<Packet> ();

//packet->AddHeader (rerrHeader);//pampsendHeader rerrHeader

 // TypeHeader tHeader (AISBATYPE_RERR);//AISBATYPE_PAMPSEND

 // packet->AddHeader (tHeader);

 // Ptr<Packet> p = ConstCast<Packet> (queueEntry.GetPacket ());

 //if (p->RemovePacketTag (tag) &&

 //tag.GetInterface() != -1 &&

 //tag.GetInterface() != m_ipv4->GetInterfaceForDevice (route->GetOutputDevice ()))

 //{

 //NS_LOG_DEBUG ("Output device doesn't match. Dropped.");

 //return;

 //}

 //UnicastForwardCallback ucb = queueEntry.GetUnicastForwardCallback ();

 //Ipv4Header header = queueEntry.GetIpv4Header ();

 //header.SetSource (route->GetSource ());

 //header.SetTtl (header.GetTtl () + 1); // compensate extra TTL decrement by fake loopback routing

 //ucb (route, p, header);

 //}

}

void

RoutingProtocol::ackPAMPSignal (RreqHeader const & rreqHeader, RoutingTableEntry const & toOrigin)

{

 std::cout<<"I AM REACHABLE"<<"\n";//LINCY

 //bool ackPAMPSignalrecv;//doubt

}

//Method added bt Lincy

void RoutingProtocol::ActivateDC(Ipv4Address origins){

 RerrHeader rerrHeader;

 //Ptr<Ipv4L3Protocol> l3K = m_ipv4->GetObject<Ipv4L3Protocol> ();

 // Ipv4InterfaceAddress ifaceLocal = l3K->GetAddress(1,0);

// rerrHeader.SetOrigin (ifaceLocal.GetLocal ());

rerrHeader.SetOrigin(origins);

 Ipv4Address dc =rerrHeader.GetOrigin();

 std::cout<<"ActivateDC" << dc;

 //RoutingTableEntry _oRoutingTableEntry;

 // Ptr<Ipv4L3Protocol> l3K = m_ipv4->GetObject<Ipv4L3Protocol> ();

 //// Ipv4InterfaceAddress ifaceLocal = l3K->GetAddress(1,0);

 // std::cout << ifaceLocal.GetLocal() << ": " << "Activate DC\n";

}

} //namespace aisba

} //namespace ns3

Appendix 3 Value of Node nearness facor(K)

Hop count (F)

ln(F)

K ln(K) Pcom=ln(K)/ln(F) (for F=14)

2

.693

1 0 0

4

1.3

2 .693 0.26

6

1.7

3 1.09 0.41

8

2.0

4 1.38 0.53

10

2.3

5 1.60 0.61

12

2.4

6 1.79 0.68

14

2.6

9 2.19 0.84

As can be observed ,when the value of K gets higher this gives a misleading information

regarding Pcom (Probability of node nearness/communication).For example, if we consider a

higher value of hop count ,it is most likely that the node is far away and the probability of

communication is very low.Thereby choosing higher value of K ,along with a higher hop

count , shows that the probability of communication is high which is not correct therefore the

ideal value of K is chosen to be 2.The same can be inferred from the table above when K is

9and hop count is 14 the value of Pcom is 0.84 which is misleading.Therefore the value of K

should be chosen in accordance with the Probability of node nearness/communication and

signal the correct information about the node nearness.

