
University of Montana University of Montana

ScholarWorks at University of Montana ScholarWorks at University of Montana

Graduate Student Theses, Dissertations, &
Professional Papers Graduate School

1995

Object oriented design of the groupware layer for the Ecosystem Object oriented design of the groupware layer for the Ecosystem

Information System Information System

Venugopal V. Hemige
The University of Montana

Follow this and additional works at: https://scholarworks.umt.edu/etd

Let us know how access to this document benefits you.

Recommended Citation Recommended Citation
Hemige, Venugopal V., "Object oriented design of the groupware layer for the Ecosystem Information
System" (1995). Graduate Student Theses, Dissertations, & Professional Papers. 5093.
https://scholarworks.umt.edu/etd/5093

This Thesis is brought to you for free and open access by the Graduate School at ScholarWorks at University of
Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an
authorized administrator of ScholarWorks at University of Montana. For more information, please contact
scholarworks@mso.umt.edu.

https://scholarworks.umt.edu/
https://scholarworks.umt.edu/etd
https://scholarworks.umt.edu/etd
https://scholarworks.umt.edu/grad
https://scholarworks.umt.edu/etd?utm_source=scholarworks.umt.edu%2Fetd%2F5093&utm_medium=PDF&utm_campaign=PDFCoverPages
https://goo.gl/forms/s2rGfXOLzz71qgsB2
https://scholarworks.umt.edu/etd/5093?utm_source=scholarworks.umt.edu%2Fetd%2F5093&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@mso.umt.edu

Maureen and Mike
MANSFIELD LIBRARY

The University of 1VLONXANA

Permission is granted by the author to reproduce this material in its entirety,
provided that this material is used for scholarly purposes and is properly cited in
published works and reports.

* * Please check "Yes" or "No" and provide signature * *

Yes, I grant permission
No, I do not grant permission

Author's Signature

Date O ^ / o s M "

Any copying for commercial purposes or financial gain may be undertaken only with
the author's explicit consent.

62

O bject O riented D esig il o f th e Groupware Layer
for the

E cosystem Inform ation S ystem

Venugopal V . H em ige

Bachelor of Technology

K arnataka R egional Engineering C ollege, India 1993

P resented in partial fulfillm ent o f th e requirem ents

for th e degree of

M aster of Science

U niversity o f M ontana

1995

by

Chairman, Board of Examiners

Dean, Graduate School

Qu-
Date

UMI Number: EP40557

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependen t upon the quality of the copy submitted.

In the unlikely event that the author did not send a com plete m anuscript
and there a re missing pages, th ese will be noted. Also, if material had to be rem oved,

a note will indicate the deletion.

UMI EP40557

Published by P roQ uest LLC (2014). Copyright in the Dissertation held by the Author.

Microform Edition © ProQ uest LLC.
All rights reserved. This work is protected against

unauthorized copying under Title 17, United S ta te s C ode

ProQ uest LLC,
789 E ast E isenhow er Parkway

P.O. Box 1346
Ann Arbor, Ml 4 8 1 0 6 - 1346

Hemige, Venugopal V., M.S., July 1995 Computer Science

O bject-oriented design of the Groupware Layer for the Ecosystem Inform ation
System.

r

Director: Prof. Ray Ford

In a d is tr ibu ted system, sharing of d a ta and other resources is one of the key goals.
But while allowing users access to these resources, it is im p o rtan t to m ake sure tha t
d is tr ibu ted system resources are accessed only by those who are authorized to do so
and only in precisely the ways they are authorized to do so. T h e im plem entation of
EIS has reached a stage where the database is being populated with inform ation by
ecosystem researchers from our collaborating laboratories. Before people s ta r t using
EIS extensively, the prim ary need is to design and im plem ent the groupware layer
appropria te for EIS. This thesis investigates the requirements of the groupware scheme
for EIS and presents1 an appropriate design. T he design of a, reliable authentication
scheme is presented here. The thesis makes use of a scenario-based object-d iagram
representation to show how different objects in the client/server processes will in teract
with each o ther during program execution.

A ck n o w le d g e m e n ts

I would like to express my heartfelt gratitude towards Prof. Ray Ford for his relent
less support and guidance with my thesis. I particularly appreciate his paitence in
carefully reading every line of my draft through several iterations before coming up
with a draft that could be presentable. I am deeply indebted to Prof. Lynn Churchill
and Prof. Nick Wilde without whose guidance and help, this thesis would not have
been possible.

Special thanks to Mrs. Kathy Lockridge for her ever-cheering support and help with
all the formal details regarding making a thesis possible. Last but not the least, I
would like to thank the Department of Computer Science, University of Montana, for
all the computing resources and relevant literature that made my thesis possible.

Date: June 02, 1995 Venugopal Hemige

Table of Contents

A b s tra c tii

A ck n o w led g em en ts ... iii

T ab le o f C o n te n ts ... iv

1. In tro d u c tio n ... 1

2. B ac k g ro u n d .. 3

2.1 An Overview of Object-Oriented Modeling.. 3

2.2 The Goal for EIS ... 4

2.3 Object-Oriented Design of EIS... 5

3. T h e G ro u p w are L ay er........................ 9

3.1 Requirement... 9

3.2 Basic Entities.................................. 11

3.3 An Example GroupJnfo Object............... 12

3.4 EIS Database Organization..17

4. T h e 3-A A sp ec ts o f th e G ro u p w are L ay er.. 20

4.1 User Authentication..20

4.2 Authentication in EIS...22

4.2.1 Local Client Authentication...23

4.2.2 Remote Server Authentication.. 23

4.3 Authorization... 26

4.4 Access Control... 28

5. S cen ario s... 29

5.1 Notations...29

5.2 Basic Design...30

5.2.1 - 5.2.8 Example Scenarios.. 31-47

6. S u m m a ry an d C o n clu sio n ... 48

6.1 Implementation Status..48

6.2 Directions for Future Research... 49

A p p e n d ix A: Pseudocode for Authenticating a user 51

A p p e n d ix B: Installation Guide for EIS ... 52

R e fe ren ces ...55

v

1. Introduction

The Ecosystem Information System (EIS)[1, 2, 3] is a distributed database con

taining various types of information of interest to ecosystem modelers and man

agers. Included in this database are m eta-data descriptions for various data sources,

datasets, and modeling components. EIS is designed and implemented using object-

oriented technology. The current implementation of EIS implements only the “core

access technology” demonstrating the potential for sharing interpreted objects via

EIS. But it does little or nothing at all in terms of security. Having come to a stage

where the software can now be used by ecosystem modelers to populate the database

so that it can be shared and accessed by other users on the network, data security

has become one of the key issues. The goal of EIS is to allow users anywhere on

the network to share distributed resources in a network-transparent manner. In a

distributed system, sharing of data and other resources is one of the key goals. But

while allowing users access to these resources, the distributed system should allow

each user to do those things that he/she is authorized to do, and to prevent him /her

from doing things that are not authorized. The work described here is the object-

oriented design and prototype implementation of this groupware layer for EIS, as an

extension to the current prototype system.

In this thesis, I discuss the three important aspects of the groupware layer in EIS

and present an object-oriented design of the different classes and objects that encap

sulate these aspects. I perform a careful study of the different popular authentication

mechanisms available and present a viable authentication for EIS. The security mech

anism presented here is aimed at ensuring that only the right users are allowed access

to the database and only those services and resources that they are authorized to.

Since authentication needs to be done for every service requested by the user, it might

be better to cache the groupware information whenever a client is accessing a partic

ular portion of the groupware layer. The entire design process makes use of different

scenarios to help the designer analyse the effectiveness of a particular design aspect

1

2

and the way to go around implementing it. The scenarios described in this thesis

should help the reader understand the design concepts more clearly too.

Briefly summarized, the purpose of this thesis is to :

• design and implement a reliable security mechanism for a distributed system

like EIS.

• use object-oriented methodology in the design process.

• provide a strong authentication scheme to ensure that only the right users access

the EIS database resources.

• manage the costs involved in making the authentication/authorization requests.

• adopt a scenario-based object-diagram representation to describe how objects

will interact with each other during program execution.

2. Background

2.1 An O verview of O bject-O riented M odeling

Object-oriented design is built upon a sound engineering foundation, whose ele

ments we collectively call the object model [4], The object model encompasses the

principles of abstraction, encapsulation, modularity, hierarchy, concurrency, and per

sistence. The building blocks in any object-oriented design methodology are concepts

of class, instance(or object) and method. A class is a description of objects that

share a common structure and a common behavior. An object is simply an instance

of a class. An object can be considered to have state, behavior and identity. The

state of an object is determined by a set of attributes of the object plus the current

values of each of these attributes. In general, the internal state of an object is hid

den from other objects and hence is not directly accessible., However an object can

m ake parts of its state available to other objects or let other objects perform actions

on this state through a set of visible attributes and operations. The client/server

model is a good example of an object-oriented modelling where the two main objects

under consideration are the client and the server processes. The client/server model

is used to describe the use of networks containing two types of processes that have

an asymmetric relationship. The client process makes requests for services and the

server provides the services on request. Objects that share common attributes and

operations are grouped into a class.

Object-Oriented design[4] is an incremental, iterative process in which the prod

ucts o f ’design, a set of interacting objects, gently unfold over time. We start the

object-oriented design process by discovering the classes and objects that form the

vocabulary of our problem domain. The process of object-oriented design generally

tracks the following order of events:

• Identify the key abstractions in the problem space (the significant classes and

objects) and describe the mechanisms that provide the behaviour required of

3

4

objects, so that they can work together to achieve some function.

• Identify the semantics of these classes and objects.

• Identify the relationship among these classes and objects.

• Implement these classes and objects.

This is an incremental process: the identification of new classes and objects usually

results in the need to refine and improve upon the semantics of and relationships

among existing classes and objects. It is also an iterative process: implementing

classes and objects often leads us to the discovery or invention of new classes and

objects whose presence simplifies and generalizes our design.

Given an object-oriented design for a target system, the next step is to somehow

test the design, prior to implementation, to see if it provides the correct set of facil

ities. A scenario is a description of how objects will interact with each other during

program execution to perform a specific activity. A scenario can be represented in

many different ways, but one of the most convenient representations is as a diagram

showing objects and the exchange of operation calls and results that represent their

client/server relationship in this particular scenario.

For a client/server system such as EIS, a set of carefully selected scenarios can help

the system designer to visualize different approaches and determine the correctness

of the design, its efficiency and how it would function in a real implementation.

2.2 Goal for EIS

Modern ecosystem management and analysis is an application area tha t demands

extensive information sharing between different organizations and different sites within

an organization. The goal of the EIS project is to create a network-accessible reposi

tory of ecosystem information that provides access to various types of information of

5

interest to ecosystem modelers and managers in a user-friendly manner, ensures rea

sonable security, allows the distribution of locally created material and contribution

from outside users, and is populated with material sufficient to illustrate both its use

and its value to potential users. The second major goal in EIS development is to en

hance the level of access provided by Internet-based tools for objects such as numerical

datasets, program components and m eta-data descriptions for various data sources.

Currently available Internet tools support the display of hypertext documents and

images in standard formats, but provide access to other types of objects merely as

uninterpreted files. Our goal is to develop tools that allow us to construct a web-work

of hierarchical dataset descriptions and dataset instances, allowing a potential user to

transparently navigate from site to site, browse through dataset descriptions, locate

datasets and data transformations of interest, and easily add datasets and dataset

descriptions.

2.3 O b je c t-O rie n te d D esign of EIS

The base EIS object-oriented design (referred to as EIS 0.9) implements the core

of information distribution functionality, but without any access control or other

mechanism for security. An object diagram of the EIS 0.9 design is depicted in

Figure 1. The core system consists of five primary types of one-per-user or one-per-

host objects that implement the necessary services. The three one-per-user objects

G U I, O M E an d O R B -c lien t are encapsulated under one object called E lS -c lien t.

ElS-client is invoked as a client process by a user. On every host, the one-per-

host objects - O b je c t R e q u e s t B ro k e r (O R B -serv er) and O b je c t D a tab a se

M a n ag e r (O D B M) are encapsulated under the E lS -se rv er. At the heart of the

ElS-server are two one-per-host objects. The ORB-server manages locally generated

requests, and resolves such requests by forwarding them to either the local filesystem

or to the ORB-server on a remote host. Thus the ORB-server must also respond to

remotely generated object requests for objects stored on its local database. The ORB-

.6

o

f t

User(X)
Host J (Client-Server)

User(Y)

£ GUI(J, X)

\ ^ OME(J, X)J

n

OME J

^ORB-client(J, X))v ^ 0R B .d le„ 1(J, Ŷ

\ V _ _ /

..................
^)R B -s e rv e r(J)^

AI
T ethernet

Host K (server)

^ Orb-server(K)^

r ODBM(K) J

 k_____

1
..i.

Figure 1: EIS 0.9 Object-Oriented Design

7

server also manages all communication required to store and retrieve information from

the local file system, phrased in terms of messages/responses with the ODBM. The

ODBM encapsulates all aspects of file system storage, thus hiding details associated

with file naming, directory structure, etc.

The ElS-Client is a set of three one-per-user objects, namely GUI, OME and

ORB-client. The user-interface, which involves the X/M otif details, is encapsulated

in the GUI. The GUI maintains only enough local state to allow the display to be

drawn. In order to allow efficient implementation of operations that modify the

display another object, the Object Management Engine (OME), maintains a more

complete local state. Thus, the class hierarchy is represented in different forms and

in different degrees of detail in different objects. To maintain the local state, the

OME uses several smaller objects which are all encapsulated in the OME for our

explaination here. The OME routes all its requests for EIS database entities to the

ORB-Client, which in turn forwards each request through the ORB-Server to either

the local ODBM or across the network to another ORB-Server.

The EIS 0.9 has been implemented in C + + , with the GUI front-end written using

X/M otif. A public-domain remote procedure call mechanism (SUN RPC) is used for

host/host communication. This initial implementation executes on the IBM RS/6000

Unix workstations. The code should be portable to a wide range of Unix worksta

tions within the portatbility bounds of different C + + compilers, X/M otif library

implementations, and the SUN RPC. However, the prototype EIS 0.9 implements

only the core access technology demonstrating the potential for sharing interpreted

objects via EIS. Since the remote procedure call mechanism used is written in C,

a encode/decode method has to be used to convert the C + + objects into a format

acceptable to the RPC library. All this is encapsulated within the ORB-Client and

ORB-Server. The present implementation of EIS does not yet provide support for ro

bust operation, group-oriented security, or other forms of access regulation. The EIS

data-repository is organised hierarchically using an object-oriented framework to or

der the myriad collection of components used in ecosystem modeling. In collaboration

with other ecosystem modeling laboratories, the repository is being populated with

datasets and modeling tools from important ecosystem modeling and management

applications.

8

3. T he Groupware Layer

3.1 R equirem ents

In a distributed system, sharing of data and other resources is one of the key goals.

But while allowing users access to these resources, it is im portant to make sure that

distributed system resources are accessed only by those who are authorized to do so

and only in precisely the ways they are authorized to do so. The implementation of

EIS has reached a stage where the database is being populated with information by

ecosystem researchers from our collaborating laboratories. Before people start using

EIS extensively, the primary need is to design and implement the groupware layer

appropriate for EIS. The design of the security system for a distributed system like EIS

is significantly different from that for a uniprocessor system. A user could be anybody

on the network. An EIS group could consist of users from a range of hosts. The

access privileges to a hierarchy could be more detailed than the (read, w rite , execute)

accesses as described in the Unix system. The owner of a hierarchy should probably

be able to specify the access groups for each/some of the groups defined. Also since

parts of a hierarchy could be contributed by a certain group of users, they ought to

be able to set authorization on their parts of the hierarchy for other users.

Ideally there would be a system supported layer of client/server facilities that

allowed servers to “publish” their services yet restrict access to them, and clients to

identify themselves and gain access to these services. The Distributed Computing

Environment (DCE)[6] is a convenient tool for such purposes. The set of DCE Se

curity Service facilities provides a robust set of capabilities to ensure that services

are made available only to properly designated parties, without inconveniencing le

gitimate users. DCE Security implementation is based on Kerberos[7, 8] and uses

very well known encryption algorithms (Data Encryption Standard - DES). An ideal

situation would be to implement EIS using DCE distributed support for security. But

unfortunately, while DCE is fast becoming a standard, it is still not widely available

9

10

nor completely compatible across different vendor platforms. In order to permit the

implementation and use of EIS now, our plan is to implement EIS using the SUN

RPC [5] which is a public-domain software portable and compatible across a wide

range of Unix Workstations. As regards security, the disadvantage is that the SUN

RPC offers an authentication scheme which cannot provide a high level of security

for an arbitrary design. The complete functional design of EIS demands this level

of security for its groupware scheme. The work described here includes the complete

EIS groupware design, and a modified, more limited form that can be implemented

securely with only RPC support.

There are three facets of the proposed groupware layer: authentication, autho

rization, and access control. The three “As” work together to provide security in

EIS. Authentication means validating the user’s identity. Authorization means deter

mining to what groups this user belongs. Access control is deciding the set of access

privileges this user should and should not be allowed. The authorization and access

control decisions in the EIS distributed system are encapsulated in the ElS-server.

For every operation that a user requests, the ElS-client authenticates the user (deter

mines the user’s identity), authorizes the user’s membership, then verifies from the

concerned ElS-server if the user has the right to perform the access implied by the

requested service. Only at the end of this process is the user allowed to perform the

requested action.

There is overhead in making authentication/authorization/access requests. In

general, information required to resolve these requests may be stored globally, so the

overhead is passed along to the concerned ElS-server. If the server is remote from the

originating user, considerable performance delays could result. Since such requests

are made for every operation requested by the client, the groupware layer is likely to

be the most frequently used resource in EIS.

There are three major issues to be addressed in the groupware implementation.

11

First is managing the costs involved in resolving the 3-A requests. Second is rec

ognizing the level of security and functionality that can be attained without true

distributed system support for security, i.e. using only RPC. The third is balancing

communication and data replication in the design of features to support the 3-A’s.

Keeping only a single copy of the pertinent groupware data will lead to excessive

communication costs, whereas replicating the data at each client might lead to an

inconsistency between the replicated groupware data thereby leading , to erroneous

results. An appropriate balance between centralized and replication schemes, as de

scribed in [9, 10], must be designed to make the 3-A implementation efficient, reliable

and robust.

Actually integrating a well thought-out groupware layer with the existing system

code will be the final step. All of the new objects are encapsulated within the server,

only requiring changes in the ORB-client and ORB-server to handle the communica

tion requests and minor new GUI capability for operations concerning the groupware

layer. We shall identify this new EIS system with the groupware layer with a new

version number (EIS 1.0) in order to distinguish the new EIS from the existing system

(EIS 0.9).

3.2 B asic E ntities

Logically, the groupware layer is based on a collection of classes that define the

characteristics of active entities such as users, hosts, and groups, of permissions, and

of privileges. These classes are defined below, followed by a discussion on the pro

cedure used in EIS 1.0 in handling the 3-A aspects of Authentication, Authorization

and Access Control. Figures 2, 3 and 4 show the classes that encapsulate these def

initions. Figure 2 describes the abstractions that encapsulate concepts related to

authentication and authorization. Figure 3 is a description of the abstractions that

encapsulate key concepts in defining access permissions. Figure 4 shows the different

classes of users in the EIS system, based on their access privileges. A single instance

12

of groupJnfo will encapsulate the authentication and authorization operations for a

group of hosts. An instance of privJnfo will encapsulate the permissions for different

groups for each hierarchy, and hence is used for access control.

Figure 5 also suggests where the different parts of the groupware layer fit into the

EIS system. Logically, the EIS system as a whole consists of a number of cells. Each

cell in made up of a set of hosts. Ideally a host belongs within only one cell but it

can be otherwise. One host in each cell is designated as the cell’s mainserver which

is very much like the other EIS servers except that it encapsulates the groupJnfo and

the hierJdJist for that cell. The groupJnfo defines a set of groups for the cell and the

scope of a group includes all the hosts within the cell. Every EIS host maintains a

database of all the hierarchies that were created on that host. For example, in Figure

5, the hierarchies H I E R m i indicates that this hierarchy is one of the hierarchies

stored on host M. Hierarchies are identified by names that are unique within the

domain of a cell. Along with each hierarchy, we have a privJnfo object that keeps

track of the access permissions for different groups to the hierarchy.

3 .3 A n E x a m p le groupJnfo O b jec t

An example instance of groupJnfo is shown in Figure 6 to better illustrate how

the objects are organized. Cell A is one of the cells in the EIS system as depicted in

Figure 5. The groupJnfo consists of:

1. A list of groups (EIS-ADMIN, dasl, eis) and the users belonging to each of these

groups

2. A list of vita with a cross reference indicating the list of groups each user belongs

to.

This instance of groupJnfo for cell A is encapsulated within the mainserver for the

cell, host “cs.umt.edu”. Suppose now, user “trish@radiator.cs.umt.edu” creates a hi-

Class

user

host

cell

group

v ita

group _info

E IS-server

m ain_server

13

A ttrib u tes D escription

email-id Since EIS can be accessed from anywhere on the network,
we define a EIS user as a person with a valid email account
on a Unix system. Hence a user’s attribute is the
email-id of the account.

IP address An EIS host is a host on which an EIS server
runs as a daemon process.

list< host> A cell in EIS terms is a group of co-operating EIS hosts, each
running its own EIS server. Each cell has a designated mainserver
host which has the extra attributes described below.

group-name,
list<user>

user,
list<group>

eis _admin,
list<group>,
list<vita>

Hierarchies

A group encapsulates a group _name and a list of users
that belong to the group.

A vita is defined as the list of groups that a user belongs to.
It consists of a user attribute and a list<groups attribute.

This contains the information describing which user belongs
to each group and what groups each user belongs to. This
object encapsulates the authorization process of the groupware
layer. The list<vita> is a cross-reference to the list<group> so
that the authorization process is faster and more efficient.
There should be only one groupJnfo object per EIS cell.

This is the EIS server process that runs as a one-per-host daemon
process. It handles requests from EIS clients and manages the databas

Hierarchies,
hierarchy-list,
groupJnfo

The mainserver in a cell is different from the other
EIS servers in that it encapsulates a few additional objects that
are absent in other servers. These attributes are the groupJnfo and
hierarchyJist{a table of all the hierarchies within the cell).

Figure 2: Abstractions encapsulating Authentication/Authorization

14

Class A ttrib u tes

p riv Jn fo owner-id, owner_perms,
world_perms, list<group_perms>

perm s read, modify, modify Jf_extended,

D escrip tion

PrivJnfo is the object that keeps access
right information for different privilege
classes.

This object contains the different
delete, deleteJd.extended, extend, execute access rights defineable in a EIS hierarchy,

g ro u p .p erm groupname, perms The permissions for a group.

Figure 3: Abstractions encapsulating Access Control

C lass A ttr ib u tes and description

Privilege Classes The Privilege classes within EIS are EIS_Admin[Root], Owner,

Group(s), World. The EIS J\.dmin is the only class of user(s) who are privileged to ac

cess/modify the groupJnfo Every hierarchy has a Owner who can change/add/delete

the permission attribute of any of the groups. Each of the different groups including

the world can be set to have different access rights.

Figure 4: Privilege Classes

15

CELL C

HOST M (main_server)

J ^ Orb-server(M)^ ^

1 \(g r o u p jn fo)
IODBM(M)J) J

(pRIVJNFO(HIER_Mj)^» « » (PRIV JNFO(HIER_M n|)

Host K (server) Host L (server)

(Orb-server(K) j ^ Orb-server(L)^

- - z n —

^ v\

^ \ \
(oD B M (K)) \

® ® ® ^ODBM(L) J \
^RIV_INFO(HIER_kJ) • • s ^PRIV_INFO(HIER_L1̂ s e e

CELL D

HOST Md

HOST I

CELL X

H O STM .

HOST I • • •

Figure 5: EIS Object-oriented diagram including the Groupware Layer

16

EIS.ADMIN: venu@eisgate.cs.umt.edu, vijayant@eisgate.cs.umt.edu

dasl: ford@cs.umt.edu, trish@radiator.cs.umt.edu, ford@wilfred.umt.edu

eis: righter@wru.umt.edu, dthompsn@cs.umt.edu , ford@wilfred.umt.edu

venu@eisgate.cs.umt.edu: EIS-ADMIN

vijayant@eisgate.cs.umt.edu: EIS-ADMIN

ford@cs.umt.edu: dasl

ford@wilfred.umt.edu: dasl, eis

dthompsn@cs.umt.edu: eis

trish@radiator.cs.umt.edu: dasl

righter@wru.umt.edu: eis

/* a group */

/* a group */

/* a group */

/* a vita 7
r a vita 7
r a vita 7
/*a vita 7
r a vita 7
r a vita */

/* a vita 7

Figure 6: An example groupJnfo instance for cell A

mailto:venu@eisgate.cs.umt.edu
mailto:vijayant@eisgate.cs.umt.edu
mailto:ford@cs.umt.edu
mailto:trish@radiator.cs.umt.edu
mailto:ford@wilfred.umt.edu
mailto:righter@wru.umt.edu
mailto:dthompsn@cs.umt.edu
mailto:ford@wilfred.umt.edu
mailto:venu@eisgate.cs.umt.edu
mailto:vijayant@eisgate.cs.umt.edu
mailto:ford@cs.umt.edu
mailto:ford@wilfred.umt.edu
mailto:dthompsn@cs.umt.edu
mailto:trish@radiator.cs.umt.edu
mailto:righter@wru.umt.edu

17

G roup N am e P erm issions

owner < trish@r adiat or. cs. umt .edu > r d-m-ex

eis r—-ex

world r------

Figure 7: PrivJnfo for hierarchy habitat-type

erarchy named habitat-type on host “radiator.cs.umt.edu”. Then “trish@radiator.cs.umt.edu”

becomes the owner of hierarchy “habitat-type” . Either the owner or the EIS-ADMIN

can specify access permissions to “habitat_type” for different groups. An example

privJnfo for “habitat_type” is as shown in Figure 7.

3.4 EIS D atabase Organization

In this section, we discuss scenarios that illustrate the client/server (object) in

teraction used to implement the basic services provided in EIS. These scenarios are

im portant because they help to illustrate the database organization and reflect upon

the way the groupware authentication is designed.

Consider some cell C, in which the main.server is Sm • The mainserver S m con

tains a “hierarchy list” which maintains a list of all hierarchies created within the cell

domain. For every hierarchy that is created, there is a minJnfo object that maintains

links to all the classes, instances and methods that together form the hierarchy. The

minJnfo is encapsulated in the database on the host where the hierarchy was origi

nally created. That is when a new hierarchy “H i” is created, its minJnfo is

stored on the local host’s database and a link to the hierarchy’s minJnfo “771:rnm” is

planted in the “hierarchy list” maintained on the mainserver for the cell. Individual

18

User X

Host L

Client C
/ \

Server S|_

1. Save mindnfo for hierarchy Hi

2. Server Sl records the mindnfo for H\ in its database

3. Server S l requests Sm to add a link to Hi in the hierarchy list

4. & 5. return ACK.

Figure 8: Create and Save a Hierarchy Hi

class, instance and method definitions that are subsequently added to the hierarchy

are encapsulated on the host where they are created. Everytime a class, instance or

method is defined that extends a hierarchy, the object’s description (called maxdnfo

for the object) is stored on the local database. A link to the object’s maxdnfo along

with some minimal information about the relationship of this object with other ob

jects in the hierarchy is planted in the hierarchy’s mindnfo Thus whenever

a new object is defined on host L for a hierarchy originally created on host K, the ob

ject definition is stored on L and a link to this definition is created in the hierarchy’s

mindnfo object on host K.

19

erY

Host A Host L

User X
Client C|_Client Ci/ \ / \

Server S|_Server S^

1. Store the maxJnfo for the new class on the local database.

2. Add a link to the minJnfo of H\ on host L’s database.

3. & 4. return ACK.

Figure 9: Extend a Subclass to hierarchy H\

Figure 8 depicts the scenario where user X on host L creates a hierarchy H\. The

client Cl makes a request to its local server S i to save the minJnfo for Hi on host

L. The server also connects to the cell main server, Sm , to update the cell hierarchy

list to add a link to the new hierarchy H \ .

Figure 9 describes a scenario where another user Y on some other host A adds a

subclass to the hierarchy H\. At the time of executing this service request, the user

would have already loaded the minJnfo for Hi. When the user adds the new subclass,

a request is sent to Sa to add the maxJnfo for the extended class on 5Vs database.

Subsequently, Sa sends a request “add a link to the new class” to the server “5V'\

which will update the minJnfo for H \ .

4. T he 3-A A sp ects o f th e Groupware Layer

4.1 U ser A uthentication

Authentication is a process of verifying a user’s identity. Authentication is the

foundation of groupware security. Only if we can be sure of who we are talking

to can any other security features be of any value. Authentication is the groupware

mechanism most different from mechanisms used in monolithic systems, and the most

complex part of the groupware layer. Hence a careful study of the authentication

process in the EIS groupware is essential. The problem we need to solve is to guarantee

that the EIS design and implementation satisfies following conditions:

• No activity by a rogue process (user/server/m ain server) should corrupt the

database of any EIS server.

• No activity by a rogue process should plant a link in a valid database that

when subsequently accessed allows the rogue to obtain rights or privileges on

. the requestor, or to corrupt data on the requestor.

A couple of popular solutions possible in the UNIX client/server domain are ex

plained here. We shall later discuss the viable alternatives for authentication in EIS

in section 4.2. In a network environment, it is difficult to determine the exact iden

tity of a user on a remote host. In most client/server implementations of processes

such as “rlogin” or “rsh”, the client and server code on a host are owned by the root

user of the host. The “rlogin” command logs a user into a specific remote host and

attem pts to connect the user initiating the rlogin request to the remote host. The

“rsh” command attem pts to execute the specified command on the remote host on

behalf of the user initiating the request. Both “rlogin” and “rsh” are client/server

implementations where the server runs as a daemon process waiting for client requests

and the client is executed whenever a user issues the command. A user on a host

can tell the rlogin and rsh daemons to allow some users log into their accounts di

rectly without prompting them for a password while preventing all other users from

20

21

logging in without entering the correct password. The client code can be executed by

any normal user. A user executing this code temporarily becomes “root” , and thus

temporarily gains privileges allowing the execution of root operations like reading

kernel files or binding the client to a reserved socket port. However it is important

to note that it is the process executing this code that gains “root” privileges though

it is executed by any normal user. Hence as long as the integrity of the executable

allowing temporary root privileges is guaranteed, we can ensure that a normal user

cannot do anything rogueish.

The authentication mechanism explained here pertains to the implementation

used in standard Unix Network software such as “rlogin”. A detailed study of the

implementation of Unix Network Programming is discussed in [8]. When a socket

connection is established by the client with a remote server, the server can request

the port and machine address of the live connection1. Since only root processes

can bind to a reserved socket port, the server process can verify if the connection is

established with a client process that has root privileges on a trusted host. A rogue

can modify the client code and try to do something rogish. However if the rogue is

not root, the rogue’s code will not have root privileges and hence will not be able to

bind to a reserved socket port. In such a protocol, there is a potential problem since

the server must trust the root on a remote site. This is quite acceptable since the

client can do nothing to harm the server host as long as the client is not granted the

unusual privileges by the server (in the rlogin example, the “.rhosts” file determines

a remote client’s privileges).

The authentication mechanism explained in the above paragraph cannot be adopted

into EIS for the following reasons. Since EIS is still in a developmental stage, it is

arguably better not to install the EIS client and server code as root processes with

full root privileges (most often, the servers are the entry-points for Internet rogues.).

1The Unix system call getp eern am eQ returns the foreign machine’s IP address and the port

number to which the foreign process is connected

22

Since the source code for EIS is to be freely distributed, trusting the client process

could be disastrous. An alternative would be to use the information provided by the

id e n t facility to identify the owner of each client process requesting server access. As

per the RFC 931 protocol, id en t provides a reasonably good way of authenticating a

user. It requires that both machines engaged in the client/server connection must run

the identity daemon id e n td process in the background. The server upon receiving

requests from a client, then connects to the identd daemon on the host where the

client process is running to verify the user’s identity.

Unfortunately there are problems with ident which make it unacceptable for use

in authentication in EIS. Firstly, the identd daemon has to be a root process, since it

reads kernel files (/dev/km em) to determine which user is connected to a given port.

As such it should be started by the inetd daemon. Secondly, there is a significant

amount of communication overhead (end_server identd daemon) needed just for

authentication purposes. Also while identd works to authenticate local/remote re

quests, it does not help local host authentication in any way. Finally, use of ident is

gaining popularity, but it is still not an accepted standard and hence not all systems

support it yet. To simulate identd functionality within the EIS server process is also

not possible since the process would need to read kernel files which are readable only

by the root.

4.2 A u th e n tic a tio n in EIS

As depicted in Figure 1, an EIS server interacts directly with either clients on the

same host or another server on a remote host which issues requests on behalf of some

client on that host. Given such a situation, the problem is to identify appropriate

methods to verify the trustworthiness of a remote server and a local client so as to

ensure the validity of the conditions described above.

23

4.2.1 Local C lient A uthentication

In EIS, a client directly connects to the server on its host for every request it

needs processed. As long as we assume that the server on that host is trustworthy,

this helps us in the authentication process. W ith every request generated by the client

that needs authentication, the EIS client determines the user’s identity arid passes it

to the local server, which verifies the validity of the user information by looking in

the local process table. Since the client/server connection pertains to the same host,

external “spoofing” can be ruled out. This authentication method of a local client

process helps identify exactly the user issuing the client request and hence satisfies

the conditions set forth above in this section.

4 .2 .2 R em ote Server A uthentication

Remote server authentication is more difficult to attain in the EIS system because

of the following reasons:

1. Neither the SUN RPC nor the socket system calls provide any means of iden

tifying the caller user’s identity. There are provisions to determine the remote

host’s IP address and the port to which the caller is connected; However it is

not possible to determine who the calling user is.

2. EIS 0.9 should not be run as a root process, and hence cannot take advantage

authentication mechanisms that require root access.

3. The ultim ate goal is to use a DCE-based implementation to provide a reliable

security mechanism. EIS should not be based on elaborate ad hoc solutions in

the interim.

Since our main aim is to ensure that no operation by any user of EIS 1.0 corrupts

the database in any way, the following approach is suggested:

24

• All EIS administrators must be valid users on the mainserver of the cell. We

restrict certain EIS admin operations, so that all admin-related operations (cre

a te /re m o v e a g ro u p , a d d /d e le te u sers from a g roup) must be requested

from the mainserver.

• Any user who is authorized with re ad , e x te n d /e x e c u te privileges on a hierar

chy can read the hierarchy. In order to delete/modify a subclass/instance/method,

the user must not only have the right privileges, but must also execute the

delete/modify commands from the same host on which the objects were created

(i.e. the user has to be “local” to that host).

• No user from some host can effect a delete/modify operation on an object created

on some other host, even though the user belongs to a group tha t is authorized

with delete/modify privileges.

• For all other services requested by a remote user, EIS will normally trust the

authentication information received from the remote host and cross-check only

to verify the host IP address of the connecting client.

As explained in section 4.2.1, we can authenticate with certainty any user on the

local host. However, when a request is made across the network, the system is more

vulnerable to external spoofing and the different alternatives discussed earlier fail to

ensure a sure-proof authentication mechanism. The above approach takes the firm

stance of limiting the access privileges of outside users and simply denies outside

users the right to delete/modify classes/instances/methods, because such operations

can affect the local database. Yet, this does not mean that we are over-protective

of the database information. For most services available in EIS, we normally tru s t2

the authentication information provided by the remote server. Any user with the

appropriate access can request and use “read & extend” services normally. The

2We still check the socket connection to verify the IP address of the host the server is connected

to.

25

extra precautions in the case of modify/delete services are used to ensure that only

the “right” persons modify local databases. This approach also avoids extensive

performance penalty for authentication, since there are no repeated calls back and

forth just for authentication purposes.

W ith this authentication scheme, we control “write” access to the database. How

ever, a rogue user can still extend objects to a hierarchy or an entire hierarchy to a

system that had no business being there. Under normal circumstances, we can assume

that everything runs ok and that an EIS user has no malicious intent. But there are

several issues we need to consider more carefully.

1. An EIS Administrator controls EIS information on a cell (a group of hosts).

Suppose some rogue user creates a hierarchy Hi on some host B in the cell. The ad

ministrator sitting on the mainserver's host M is an external user to any information

on host B and hence has limited access to the hierarchy Hi on host B. We noted in

section 3.4 that the main.server maintains links to all the hierarchies (called hierar

chy list) created within the cell it encapsulates. Any user who wishes to open/use a

hierarchy has to first retrieve this hierarchy list and traverse the link to the appro

priate hierarchy. As a solution to the above problem, the Administrator can choose

to remove the link to the hierarchy Hi from the hierarchy list and control the user’s

access rights to the cell.

2. Another problem occurs when a rogue user extends objects to a hierarchy cre

ated by some other user. The owner of the hierarchy has the access rights to decide

who can extend objects to the hierarchy and who cannot. But as in the previ

ous case, if an object is already extended by a rogue user on some other host, the

owner of the hierarchy cannot remove these objects physically from the database

since now he is not a trusted user on the other host. Again, the solution in this case

is similar to the one discussed for the previous problem. W ith every hierarchy, we

m aintain an object called minJnfo which resides on the database of the host where

26

the hierarchy was created. The minJnfo object maintains links to all the different

classes/instances/methods extended to the hierarchy, along with some minimal infor

mation of how the classes/instances/methods relate to one another in the hierarchy.

Every tim e someone extends a class/instance/method to a hierarchy, the information

the object carries is stored on the local database of the host where the object was cre

ated and a link to the object information is placed in the minJnfo object. The owner

of the hierarchy controls the minJnfo object though he has no control to the physical

information of the extended object. He could remove the link to the extended object.

This could get complicated when a scenario given in Figure 10 develops. Classes C l,

C2 and C3 are valid classes added to hierarchy i / 2- Now a rogue user extends a class

C4 and instance II to the class C3 as shown in the figure. If later some other user

extends a class C5 to C4, then removing the link to C4 becomes non-trivial since it

has some valid sub-class(es) C5 which should still continue to exist. Here the owner of

the hierarchy can choose to either hide just C4 and II so that they are not accessible

by any user, or remove the sub-tree starting at node C4 so that links to all objects

in the sub-tree are lost, or move the sub-class C5 to some safe parent class and then

remove the links to C4 and II.

4.3 A uthorization

As we explained earlier when defining the groupware classes and objects, the ob

ject that encapsulates the authorization process in EIS is groupJnfo. Authorization is

a process of determining the different groups the user belongs to. Once the authenti

cation procedure is done correctly, to authorize a user, we have to make a connection

to the mainserver of the cell3. The mainserver requests its group Jnfo object to

return a list of groups to which the user is a member.

3If a copy of the cell’s group Jnfo already exists on this site, then this process is much simpler

27

instance 11

Class C1

Class C4

Class C5

Class C3Class C2

Class C4 and Instance II exhibit ‘rogue-ish’ behaviour.

Solutions:

1. Hide the sub-tree rooted at Class C4.

2. Delete the sub-tree rooted at Class C4. Implication of 1 & 2: Valid class C5 is

not accessible anymore.

3. Make Class C3 the parent of C5 and delete the sub-tree now rooted a,t Class

C4.

Figure 10: An example rogueish behaviour

28

4.4 Access Control

Access Control is a per-hierarchy operation. A group can have different access

privileges to different hierarchies within a cell. Each hierarchy encapsulates the object

(priv-info) th a t keeps of the permissions for different groups. After determining the

different groups for a user, we look up the privJnfo4 object to verify each group’s

permissions to the hierarchy. The user’s access rights are a union of the access rights

of all the groups to which he belongs.

4The privJnfo object physically exists on the host where the hierarchy was created.

5. Scenarios

We shall use a scenario-based examination to see how the groupware layer fits into

the EIS system. A scenario is a description of how objects interact with each other

while performing a specific activity. A scenario can be represented in many different

ways, but one of the most convenient representations is as a diagram showing objects

and the exchange of operation calls/value returns. Such a diagram represents the

client/server relationship in this particular scenario.

5.1 N otation s

We shall adopt the following notational convention in describing the scenarios:

Client C n ' The EIS client process 1 on host I

Server S i : The EIS server process (one per host) on host I

Sm - The designated mainserver iov the concerned cell

Sr : A remote server in the cell from which a hierarchy is

being retrieved.

L: The local host from where the user is operating.

The arrows in the scenario-based diagrams indicate that the object pointed to is being

requested for a resource/action by the object from where the arrow is originating. We

also denote the sequence of events by marking the arrows with numbers. For example,

an event marked 3 occurs earlier than one marked 5. The exact action that occurs on

the event is shown separately at the bottom of the diagram, referenced by the event

number. The sections below discuss the finer points of the scenarios depicted in the

figures.

29

30

5.2 B asic D esign

In all the scenarios presented in this section, every request involving remote data

access generated by a client on some host L is sent first to the server S l on the same

host, then subsequently from Sl to the remote server. There are a few advantages

of passing requests through the local server Sl rather than having the client connect

directly to the remote server. The first advantage is that the server on the same

machine can verify if the client caller is really the user that he claims to be. This

helps ‘strengthen’ the authentication process against users trying to spoof the system.

Secondly, the local server can be designed to maintain a cache of remote group Jnfo and

privJnfo objects that are frequently accessed. Group Jnfo and privJnfo are the objects

most frequently accessed within the EIS system and such a cache could dramatically

reduce network loading and on remote servers. Caching this information at the local

server whenever necessary helps speed further accesses to these objects while at the

same time not compromising on security by preventing the client direct access to this

information.

Unfortunately, although caching group Jnfo and privJnfo at different servers where

they are being used greatly helps in reducing network traffic, it also introduces some

problems. The first and most important of these relates to authentication. By caching

groupware information on a remote host, we are trusting a remote server to provide a

valid authentication. This works as long as the remote server is trustworthy. But the

remote server could also be a rogue that provides false information. The authentica

tion scheme presented in section 4.2 tells not to trust a remote user or server when

any service with write or modify privileges is requested. The authentication scheme

restricts write and modify services to only privileged users on the local host. Thus we

are not forced (or allowed) to trust remote servers.

Another problem relates to consistency and concurrency issues. Appropriate steps

need to be taken in order to maintain consistency between the different copies of a

31

replicated object whenever the object is updated at any of the sites. The scenarios

that follow deal with these issues and propose a method of dealing with the consistency

issues.

5.2.1 C reate a Group

A scenario for group creation is shown in Figure 11. We assume that the domain

of this operation is restricted to the current cell under consideration. In order to

perform this operation, the user has to be the EIS Administrator for the cell. As we

discussed earlier in section 4.2, an EIS Administrator has to be a valid login account

on the mainserver of the cell. This way, the authentication is fool-proof. The scenario

indicates the order in which the authentication/authorization routines are performed.

The EIS client C l i identifies the user performing the action and sends the request to

the server on its machine Sl - The server Sl verifies that the requestor is really the

person he claims to be. This is the authentication process. An outline of the algorithm

used to verify the user’s identity is shown in Figure 1 in appendix A. The server checks

to see if server Sl is the mainserver itself. Since the authentication verifies if the

client C l i was running on the same host L, this check helps determine if the client

Cli is running on the mainserver. The mainserver then looks up the group.info

object in its database to see if the user is an administrator. This is the authorization

process. If the authorization process returns a positive acknowledgement, only then

is the newly created group is effected on the group Jnfo object in the database.

5.2.2 O pen a Hierarchy

Figure 12 illustrates execution of the “Get-Hierarchy” operation. S r is the server

on the site where the hierarchy is stored. Server Sm is the mainserver of the cell

including host R. The OME object in the client C l i has knowledge of where the

requested hierarchy exists on the network. Cli sends a request to its local server Sl

32

C lien t Cj_

Server Sl

1. Create_Group(myid, A)
2. if authenticate(myid) then /* verify if the userid myid is local and valid */

if Sl = Sm then
if myid = admin and group A does not exist already then
begin

create_group(A);
ack = OK;
return(ack);

end
ack = PERMISSION-DENIED;
return(ack);

3 . return(ack);

Figure 11: Scenario: Create a Group

33

Server S.
Client C|̂

Server S^Server S

1. Get_Hierarchy(uid, HIER, R)
2. if authenticate(uid) = OK th en /* verify if the userid myid is local and valid */

if group Jnfo and HIER.privJnfo copies exist in the cache then
if authorize(uid, READ) = OK then

/* forward request to host R to retrieve hierarchy’s minJnfo */
Get_Hierarchy(uid, HIER, R);

else return PERMISSION-DENIED;
else Get_Hierarchy(uid, HIER, R);

3. if verify_client_host(uid.host_address) = OK then
groupJnfo = get-groupJnfo(M);

4. /* Server Sm notes that server Sl will keep a copy of groupJnfo */
group Jnfo. sit e-list .add (L);
re t urn(group Jnfo);

5. if authorize(uid, READ) = OK then
begin

/* Server Sr notes that server Sl will keep a copy of HIER.privJnfo */
HIER.privJnfo.siteJist.add(L);
return(minJnfo, groupJnfo, HIER.privJnfo);

end
else return PERMISSION-DENIED;

6. HIER.priv Jnfo.site = R; /* Server Sl notes the site of the original copies */
groupJnfo.site = M;
copy groupJnfo and HIER.privJnfo on local database;

7. return(minJnfo);

Figure 12: Scenario: Open a hierarchy ‘HIER’

34

passing as arguments the requesting user’s identification, the name of the hierarchy

requested and the site from where to receive the hierarchy. The local server first

executes the authentication algorithm to verify the user’s identity. The local server

then tries to determine if the groupware information for the hierarchy already exists in

the cache. If a reference is found, the client is authorized and his access control verified

at the locaLserver. If the authorization/access_control operations fail to validate the

user, then a negative acknowledgement is sent back to the user immediately and the

service request ignored. If however, the user passes the authorization test on the

locaLserver or there is no groupware information stored in the cache, the request is

forwarded to the remote server S r . S r requests its mainserver to authorize the user

(determine all the groups to which the user belongs). S r then checks if any of these

groups are privileged with read permissions on the hierarchy. If so, the appropriate

information is returned to the user (in this case, the minJnfo for the hierarchy). Even

if the client passes the authentication and access control test on its local server from

the groupware information stored in the cache, a cross-verification is done by the

server on the hosts where the actual database exists. Also notice that the groupJnfo

that originally existed on server Sm and a copy of privJnfo for the hierarchy HIER

whose original copy exists on server S r are copied on server S r . The local server S l

keeps track of the respective sites from where the copies were obtained. Also, the

sites that store the original copies note down that server S l now has a copy of their

data.

5.2 .3 A dd an O bject to the Hierarchy

This scenario continues the scenario shown in Figure 12. Having opened a hierar

chy, the user now tries to add an object to the hiearchy. The user is first checked for

extend privileges to the hierarchy. The scenario in Figure 13 explains how caching the

protection-related information helps in improving system performance. The request

for authentication is sent to the local server for authentication and authorization. If

35

Client C

Server SL Server Sr

Add Obiectfobi. parent)

1. HIER.Add_Object(uid, Obj, ParentObj);
2. /* Authentication performed on groupJnfo and HIER.privJnfo in the cache */

if authenticate(uid) != OK then
return(PERMISSION-DENIED);

, store_maxJnfo(Obj); /* Add Obj’s maxJnfo to local database */
3. HIER.addJink(uid, Obj, ParentObj); /* Request Sr to place a link to the new object */
4. if authorize(uid) != OK then

return(PERMISSION-DENIED);
HIER.addJink(Obj, ParentObj);
return(OK);

5. &: 6. return(ACK);

Figure 13: Scenario: Add object ‘Obj’ to object ‘ParentO bj’

36

the user is denied the access rights to extend to the hierarchy, control is immediately

returned to the calling process. It is in situations like these that a cache greatly

helps in reducing network traffic. However, caching of information could leave holes

in the authentication process. Hence a more careful approach is adopted. Suppose in

this case, the authentication performed based on the information in the cache goes

through successfully, then the newly extended object is added to the local database.

This does not lead to any penalty on the remote database5 encapsulated by S r in

terms of disk space. However, for every object in the hierarchy, a link has to be placed

in the hierarchy’s minJn fo on server S r . In order to cross-verify that the server S l

was not spoofing, when a request to place a link to the newly extended object is sent

to the server S r , the authentication process is carried out again before placing the

link. Though this authentication means extra CPU cycles on host R in most cases,

it helps to make sure that the some remote rogue process is not placing a link in the

hierarchy that does not need to be there.

5 .2 .4 D e le te an O b jec t from th e H ie ra rch y

This scenario is slightly different from the “Add Object” scenario because of the

way authentication is done differently for delete and extend services. Suppose an

object “A” is created on some host R. i.e. the maxJnfo for the object “A” exists on

the database on host R. The authentication mechanism restricts the delete privileges

to only those users on the same host R that have delete privileges to the hierarchy.

A user on some other host, say L, can n o t delete (or modify) the object “A” even

though they could belong to a group that has the required privileges to the hierarchy.

For example, let a group G\ contain users “X@R” and “Y@L” where X and Y are

valid user accounts on hosts R and L respectively. If group G\ has delete privileges

to the hierarchy, then the object “A” can be deleted by user “X@R” because he is

5 where the actual hierarchy exists

37

Client C,

©
HIER.Delete Obiectfuid. A)

1. HIER.Delete_Object(uid, A); /* send request to local server */
2. if authenticate(uid) = OK then

/* check if the request is coming from a client on the same host */
if Cm- host .address = 5#.host_address then
begin

HIER.delete_object(A);
return(OK);

end
return(PERMISSIONJDENIED);

3. return(ACK);

Figure 14: Scenario: Delete Object “A” from hierarchy “HIER”

38

a privileged user on the same host R where the maxJnfo of the object exists. User

“Y@L” cannot delete the object “A” even though he is a privileged user because he

is a remote user with respect to the object “A” .

5.2.5 A dd a group to a hierarchy

Groups for a hierarchy are encapsulated in a one-per-hierarchy object called

privJnfo. A group can be added to or deleted from a hierarchy only by the owner

of the hierarchy. Every group for a hierarchy has a set of privileges to the hierarchy.

Refer to Figure 7 for an example privJnfo object for a hierarchy. In order to add

a group to a hierarchy, the group must already be defined in the cell domain. The

example privJnfo in Figure 7 is for a hierarchy “habitat_type” that is encapsulated

within the cell “A” . The groups defined on the cell “A” as given in Figure 6 are

“admin”, “dasl” and “eis” . If the owner of the hierarchy “habitat_type” tries to add

a group “wsal” to the hierarchy, then the operation should fail since the group “wsal”

is undefined.

Assume that the scenario in Figure 15 occurs when some user on host P and some

user on host Q have obtained a copy of the hierarchy “HIER” under consideration.

Then a copy of the groupJnfo and privJnfo for “HIER” reside on the databases

encapsulated by Sp. and S q . So whenever an update operation is done on any of these

copies (including the original copy), the update operation has to be effected on all

other copies of groupJnfo and privJnfo for “HIER” in order to maintain consistency.

In this scenario, the client Cli directly requests the local server Sl for the con

cerned service. In chapter 3, we saw that the minJnfo for a hierarchy resides on

the database of the host where it was created. So the owner of the hierarchy should

be a valid login account on the host where the minJnfo for the hierarchy is stored.

Following this logic, the server Sl makes a check to see if the server Sl is the same as

S r , the site of the database for the hierarchy. If not, the user is denied access to the

39

Client C
Server S p

Server (-%)

© © Server Sq

0

1. Add_Group_to_Hier(uid, G \ , HIER); /* client request to local server */
2. if authenticate(uid) = OK then

/* check if request is from a local client and if the server Sl is the site of HIER */
if Cl i - host -address = 5^.host-address and Sl = Sr then

/* add group to HIER.privJnfo in the database with the appropriate permissions */
HIER.add_group_to_hier((ji, (7i.perms);

else return(PERMISSION-DENIED);
else return(PERMISSION-DENIED);

3. send update.privinfo(HIER, new_privJnfo) request to servers Sp and Sq

4 . HIER.privJnfo.update(new.privJnfo); /* update cache copies of HIER.privJnfo */
5. return(ACK);

Figure 15: Scenario: Add group “G i” to hierarchy “HIER”

40

“add_group_to_hier” service to the hierarchy. It is possible that a rogue process on

some host directly connect to S r rather than to the local host. A Unix daemon pro

cess does not treat requests from local processes differently from those from remote

processes. The getpeername system call however helps identify the calling process’s

host address. By making sure that the calling process has the same host address as

the server process, we can thus ensure that the calling process is local to the host.

On successful authentication, the group G\ is added to the hierarchy’s privJnfo

on server S l (In this case, the local server S l is the server S r on which the hierarchy’s

minJnfo exists). Then an update request is sent to each server (Sp and Sq) that keep

a copy of the privJnfo object. It is important to note that the copies of groupJnfo

and privJnfo are writeable only by the server that owns the original copy and not

by any other. This is because only the owner of a hierarchy has write access to the

privJnfo object for the hierarchy and only the EIS administrator has write access to

the groupJnfo object for a cell. The local server that caches this information has only

read access to the copy it owns. Any write operation on these objects performed on

a copy does not affect the original copy.

5.2.6 A dd a user to a group

This scenario is conceptually similar to the “add_group_to_hier” scenario described

in section 5.2.5. The main difference between these two scenarios is that this scenario

is a groupJnfo related operation while the previous scenario was a privJnfo related

scenario. And since the groupJnfo resides on the mainserver, and this operation

requests the write privilege to the groupJnfo object, the requests to this operation

has to originate on the mainserver and the EIS Administrator for the cell is the

only authorized user to this operation. The approach followed in the scenario is

otherwise similar to what has been described earlier. Note again that the cache

copies of groupJnfo that exist on different hosts are writeable only via a request from

the m ainserver of the cell. All other processes (the local client processes), use this

41

Client C 1 Server SP

Server SL(=sM)

© Server SQ

1. Add_User_to_Group(uid, U\, Gi); /* client request to local server */
2. if authenticate(uid) = OK then

/* check if request is from a local client and if the local server Sl is also the mainserver Sm */
if Cxi.host_address = Sl -host .address and Sl = Sm then

/* add user Ui to group G\ in the group-info object of the cell */
group Jnfo.add_user_to_group(U\ , G\);

else return(PERMISSION_DENIED);
else return(PERMISSION-DENIED);

3. send update_groupinfo(new.groupJnfo) request to servers Sp and Sq ;
4. groupJnfo.update(new.groupJnfo); /* update cache copies of groupJnfo */
5. return(ACK);

Figure 16: Scenario: Add user “a” to group A

42

cache copy for read purposes only.

It is not difficult for some rogue process to gain write privileges to cache copies.

Afterall, cache copies of groupJnfo and privJnfo on a host are owned by the server

process on the host. By manipulating the server code, one could try to gain write

privileges on these cache copies. This however should not affect the integrity of the

original copy nor should it weaken the authentication/authorization process. The

groupJnfo and privJnfo objects in the cache are used to speed up authentication and

authorization. If a user is validated by the information in the cache, before the actual

operation is effected, a cross-check is done by validating the user against the original

copies of the groupJnfo and privJnfo objects. This works fine and does not add to

network congestion since most operations have to make remote requests to effect a

service. Authentication/authorization can be done during this connection with the

remote server.

5.2 .7 M ultip le C lients on the sam e H ost

Consider the case where a hierarchy is opened and being used by a user on some

host L and another user on the same host now issues a request to open the same

hierarchy. Here, we can take advantage of the existence of the protection related

information for the hierarchy on the local cache, rather than having to connect to

the remote hierarchy for each new caller. As soon as a request to open a hierarchy

reaches the local server, it checks to see if the protection information already exists in

the cache. If it does, then the authentication/authorization need be done only on this

host. On the event of a successful authorization, the local server has to connect to

the remote database site to retrieve the hierarchy information. Note that we do not

cache the hierarchy’s minJnfo since there is no significant performance improvement

in doing so. However, every time any EIS service is requested, we go through a process

of authenticating/authorizing the user. Since groupJnfo and privJnfo are the objects

encapsulating this process, we find it beneficial to cache these objects.

43

Client C|_ Client CL2

Server S,

Server S,
1. Get_Hierarchy(uid, HIER, R);
2. if authenticate(uid) = OK then

/* Note down user-id and process id of all clients using HIER. */
HIER.ref_list.add(uid, pid);

3. Get_min_info(HIER);
4. if authorize(uid) = OK then

re t urn(min Jnfo);
5. re t urn(min Jnfo);

Figure 17: Scenario: Multiple Clients on the same Host

Server S Server S

Close HierarchvfHIEm

1. Close_Hierarchy(HIER);
2. delete HIER.privJnfo;

delete groupJnfo;
3. delete_site-from_list(L); /* asynchronous request
4. Sm ' groupJnfo.siteJist.delete(L);

Sr : HIER.privJnfo.siteJist.delete(L);

no reply */

Figure 18: Scenario: Close Hierarchy

45

5 .2 .8 C lose H ierarchy

It is necessary and im portant to keep data in the cache only for as long as it is

required. As long as an object is cached, every update operation on that object will

have to be passed on to all the copies that exist out there on the network so as to

maintain consistency among the copies. So when a user chooses to close an open

hierarchy, we have to do a cache cleanup operation. The “close_hierarchy” request

is forwarded6 to the local server S l • The local server deletes its copy of groupJnfo

and privJnfo for the hierarchy and issues asynchronous requests to servers Sm and

S r telling them that the copies of group-info and privJnfo respectively are deleted.

Servers Sm and S r then remove the host entry L from the site list that keeps track

of the hosts maintaining a copy of the concerned information. However, in the event

of multiple clients using the same hierarchy and hence the same data in the cache,

it becomes necessary that we keep some sort of reference count to check the number

of active clients referencing the cache information. In order to deal with this, the

server is made to maintain a reference list to an opened hierarchy. The reference

list keeps track of the process-ids of the processes that have opened the hierarchy

along with a latest-use time-stamp. The time-stamp helps identify the last time the

process made a service request for the hierarchy. The time-stamp also helps recover

from situations where the client ptime-stamp also helps recover from situations where

the client process dies abnormally.

5.3 C onsistency

Consistency is one of the key issues in a system where replication of data is being

done. In EIS, the replicated information in the cache is writeable only by one process.

The groupJnfo cache object is writeable only by the mainserver process in the cell

domain and the privJnfo cache object for a hierarchy is writeable only by the server

6The client need not wait for the return value of this request. It just closes the hierarchy window

and issues an asynchronous one-way request to Sl

46

where the hierarchy’s minJnfo is stored. All clients on the local host can use these

cache objects in read-only mode. These factors make consistency among these objects

easier to implement. In this section, we shall verify consistency of a replicated object

and that of a requested service by looking at some scenarios with the read/read,

read/w rite issues into consideration. The write/write situation never occurs since the

replicated objects are writeable only by the server that owns the original copy of the

object.

In the read/read situation, we can think of two processes reading from its local

copy of the object. This does not affect the integrity of the replicated objects and

hence nothing need be done to ensure consistency.

Let us consider a read/write situation. This is a situation when an update opera

tion is effected by some process on an object A and another process on some other host

has already read its local copy of the object, A L, to perform some service before the

update object request reaches object A L. In section 5.2.5 and 5.2.6, we discussed some

example scenarios where an update operation needs to be propogated to all those

servers where a cache copy of the concerned object exists. Let us look at another sce

nario, “delete_user_from_group” , whose object diagram is exactly similar to that in

the scenario in section 5.2.6. Let’s suppose that the user X@L, who belongs to group

Gi, has the all the privileges that reside with G\. The group G\ is assumed to have

delete rights to the hierarchy HIER. In this scenario, the “delete_user_from_group”

request can be issued only by the EIS Administrator and hence the update groupJnfo

request originates on the mainserver of the cell. If the user X@L now requests the

“delete_object” service to an object in HIER before the “update groupJnfo” request

reaches the replicated object groupJn foL, then we have a consistency problem in

the requested service. The user X@L passes the authentication/authorization test

on the local copy of groupJnfo, groupJnfoL, even though he actually no longer is a

user to the group G\ and hence cannot delete an object in the hierarchy. However,

if we look back at the authentication mechanism used in EIS, we find that in the

47

event of successful authentication of a user against a local copy, a service requested

is granted to the user only after authenticating him against the original copy of the

groupware information. Hence in this scenario, the “delete_object” request has to be

propogated to the mainserver for authentication before the service is granted, thus

ensuring consistency of the service.

We argued that a write/w rite situation never occurs. While this is true under

normal circumstances, it is not impossible for a rogue to manipulate the replicated

object on his host. In such a scenario, even though the consistency between the

different copies of an object cannot be guaranteed, the validity of the original object

and the services provided by another server are not compromised.

5.4 C lient crashes

As noted in the “Close Hierarchy” scenario, the life of data in a cache is de

termined by the existence of clients using that information. The reference-list that

maintains the process ids of all the client processes using a cache object helps de

termine the processes still using a cache object. As soon as a client closes an open

hierarchy, the process entry is removed from the reference-list. The data in the cache

is physically removed when the last process entry is removed from the reference list.

However, if a client process dies before closing an open hierarchy, then there is a

reference to the process in the reference-list that will never be removed and the cache

object would continue to live forever leading, to unnecessary network communication

overhead whenever the cache needs to be updated. To solve this problem, the server

that keeps a local copy is made to periodically look up the process table to find if

every client process in the reference-list is still alive. If any client process was found

to be no longer in the process table, then its entry is deleted from the reference list.

This ensures that the copy exists in the cache only as long as it needs to be there.

6. Sum m ary and C onclusion

In Chapter 1, we discussed the need for a security mechanism for EIS that would

provide a reliable authentication scheme and guarantee the coherence of the database

against rogueish behaviour. Chapter 3 presents the design of the groupware layer

for EIS. The groupware layer was designed using the object-oriented methedology.

The design of a groupware layer for EIS was considerably different from that for

a monolithic system. A detailed study of the organization of the different objects

relevant to the groupware layer and how they fit into EIS were discussed in Chapter

3. When designing any network security mechanism, the most im portant concern is

the way authentication is done. Only if we are able to identify correctly to whom we

are talking, can we determine what access privileges that user can have. Chapter 4

deals with a careful study of various popular authentication mechanisms such as that

used in “rlogin” and “rsh”, ident and kerberos and presents a viable authentication

mechanism for EIS. Chapter 4 also discusses the authorization and access control

aspects of the groupware layer. Based on the design of the groupware layer presented

in Chapters 3 and 4, a series of scenarios were presented in Chapter 5. The scenarios

were a means of viewing different design issues and helped greatly in designing the

right approach for implementation in EIS.

6.1 Im plem entation Status

EIS 1.0 supports the groupware layer and is fully functional. The implementation

follows the design discussed in this thesis. EIS is currently supported on IBM/RS6000

workstations and runs on AIX 3.2. The code is written in C + + and the client/server

communication system is implemented using the SUN RPC 4.0. The code should

be portable to a wide range of Unix workstations within the portability bounds of

different C + + compilers, X/M otif library implementations and the SUN RPC. EIS is

presently populated with enough database information to illustrate both its use and

its value to potential users.

48

49

The groupJnfo object encapsulating the authentication information for users in a

cell exists on the mainserver of the cell. Since this is by far the most frequently used

object in EIS, we use a shared memory implementation of the object thereby keeping

it in shared memory on the mainserver at all times. This helps speedier access

to authentication and also eases coding the operations performed on the groupJnfo

object. Also since there is only one groupJnfo object per cell, there are not too many

shared memory segments kept floating in the machines.

6.2 D irections for Further Research

The implementation does not include the caching concept discussed in the scenar

ios presented in Chapter 5. The goal , of the groupware design was to first design a

security mechanism that was reliable and helped provide controlled access to the EIS

database and then consider implementing features that improved the system perfor

mance. The present implementation provides all the functional features necessary in

a security system. Migrating from the present system to one including the caching

concept should not affect the end-user in any way and the process is upward com

patible. EIS is still in a rudimentary stage with a limited user community. As the

number of users using EIS increases, the design details presented here should form

the basis for a consideration of the finer design issues. The future designer can pay

more attention to the caching concept and come up with a reliable coherence scheme

for implementation in EIS. Another feature that could be very helpful is to design

appropriate replication algorithms to replicate the EIS databases on multiple systems.

As the user community grows across the network, making far and remote requests

for database resourses could greatly reduce the performance. Replication algorithms

help the end-user to connect to the nearest database server and hence speed up access

times.

The present authentication mechanism does not use the more recent popular au

thentication schemes such as kerberos and public key authentication. The ultim ate

50

goal is to be able to use a DCE-based implementation of EIS to provide a reliable

and robust security mechanism. As DCE gains popularity and becomes available on

multiple platforms more easily, a port of EIS to a DCE-based implementation is most

desirable. Newer versions of SUN RPC also claim to provide a more robust security

mechanism. Also they should be freely available on many platforms. An upgrade

of the present system to one using the newer version of SUN RPC might also help

improving the authentication in EIS.

EIS 1.0 does not support any kind of recovery from server crashes. If a server

servicing requests to an EIS database crashes, then that database remains unacces-

sible until the server is restarted and starts functioning normally again. The future

researcher could explore possibilities of implementing more graceful server recovery

from crashes. One possible approach could be to keep a log of the current state of

the server. Upon a server crash, the server could be initialized to the previous state

as noted in the log and proceed from there. Another, more reliable apporach, could

be to consider replication algorithms to replicate the EIS database so that there are

more than just one server providing services to a database. Such a system not only

speeds up access times by allowing the user to connect to the nearest database server,

but also provides fault-tolerance.

A ppendix A

P seu d ocod e for A u th en ticatin g a U ser

authenticate(user X) /* begin authentication for create group */

beg in

getpeername(socket_descriptor, &remote_host_address, &remote_port)

if (X.host-address != remoteJxost_address) th e n

return(FA LSE);

procJnfoJist = getprocinfo();

w hile (procJnfo != NULL)

beg in

if procJnfo.program_name = “e is” th e n

if procJnfo.userJd = X .userJd th e n

return(T R U E);

procJnfo = procJnfoJist .next;

end

return(FA LSE);

en d

Figure 19: Authenticate User X

51

A ppendix B

Installation G uide for EIS

P rodu ct D escription

The Ecosystem Information System (EIS) is an object-oriented distributed system

containing various types of information of interest to ecosystem modelers and man

agers. EIS 1.0 is presently supported on the IBM RS6000s. Successful installation of

EIS 1.0 on your system will require:

AIX XL C + + 1.1 or AIX C + + Set 2.0

X/M otif

ONC RPC 4.0 library

EIS comes in two parts: EIS client and EIS Server. EIS client can be used by the

user to gain access to the EIS repository. EIS server runs as a daemon process on

each active EIS host.

EIS can be downloaded in two ways:

1. If your system is an IBM RS6000 and your machine does not support any one

or more of the above mentioned libraries, then you can download the executables in

binary mode. The three files to download are

eis (The client executable)

eis_svc (The server executable)

eisJnstall (The server installation script)

2. If your system supports the above libraries, then download “eis.tar.Z” into the

directory where you want to install this software and execute the following commands.

52

53

If you were in SOMEJDIR directory when you executed the above commands,

there will be an “eis” directory created under it. This will be your EIS base directory

(henceforth named as EISDIR) he. SOME-DIR/eis is the same as EISDIR. The

directory structure within EISDIR is shown later in this section.

After the EISDIR have been created, the next step is to build all the executables

required for the EIS system. In order to do this, go to the EISDIR directory, and

execute the command:

% make all

This will build the following executables

EISDIR/d.clnt/eis (The client executable)

EISDIR/d.server/eis-svc (The server executable)

EISDIR/d.server/eisinstall (The server installation script)

In order to use EIS on your host, you will have to first install the server as a

daemon process, “eisinstall” is an installation script to install the server on your

machine. The server on your machine has to know:

1) The path of the directory where the EIS database on this host exists. For

example, you can specify EISDIR/d.data as the database path.

2) The EIS Main Server for this host. The Main Server is one that maintains

a list of database sites and database hierarchies. An existing main server is:

m eg g ers .c s .u m t.ed u . You could choose to name your host as your main

server in which case the database will have nothing to start with. However you

can connect to any of the other sites through the client interface.

3) The EIS administrator for this site. [This is necessary only if you choose your

site as the main server]. The person installing EIS is automatically chosen as

the EIS administrator.

54

Once you have made sure that the EIS Main Server and your local EIS Server

are running, any user can access the database by running EISDIR/d.clnt/eis. It is

advisable to include EISDIR/d.clnt in your PATH environment variable so that eis

can be started just by typing “eis” .

R eferences

[1] R.Ford, R.Righter, T.Duce, V.Hemige, D.Thompson, “A Network-based Object-

Oriented Ecosystem Information System,” Decision Support 2001 - Resource Tech.

‘94 Symposium, Toronto, Canada, Sept. 94.

[2] R.Ford, R.Righter, T.Duce, V.Hemige, D.Thompson, “EIS: A Network-Accessible

Repository for Ecosystem Modelers and Managers”, 10th Annual ACM Symposium

on Applied Computing, Feb. 1995.

[3] R.Ford, R.Righter, T.Duce, V.Hemige, D.Thompson, “A Network-Accessible Repos

itory for GIS and Natural Resource Data”, GIS Symposium on Natural Resources,

Vancouver, Canada, Mar. 95.

[4] Grady Booch, Object Oriented Design with Applications, The Benjamin/Cummings

Publishing Company, Inc., 1992

[5] John Bloomer, Power Programming with RPC, O’Reilly & Associates, Inc., 1992

[6] Harold Lokhart, OSF DCE: Guide to Developing Distributed Applications, J.Ranade

Workstation Series, 1994.

[7] Andrew S. Tannenbaum, Distributed Operating Systems. Prentice Hall, 1995.

[8] Richard Stevens, Unix Network Programming, Prentice Hall, 1993.

[9] Peter Triantafillou, “The Location-Based Paradigm for Replication: Achieving Effi

ciency and Availability in Distributed Systems”, IEEE transactions on Software Engi

neering, Vol. 21, No. 1, Jan. 1995, pp 1-17.

[10] Robert Netzer, Jian Xu, “Necessary and Sufficient Conditions for Consistent Global

Snapshots”, IEEE transactions on Parallel and Distributed Systems, Vol. 6, No. 2, Feb.

1995, pp 165-169.

55

	Object oriented design of the groupware layer for the Ecosystem Information System
	Let us know how access to this document benefits you.
	Recommended Citation

	00001.tif

