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Abstract— Reconfiguration-Based Fault-Tolerance is an 
approach to developing dependable safety-critical 
embedded applications, where redundant active or standby 
resources are used to cope with faults through a system 
reconfiguration at run-time.  Compared to traditional 
hardware and software redundancy, it is a promising 
technique that may achieve dependability with a significant 
reduction in cost, size, weight, and power requirements. 
Reconfiguration necessitates using proper checkpointing 
protocols to support state reservation to ensure correct task 
restarts after a system reconfiguration. Communication 
Induced Checkpointing (CIC) protocols are well developed 
and understood for large parallel and information systems, 
but not much has been done for resource limited embedded 
systems. This paper implements four common CIC 
protocols in a resource constrained distributed embedded 
system with a Controller Area Network (CAN) backbone. 
An example feedback control system implementation is 
used for a case study. The four implemented protocols are 
described and performances are contrasted. The paper 
compares the protocols in terms of network bandwidth 
consumptions, CPU usages, checkpointing times, and 
checkpoint sizes in additional to the traditional measures of 
forced to local checkpoint rations and total number of 
checkpoints. 

Keywords- Distributed Embedded Systems; Fault-
Tolerance; Reconfiguration; Communication Induced 
Checkpointing; CAN.  

I. INTRODUCTION 

Reconfiguration-based fault-tolerance is an 
approach for developing dependable applications, 
where a system is automatically reconfigured at run-
time to handle the event of a failed component. This 
approach, compared to traditional hardware and 
software redundancy, can achieve dependability at a 
reduced cost [1]-[6]. Reconfiguration requires using 
checkpointing protocols to support state preservation 
to allow task restarting, replacement, and migration. 

Communication Induced Checkpointing (CIC) is 
one of three main categories of checkpointing 
protocols [7]. The other two categories are 
uncoordinated checkpointing, and coordinated 
checkpointing [7]. Uncoordinated checkpointing 
maximizes the autonomy of processes in deciding 
when a checkpoint is taken locally. However, due to 
the lack of coordination, many of these checkpoints 
are likely useless because they would, not be part of 

any consistent global checkpoint. A rollback process 
to a global checkpoint containing useless checkpoints 
may cause a cascaded series of rollbacks that may 
lead to the well known Domino Effect Problem [8]. 
Because the last taken checkpoint is not guaranteed to 
be useful, a process has to maintain more than a single 
checkpoint; therefore, it is required to do garbage 
collection periodically to free up some storage space 
[8]. 

Coordinated checkpointing protocols do not suffer 
from the Domino Effect. A process does not maintain 
more than a single checkpoint, therefore less storage 
overhead and no garbage collection is required. 
However, protocols in this category, due to 
coordination, suffer from large latency in committing 
an output [7]. 

Processes applying CIC protocols overcome the 
Domino Effect through piggybacking control 
information over application messages. CIC protocols 
give processes the autonomy of taking local 
checkpoints. To prevent useless checkpoints, 
processes take extra forced checkpoints. The decision 
to take a forced checkpoint is based on the control 
information carried with application messages. 
Checkpointing in general and CIC in particular has 
been the focus of researchers for some time [7]-[13]. 
However, available literature mostly target 
information systems and parallel supercomputers. 
Very little has been published in the field of resource 
constrained distributed embedded systems, where 
processor time, communication bandwidth, program 
memory, and stable storage availability are limited 
and valuable.  

In this paper, several CIC protocols are 
implemented and evaluated on a resource limited real-
time distributed embedded system for reconfiguration-
based fault-tolerance purposes. The system utilizes a 
Controller Area Network (CAN) for communication 
between processing elements (PEs). The PEs are16-bit 
microcontroller units (MCUs). Each MCU features up 
to 48 MHz clock frequency, 12 Kbyte of RAM, 4 
Kbyte of EEPROM, and 256 Kbyte of flash memory. 
CIC protocols were evaluated for two applications. 
The first is a simulated application executing on the 
PE test-bed, where tasks periods, message 
destinations, and message frequencies are set 
randomly. Secondly, the CIC protocols were applied 
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to a feedback-control system for an unmanned aerial 
vehicle (UAV). 

The findings of our work presented here agree 
with what has been presented in the literature as 
results of simulations in terms of the number of 
checkpoints forced by each CIC protocol and the ratio 
of forced to local checkpoint. The paper illustrates 
more in depth results found from actual 
implementations of these protocols on a resource 
constraint embedded system environment. To the 
authors’ knowledge, this work of implementing and 
evaluating CIC protocols is a unique effort that 
addressed resource constraint distributed embedded 
systems. The authors were not able to find any related 
work that implemented CIC protocols in similar 
environments and applications. 

This paper has the following main contributions. 
(1) It confirms results from the available 
checkpointing literature by implementing and 
evaluating the CIC protocols on real embedded 
systems. (2) The paper shows that some of the best 
CIC protocols in terms of conventional metrics are not 
appropriate for embedded systems in terms of network 
bandwidth and CPU usage overhead. (3) Finally, the 
paper reports real numbers concerning checkpoint 
sizes, actual processing time overheads, and 
bandwidth usage in addition to the traditional number 
of checkpoints and forced to local checkpoint ratios. 

The paper is organized as follows. Section II 
highlights the main concerns of embedded systems in 
the context of communication induced checkpointing 
as opposed to conventional information systems. 
Section III overviews the computation model, and 
defines the concept of Z-Paths and Z-Cycles. Section 
IV introduces communication induced checkpointing 
and describes the four CIC protocols that were 
implemented and evaluated. In section V, the 
experimental setup is shown. Results are illustrated in 
section VI. Findings are discussed in section VIII. 
Finally, Section VII concludes the paper. 

II. EMBEDDED SYSTEM CONSTRAINTS 

Due to stringent cost, size, and power 
requirements, distributed embedded systems are 
typically very limited in resources compared to 
conventional information systems and 
supercomputers, for which checkpointing techniques 
were originally developed.  These limitations can be 
summarized as follows: 

i. Embedded systems have limited processing 
power. Processing overhead required by a 
checkpointing protocol has to therefore be 
minimized. Application execution delays are 
especially unacceptable in real-time and 
safety-critical applications. 

ii. Embedded systems usually have limited 
amounts of local memory for the temporary 
storage of local checkpoints and global 
checkpointing state information. This 

limitation necessitates optimization of 
checkpointing protocols to reduce local 
memory requirements.  

iii. Embedded systems usually can only afford a 
limited amount of non-volatile memory for 
the purposes of checkpoint storage. Hence, it 
is important to minimize the number of 
checkpoints forced by a protocol. 

iv. Distributed embedded systems using a 
broadcast network (e.g., CAN) have limited 
network bandwidth. As a result, the network 
may be overwhelmed by messages induced by 
some protocols, as some of the protocols 
piggy-back more information than others.  

v. Embedded system applications are often 
periodic. This periodicity implies repeated 
network patterns, which can be advantageous 
in deciding when to take local checkpoints. 
For example, Preißinger et. al. introduced an 
approach that optimizes effective checkpoint-
intervals to reduce the overhead of 
communication induced checkpointing 
depending on the application and 
communication patterns [14]. 

 

III. PRELIMINARIES 

A. The Computation Model 

The computation model for the distributed 
environment consists of n processes {P1,P2, …, Pn}. 
All processes synchronize by piggybacking control 
information over application messages. Processes are 
executed by processing elements that do not have any 
shared memory in common. Communication between 
every pair of processes occurs over a directed logical 
channel. Communication is asynchronous and 
reliable. It is also assumed that no messages will be 
lost during communication. 

Three different kinds of events are considered by 
each individual process: internal, send, and receive 
events. An internal event does not involve any kind of 
access to the communication link. A send event 
models the action of placing a message over one of 
the output channels that connect the current process 
(Pi) with the destination process (Pj). Moreover, 
blocking until a message is received on one of the 
input channels is modeled by the receive event. 

A process (Pi) produces a sequence of events 
during its execution. Every event of this sequence 
moves Pi from its current state to the next state. A 
recorded state of a process is called a local 
checkpoint. Ci,x is the xth  local checkpoint of process 
Pi. The sequence of events occurring between Ci,x-1 
and Ci,x is called a checkpoint interval (Ii,x). By 
looking at all the events in the distributed system as a 
whole, states of processes may become dependent on 
each other due to inter-process communication. 
Events produced by all the processes of the distributed 



computation can be ordered by the well-known 
Lamport’s happened-before ( ) relation [15]. 

A global checkpoint is a set of local checkpoints, 
one from each process of the distributed computation. 
A global checkpoint is said to be consistent if and 
only if there exists no happened-before relation 
between any pair of local checkpoints in the set. A 
checkpoint that is not part of any consistent global 
checkpoint is a useless checkpoint [16]. Useless 
checkpoints cost processor execution time overhead, 
in addition to wasting of communication bandwidth 
and storage space. Furthermore, the presence of 
useless checkpoints may lead to what is called the 
Domino Effect, where a process rollback may cause 
the rollback of another process and so on until a 
consistent global checkpoint is found (probably the 
initial state). A checkpoint is useless if and only if it 
appears within a Z-cycle [16]. Processes are forced by 
checkpointing algorithms to take forced checkpoints 
to break candidate Z-cycles before they occur. The 
next subsection explains Z-path and Z-cycle notions 
introduced by Netzer and Xu in [16] and how they 
relate to useless checkpoints. 

B. Z-Paths and Z-Cycles 

A sequence of messages [m1, m2, … , mk],  , 
from a checkpoint Ci,m to another checkpoint Cj,n is 
called a z-path from Ci,m to Cj,n if all of the following 
conditions are true [16]:  

(a) Ci,m  send(mi)  

(b) 

,  

(c) receive(mi) Cj,n. 
 
In other words, the first message in the sequence 

has to be sent after Ci,m is taken, while the last 
message has to be received before Cj,n is taken. In 
addition, for any message, except the last one, the 
reception of a message must occur in the same or the 
preceding checkpoint interval in which the following 
message is sent. In this case, we say that this message 
sequence is a z-path from Ci,m to Cj,n. If  and 

, .then this z-path is called a z-cycle. In the case 
of a z-cycle, the starting and ending checkpoints are 
the same checkpoint (Ci,m). Hence, it is said that the z-
cycle includes Ci,m. In this case Ci,m is considered as a 
useless checkpoint because it cannot be part of any 
consistent global checkpoint. 

Figure 1 is a distributed computation pattern that 
we will use to clarify the notions and concepts 
mentioned earlier in this section. The following sets of 
message sequences: [m3, m4], [m6, m5], [m6, m7] and 
[m3, m4, m2] are all z-paths. However, some of these z-
paths are causal and some of them are noncausal [16].  

A z-path ([m1, m2, … , mk],  ) is causal if the 
following is true: 

  

.  

If the previous condition is not true and the event 
of sending a message (mi+1) at a process Pi happens 
before receiving the previous message in the sequence 
(mi), then the z-path is noncausal [16]. In Figure 1, z-
paths [m3,m4] and [m6,m7] are causal paths. On the 
other hand, z-paths [m6, m5] and [m4, m2] are examples 
of noncausal paths. The chain of messages [m3, m4, 
m2] is an example of a z-cycle. Checkpoint Ck,1 is 
included in the z-cycle, so it is considered as a useless 
checkpoint. Note that the z-cycle shown in the Figure 
and any z-cycle in general is noncausal. 

 

 

IV. CIC PROTOCOLS 

CIC protocols are classified into Model-Based 
protocols and Index-Based protocols [7]. In both 
kinds, every process has two types of checkpoints: 
local checkpoints and forced checkpoints. A process 
takes local checkpoints independently from other 
processes depending on the application, while forced 
checkpoints are taken depending on the 
communication between processes to prevent useless 
local checkpoints.  

In model-based protocols, processes maintain 
checkpointing and communication patterns to prevent 
the occurrence of useless checkpoints [9]. All model-
based protocols focus on preventing communication 
patterns that may lead to z-cycles. In these protocols, 
processes are forced to take extra checkpoints to break 
candidate z-cycles. However, more than one process 
may take a forced checkpoint to break the same z-
cycle, which results in more checkpoints than actually 
needed. Some of the most popular model-based 
protocols are the ones part of the FDAS (Fixed-
Dependency-After-Send) family [9]: NRAS (No-
Receive-After-Send), CAS (Checkpoint-After-Send), 
CBR (Checkpoint-Before-Receive), CASBR 
(Checkpoint-After-Send-Before-Receive), and FDI 
(Fixed-Dependency-Interval). 

Index-based protocols, on the other hand, indices 
or timestamps are assigned to all checkpoints. These 
indices are piggybacked on application messages. 
Some index-based protocols go further by 
piggybacking more information than their own index,  
additional information may include information about 
other processes’ checkpoints and communication 
pattern information that a process collected during its 
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Figure 1. Distributed Computation Pattern 



communication with other processes in the network 
[10][11][17].  

In this study, we evaluate two model-based 
protocols, and two index-based protocols. The first 
model-based protocol will be referred to as the CBS 
(Checkpoint-Before-Send) protocol [12], while the 
second model-based protocol is the MRS (Mark-
Receive-Send) protocol [13]. The two implemented 
index-based protocols are: the BCS (Briatico, 
Ciuffoletti and Simoncini) [10], and the FI (Fully 
Informed) [17][18]. The protocols are popular in the 
literature, and that is why they were chosen to be 
evaluated here. The rest of the section will describe 
these four protocols in more detail. 

The first protocol, CBS, is model-based and 
adapts at the extreme case by forcing a checkpoint 
before every message sending event [7]. This model 
was adapted by Bartlett in the implementation of the 
Tandem NonStop kernel as part of a fault-tolerant 
distributed computer system designed for online 
transaction processing [12].  

In MRS, which is also a model-based protocol, M 
stands for Mark that means “to take a checkpoint,” 
while R and S stand for “receive” and “send” 
respectively. A process in MRS forces a checkpoint 
before delivering a message that is not separated from 
its previous message-send event by a checkpoint. This 
will guarantee domino-effect free rollbacks [9][13].  

The third protocol is an index-based approach 
known as the BCS (Briatico, Ciuffoletti and 
Simoncini) algorithm [10]. In this algorithm, each 
process maintains an index that is incremented every 
time a checkpoint is taken. The local index is 
piggybacked over application messages. A process, 
upon receiving a message, will compare its local 
index with the received one. A checkpoint will be 
forced if the received index is greater than the local 
index. Furthermore, the local index value is updated 
to equal the value received. A consistent global 
checkpoint is the set of local checkpoints stamped 
with the same index.  

Finally, the forth protocol is an index-based 
protocol and the literature refers to it as the FI (Fully 
Informed) protocol [18]-[20]. The protocol which was 
presented by Helary et. al. in [17] piggybacks more 
than an integer index over application messages. In 
this protocol, every application message piggybacks 
one integer, one vector of integers, and two Boolean 
vectors (i.e., n+1 integers and 2n booleans  4n+2 
Bytes). The integer is the index value (cli) of the 
sender process (Pi). The vector of integers (ckpti[n]) 
holds all the checkpoint sequence numbers of all other 
processes in the network up to the sender’s (Pi) 
knowledge. Therefore, this vector is of size n, where n 
is the number of processes in the computation 
network. In addition, the two Boolean vectors are also 
of size n each. These two Boolean vectors are referred 
to as: greateri[n] and takeni[n]. The previously 
mentioned piggybacked information, as well as a 
locally maintained vector (sent_toi[n]) are all used by 

the FI algorithm to detect possible z-cycles and to 
break them by forcing additional checkpoints [17]. A 
greateri[k] vector element is true if the value of the 
local sender’s (Pi) index is greater than Pk’s index upto 
Pi’s knowledge. The takeni[k] vector element for all 
k i is true if a checkpoint is included within a z-path 
from the last checkpoint of Pk to the next checkpoint 
of Pi up to Pi’s knowledge. The local and received 
vector elements: ckpti[i] and received.ckpt[i], 
respectively, will help a process to determine if there 
was a Z-path from the last checkpoint of Pk upto Pi’s 
knowledge to the next checkpoint of Pi. The locally 
maintained vector sent_toi[k] keeps track of whether 
Pi  has sent a message to Pk since its last checkpoint or 
not [17]. All this information is used in the following 
condition by a process Pi to decide whether to force a 
checkpoint or not: 

 

 

 [17]. 
 
BCS, FI and index-based protocols, in general, 

guarantee that all checkpoints with the same index 
will form a consistent global checkpoint. In all CIC 
protocols, the goal is to minimize the number of 
forced checkpoints while maintaining a consistent 
global checkpoint.   

V. EXPERIMENTAL SETUP 

In this study, two experiments were conducted. In 
the first, checkpointing of a simulated application was 
conducted where tasks periods, message destinations, 
and message frequencies are set randomly. The test 
was performed on CAN networked PEs using four 
CIC protocols to compare and confirm results in the 
available literature. A test-bed was used to carry out 
this experiment. The test-bed is built from a number 
of microcontrollers communicating with each other 
through CAN (Controller Area Network) [21]. 

 

 

 
 

Figure 2. Test-Bed Hardware and User Interface. 



 
The number of microcontroller units used in the test-
bed is variable. The user can easily add or remove 
microcontrollers to the test-bed. The microcontrollers, 
which serve as processing elements (PEs), carry out 
user tasks execution. A real-time operating system 
(OS), µC/OS-IITM, running on each microcontroller 
manages hardware resources, provide inter-task 
communication, as well as providing other basic and 
necessary services. The test-bed provides electively 
the user with a system manager processor that may be 
used for managing the distributed application. The 
test-bed also provides the user with monitoring, data 
acquisition, and fault-injection tools. 

The hardware, pictured in Figure 2, used to build 
the test-bed is composed of a group of Freescale 
HCS12 microcontroller units (MCUs) [22]. 
Specifically, the MC9S12DP256B model is used. An 
MC9S12DP256B microcontroller is a 16-bit device 
composed of a 16-bit central processing unit (HCS12 
CPU) and many I/O options. The MCUs used in the 
test-bed are connected through a CAN network. 
Physically CAN is a twisted pair multidrop cable 
ranging from 1,000 meters  to 40 meters in length 
operating at 40 Kbps to 1 Mbps data rates 
respectively. CAN is a message based protocol, where 
each message has an identifier, which can be treated 
differently depending on the application. Every node 
on the network receives all messages and is typically 

set up to process messages of interest as identified by 
their message IDs.  

 CAN has been selected to connect the 
microcontrollers due to its popularity (more than 2 
billion nodes have been sold since the protocol’s 
development in the early 1980s [23]), high data rates 
(1Mbps at 40m bus length), fault-tolerance 
capabilities (e.g., acknowledgment bits, differential 
signaling, and the ability to communicate through one 
of the two lines at lower data rates in case of damage 
[24]). The number of nodes could be any number up 
to 110 nodes. 

For the CIC protocols evaluation, the number of 
networked processes was varied between 5 and 30 
tasks, executed by 1 to 6 MCUs, and up to 5 processes 
(tasks) per MCU. All on-chip and off-chip task 
communication occurs over the CAN bus. A network 
interface layer was implemented on every MCU to 
make the inter-task communication transparent to the 
application. A process sends all checkpoints and 
application messages to this software layer through 
OS provided mailboxes. The software layer 
disassembles the incoming messages, forms CAN-
compatible frames, and writes these frames to the 
CAN bus. On the other hand, the network interface 
layer on a certain MCU monitors the CAN bus and 
reads all CAN frames who’s destination is one of the 
tasks executed by the same MCU. The software layer 
then assembles all related frames into a single

CAN BUS

Task1

Network Interface layer

Task2 Task3 Task4 Task5

MCU 1

Task26

Network Interface layer

Task27 Task28 Task29 Task30

MCU 6

Task6

Network Interface layer

Task7 Task8 Task9 Task10

MCU 2

Network Interface layer

Write to Stable 
Storage Task

Checkpointing MCU

Mailbox

Application Message or Checkpoint

CAN Frames

 
 

 
Figure 3. Software Communication Model – First Experiment 



 

 
 

message and forwards it to its destination through OS 
provided mailboxes. A dedicated MCU monitors the 
CAN bus, and reads all frames carrying process status 
checkpoints. In this paper, the dedicated MCU will be 
referred to as the checkpointing MCU. Figure 3 shows 
the software communication model. In all 
experiments, the MCUs were operating at 48MHz 
clock rate. The CAN network baud rate is set to 
94.117 kbaud.  

In the second test, the same four CIC protocols 
were applied on the tasks of an avionics feed-back 
control system of a Quadrotor unmanned aerial 
vehicle (UAV) being developed at Oakland 
University [25]. In this test, three HCS12 MCUs 
execute different UAV tasks. The main tasks running 
are: T_Comm, T_Roll, T_Pitch, T_Yaw. The T_Comm task 
forwards the current and desired attitude angles to the 
other three tasks through OS provided Mailboxes. 
T_Roll, T_Pitch, and T_Yaw implement the roll, pitch, and 
yaw stability PID controllers respectively. The real-
time OS executes the tasks on each of the three MCUs 
at the proper rates. All MCUs are connected to a CAN 
bus. A forth dedicated MCU collects checkpoints 
written by other MCUs from the CAN bus and stores 
them to stable storage. Figure 4 shows the block 
diagram of the system. MCUs in this test were also 
operating at 48MHz clock frequency, and 
communicating over a 94.117 Kbaud CAN bus speed. 

As discussed above, local checkpoints in CIC 
protocols are taken depending on the application. 
Often, it may be beneficial to take a checkpoint when 
the process status size is minimal. Nevertheless, for 
other applications periodic checkpointing may be 
required. In this work, the focus is on evaluating CIC 

protocols in embedded systems, where executing the 
same software task in a periodic manner is usually the 
case. Hence, for both experiments, local checkpoints 
were taken periodically every fixed number of 
execution cycles.  

VI. RESULTS  

This section shows the results observed from the 
two experiments. Figure 5, shows the results from the 
simulated application experiment described in the 
previous section. It shows the total number of 
checkpoints as a function of process count for each of 
the four evaluated protocols. As observed from the 
figure, the total number of checkpoints for the two 
model-based protocols (CBS and MRS) are much 
higher than the two index-based ones (BCS and FI). 
Hence, the model-based protocols force more 
checkpoints than required. And the gap between the 
two kinds of protocols increases as more processes are 
added to the network. 

In order to get a better picture of the number of 
checkpoints forced by each protocol, Figure 6 plots 
the forced to local checkpoint (F/L) ratio as a function 
of the number of processes in the network. The F/L 
ration is plotted for the four protocols evaluated in the 
first experiment with the simulated application. 

Both Figure 5 and Figure 6 illustrate that the 
index-based protocols (BCS and FI) perform better 
than the other two model-based protocols in terms of 
total number of checkpoints and forced to local 
checkpoint ratio. The performance of BCS and FI is 
further studied below. FI show better performance in 
terms of the number of forced checkpoints. Figure 5 
shows the sum of local and forced checkpoints, and  
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Figure 4. UAV Avionics system block diagram 



 

 
the two sums may look close enough because the 
number of local checkpoints taken periodically is 
relatively much higher than the forced checkpoints in 
both protocols. Therefore, this observation is 
highlighted in Figure 6 better than Figure 5. 

For a better evaluation of the two index-based 
protocols on the embedded test-bed, the CAN bus 
traffic load is illustrated in Figure 7. The figure plots 
the average and peak bus load percentages for BCS 
and FI. FI out performed BCS in terms of forcing less 
number of checkpoints, but this comes with the 
expense of piggybacking more information. The 
relatively high amount of piggybacked information 
(compared to BCS) overwhelmed the network, and 
caused it to almost saturate as the number of processes 
got close to 30 nodes. 

CAN frame messages do not carry more than 8 
bytes of data. The network interface layer in the case 
of FI will need more clock cycles to convert 
application messages into CAN frames compared to 
BCS. This is because FI needs to piggyback much 
more information than BCS.  

The increased amount of required clock cycles is 
considered as processing overhead, and may affect 
original software tasks by competing with it on 
processing resources.  

 

 

Figure 8 and Figure 9 compare the four CIC 
protocols in terms of total number of checkpoints and 
Forced/Local (F/L) checkpoint ratio for the four main 
tasks running on the attitude control processor in the 
UAV control system experiment. Figure 10 shows the 
CPU usage (µS) during a 60 second interval for the 
T_Comm task. The execution time is shown without 
applying checkpointing and with applying the four 
different protocols.  

 
Table 1 shows the worst case execution times for 

the tasks of the attitude control processor after 
applying the two index-based checkpointing protocols 
(BCS and FI). The second column is the number of 
times a task was executed by the OS over a period of 
60 seconds. Third and fourth columns show the time 
(µS) needed for a single time execution of a task 
without checkpointing and the time for taking a

 
 

Figure 8. Attitude control application experimental results 
(Total # of Checkpoints) 

 
 

Figure 7. Simulated application experimental results 
(CAN Bus Load) 

 
 

Figure 6. Simulated application experimental results 
(Forced/Local Checkpoint Ratio) 

  
 

Figure 5. Simulated application experimental results (Total # 
of Checkpoints) 



 

 
 
 

 
  

Table 1: Attitude control tasks execution times for BCS and FI 
 

Task ID # of Executions No checkpointing 
(µS) 

Checkpoint Time 
(µS) 

CPU Usage With  
Chekpointing (µS) 

Checkkpoint  
Size (B) 

 BCS FI  BCS FI BCS FI  

T_Comm 15613 9522 312260 500 1345 1093760 1470880 40 
T_Roll 4147 2510 352495 88 145 390071 250035 8 
T_Pitch 3437 2315 292145 88 145 323385 230560 8 
T_Yaw 1061 541 90185 88 145 100305 53960 8 

Idle  58952915  58092479 57994565  
 
 

 
 

Figure 10. One Task CPU Usage with and without checkpointing 

 
 

Figure 9. Attitude control application experimental results (Forced/Local Checkpoint Ratio) 



complete checkpoint respectively. Column five 
illustrate the processor time (µS) allocated to a task 
after applying checkpointing. The last column is the 
size (Bytes) of a single checkpoint. The next section 
will discuss all these results and explain the findings. 

VII. DISCUSSION  

The simulated application results agree with 
results from simulations reported for information and 
parallel processing systems found in the literature, in 
terms of the number of forced checkpoints and F/L 
checkpoint ration. The results show that the two 
index-based protocols outperformed the other two 
model-based protocols. However, the FI protocol had 
a much better F/L checkpoint ratio.  

On the other hand, results from the first 
experiment show that the CAN bus load in the case of 
the FI protocol was the heaviest between all other 
protocols. This is a manifestation of the large amount 
of information the protocol had to piggyback over 
application messages.  

Moreover, for the attitude control application, it is 
found that there was not much difference in terms of 
number of checkpoints between CBS and MRS 
protocols.  It is believed that these close results found 
for the two model-based protocols are due to the fact 
that this attitude control is a periodic system, as is the 
case with many embedded systems. Furthermore, the 
BCS index-based protocol showed a significant 
amount of improvement in terms of the number of 
checkpoints and execution times as expected. 
However, the FI protocol had the fewest amount of 
checkpoints and it required more CPU resources than 
the BCS protocol (Figure 10). This is due to the 
additional time required to piggyback the information 
required by processes, as well as to process all this 
information. This means that the execution frequency 
of a task in the case of the FI protocol is less than the 
frequency in the case of any other protocol. The 
results in Figure 10 show that the two model-based 
protocols had a higher CPU usage than the FI 
protocol. This is because the two model-based 
protocols had a higher execution cycle rate and thus 
got the opportunity to use the CPU more frequently in 
the 60 seconds time period. 

Table 1, column 1 show that the BCS protocol 
roughly executed two times more than the FI protocol. 
This relatively high amount of execution time 
overhead in the FI protocol caused it lower execution 
frequency. However, in real-time embedded system 
applications, lowering the execution frequency has a 
critical impact on the overall performance of the 
application. In the quadrotor UAV attitude control 
application, for example, the execution frequency of 
the PID control loops was not enough to keep the 
UAV stable and respond to commands correctly. 

From the findings, the authors believe that a 
simple index-based CIC protocol such as the BCS 
protocol fits better in embedded system applications 

than other protocols that piggyback more information 
to reduce the amount of forced checkpoints. Meeting 
deadlines in this case is critical and is at least as 
important as saving checkpoints. 

 

VIII. CONCLUSION 

This paper overviews the work of implementing 
and evaluating CIC checkpointing protocols to 
support reconfiguration-based fault-tolerance in 
CAN-based distributed embedded systems. Four 
popular CIC protocols were evaluated on a resource 
constrained embedded system. Two experiments 
were conducted over CAN networked 16-bit 
microcontrollers serving as PEs. The first experiment 
evaluated the four protocols on a simulated 
application with random task periods, message 
destinations, and message frequencies. The second 
experiment evaluated the same protocols on the tasks 
of an avionics feed-back control system of a 
Quadrotor UAV. The findings in this research agree 
with available literature for large information systems 
and parallel computing in the context of number of 
checkpoints and forced to local checkpoint ratios. 
The findings also showed that reducing the number 
of forced checkpoints comes with the expense of 
overwhelming the network bandwidth as well as 
increased processing overhead, which is not suitable 
for embedded systems that have to meet certain 
deadlines. The main contributions of this paper are: 
confirmation of simulation results form available 
information system literature on distributed 
embedded systems, illustrating the inappropriateness 
of the FI protocol for resource constrained systems 
due to the required bandwidth and CPU overhead, 
and, finally, reporting real measures of checkpoint 
sizes, processing time overheads, and network 
bandwidth usage, in addition to the conventional 
metrics in realistic embedded system applications. It 
is believed that the reported information may be 
beneficial to embedded system designers considering 
checkpointing approaches. 
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