21 research outputs found

    Reliable Fault Tolerance System for Service Composition in Mobile Ad Hoc Network

    Get PDF
    A Due to the rapid development of smart processing mobile devices, Mobile applications are exploring the use of web services in MANETs to satisfy the user needs. Complex user needs are satisfied by the service composition where a complex service is created by combining one or more atomic services. Service composition has a significant challenge in MANETs due to its limited bandwidth, constrained energy sources, dynamic node movement and often suffers from node failures. These constraints increase the failure rate of service composition. To overcome these, we propose Reliable Fault Tolerant System for Service Composition in MANETs (RFTSC) which makes use of the checkpointing technique for service composition in MANETs. We propose fault policies for each fault in service composition when the faults occur. Failure of services in the service composition process is recovered locally by making use of Checkpointing system and by using discovered services which satisfies the QoS constraints. A Multi-Service Tree (MST) is proposed to recover failed services with O(1) time complexity. Simulation result shows that the proposed approach is efficient when compared to existing approaches

    Evaluation of Communication Induced Checkpointing Approaches for Reconfiguration-Based Fault-Tolerance in Embedded Systems

    Get PDF
    Reconfiguration-Based Fault-Tolerance is an approach to developing dependable safety-critical embedded applications, where redundant active or standby resources are used to cope with faults through a system reconfiguration at run-time. Compared to traditional hardware and software redundancy, it is a promising technique that may achieve dependability with a significant reduction in cost, size, weight, and power requirements. Reconfiguration necessitates using proper checkpointing protocols to support state reservation to ensure correct task restarts after a system reconfiguration. Communication Induced Checkpointing (CIC) protocols are well developed and understood for large parallel and information systems, but not much has been done for resource limited embedded systems. This paper implements four common CIC protocols in a resource constrained distributed embedded system with a Controller Area Network (CAN) backbone. An example feedback control system implementation is used for a case study. The four implemented protocols are described and performances are contrasted. The paper compares the protocols in terms of network bandwidth consumptions, CPU usages, checkpointing times, and checkpoint sizes in additional to the traditional measures of forced to local checkpoint rations and total number of checkpoints

    Scalable group-based checkpoint/restart for large-scale message-passing systems

    Get PDF
    The ever increasing number of processors used in parallel computers is making fault tolerance support in large-scale parallel systems more and more important. We discuss the inadequacies of existing system-level checkpointing solutions for message-passing applications as the system scales up. We analyze the coordination cost and blocking behavior of two current MPI implementations with checkpointing support. A group-based solution combining coordinated checkpointing and message logging is then proposed. Experiment results demonstrate its better performance and scalability than LAM/MPI and MPICH-VCL. To assist group formation, a method to analyze the communication behaviors of the application is proposed. ©2008 IEEE.published_or_final_versio

    A survey of checkpointing algorithms for parallel and distributed computers

    Get PDF
    Checkpoint is defined as a designated place in a program at which normal processing is interrupted specifically to preserve the status information necessary to allow resumption of processing at a later time. Checkpointing is the process of saving the status information. This paper surveys the algorithms which have been reported in the literature for checkpointing parallel/distributed systems. It has been observed that most of the algorithms published for checkpointing in message passing systems are based on the seminal article by Chandy and Lamport. A large number of articles have been published in this area by relaxing the assumptions made in this paper and by extending it to minimise the overheads of coordination and context saving. Checkpointing for shared memory systems primarily extend cache coherence protocols to maintain a consistent memory. All of them assume that the main memory is safe for storing the context. Recently algorithms have been published for distributed shared memory systems, which extend the cache coherence protocols used in shared memory systems. They however also include methods for storing the status of distributed memory in stable storage. Most of the algorithms assume that there is no knowledge about the programs being executed. It is however felt that in development of parallel programs the user has to do a fair amount of work in distributing tasks and this information can be effectively used to simplify checkpointing and rollback recovery

    Object oriented design of the groupware layer for the Ecosystem Information System

    Get PDF

    Optimal Asynchronous Garbage Collection for RDT Checkpointing Protocols

    Get PDF
    Communication-induced checkpointing protocols that ensure rollback-dependency trackability (RDT) guarantee important properties to the recovery system without explicit coordination. However, to the best of our knowledge, there was no garbage collection algorithm for them which did not use some type of process synchronization, like time assumptions or reliable control message exchanges. This paper addresses the problem of garbage collection for RDT checkpointing protocols and presents an optimal solution for the case where coordination is done only by means of timestamps piggybacked in application messages. Our algorithm uses the same timestamps as off-the-shelf RDT protocols and ensures the tight upper bound on the number of uncollected checkpoints for each process during all the system execution

    Space Reclamation for Uncoordinated Checkpointing in Message-Passing Systems

    Get PDF
    Checkpointing and rollback recovery are techniques that can provide efficient recovery from transient process failures. In a message-passing system, the rollback of a message sender may cause the rollback of the corresponding receiver, and the system needs to roll back to a consistent set of checkpoints called recovery line. If the processes are allowed to take uncoordinated checkpoints, the above rollback propagation may result in the domino effect which prevents recovery line progression. Traditionally, only obsolete checkpoints before the global recovery line can be discarded, and the necessary and sufficient condition for identifying all garbage checkpoints has remained an open problem. A necessary and sufficient condition for achieving optimal garbage collection is derived and it is proved that the number of useful checkpoints is bounded by N(N+1)/2, where N is the number of processes. The approach is based on the maximum-sized antichain model of consistent global checkpoints and the technique of recovery line transformation and decomposition. It is also shown that, for systems requiring message logging to record in-transit messages, the same approach can be used to achieve optimal message log reclamation. As a final topic, a unifying framework is described by considering checkpoint coordination and exploiting piecewise determinism as mechanisms for bounding rollback propagation, and the applicability of the optimal garbage collection algorithm to domino-free recovery protocols is demonstrated

    CHECKPOINTING AND RECOVERY IN DISTRIBUTED AND DATABASE SYSTEMS

    Get PDF
    A transaction-consistent global checkpoint of a database records a state of the database which reflects the effect of only completed transactions and not the re- sults of any partially executed transactions. This thesis establishes the necessary and sufficient conditions for a checkpoint of a data item (or the checkpoints of a set of data items) to be part of a transaction-consistent global checkpoint of the database. This result would be useful for constructing transaction-consistent global checkpoints incrementally from the checkpoints of each individual data item of a database. By applying this condition, we can start from any useful checkpoint of any data item and then incrementally add checkpoints of other data items until we get a transaction- consistent global checkpoint of the database. This result can also help in designing non-intrusive checkpointing protocols for database systems. Based on the intuition gained from the development of the necessary and sufficient conditions, we also de- veloped a non-intrusive low-overhead checkpointing protocol for distributed database systems. Checkpointing and rollback recovery are also established techniques for achiev- ing fault-tolerance in distributed systems. Communication-induced checkpointing algorithms allow processes involved in a distributed computation take checkpoints independently while at the same time force processes to take additional checkpoints to make each checkpoint to be part of a consistent global checkpoint. This thesis develops a low-overhead communication-induced checkpointing protocol and presents a performance evaluation of the protocol
    corecore