187 research outputs found

    Stability of uniformly bounded switched systems and Observability

    Full text link
    This paper mainly deals with switched linear systems defined by a pair of Hurwitz matrices that share a common but not strict quadratic Lyapunov function. Its aim is to give sufficient conditions for such a system to be GUAS.We show that this property of being GUAS is equivalent to the uniform observability on [0,+∞)[0,+\infty) of a bilinear system defined on a subspace whose dimension is in most cases much smaller than the dimension of the switched system.Some sufficient conditions of uniform asymptotic stability are then deduced from the equivalence theorem, and illustrated by examples.The results are partially extended to nonlinear analytic systems

    Gaussian Quantum Information

    Get PDF
    The science of quantum information has arisen over the last two decades centered on the manipulation of individual quanta of information, known as quantum bits or qubits. Quantum computers, quantum cryptography and quantum teleportation are among the most celebrated ideas that have emerged from this new field. It was realized later on that using continuous-variable quantum information carriers, instead of qubits, constitutes an extremely powerful alternative approach to quantum information processing. This review focuses on continuous-variable quantum information processes that rely on any combination of Gaussian states, Gaussian operations, and Gaussian measurements. Interestingly, such a restriction to the Gaussian realm comes with various benefits, since on the theoretical side, simple analytical tools are available and, on the experimental side, optical components effecting Gaussian processes are readily available in the laboratory. Yet, Gaussian quantum information processing opens the way to a wide variety of tasks and applications, including quantum communication, quantum cryptography, quantum computation, quantum teleportation, and quantum state and channel discrimination. This review reports on the state of the art in this field, ranging from the basic theoretical tools and landmark experimental realizations to the most recent successful developments.Comment: 51 pages, 7 figures, submitted to Reviews of Modern Physic

    Quantum theory without Hilbert spaces

    Full text link
    Quantum theory does not only predict probabilities, but also relative phases for any experiment, that involves measurements of an ensemble of systems at different moments of time. We argue, that any operational formulation of quantum theory needs an algebra of observables and an object that incorporates the information about relative phases and probabilities. The latter is the (de)coherence functional, introduced by the consistent histories approach to quantum theory. The acceptance of relative phases as a primitive ingredient of any quantum theory, liberates us from the need to use a Hilbert space and non-commutative observables. It is shown, that quantum phenomena are adequately described by a theory of relative phases and non-additive probabilities on the classical phase space. The only difference lies on the type of observables that correspond to sharp measurements. This class of theories does not suffer from the consequences of Bell's theorem (it is not a theory of Kolmogorov probabilities) and Kochen- Specker's theorem (it has distributive "logic"). We discuss its predictability properties, the meaning of the classical limit and attempt to see if it can be experimentally distinguished from standard quantum theory. Our construction is operational and statistical, in the spirit of Kopenhagen, but makes plausible the existence of a realist, geometric theory for individual quantum systems.Comment: 32 pages, Latex, 4 figures. Small changes in the revised version, comments and references added; essentially the version to appear in Found. Phy

    Verification of system properties of polynomial systems using discrete-time approximations and set-based analysis

    Get PDF
    Magdeburg, Univ., Fak. für Elektrotechnik und Informationstechnik, Diss., 2015von Philipp Rumschinsk

    Quantum Feedback Control: How to use Verification Theorems and Viscosity Solutions to Find Optimal Protocols

    Full text link
    While feedback control has many applications in quantum systems, finding optimal control protocols for this task is generally challenging. So-called "verification theorems" and "viscosity solutions" provide two useful tools for this purpose: together they give a simple method to check whether any given protocol is optimal, and provide a numerical method for finding optimal protocols. While treatments of verification theorems usually use sophisticated mathematical language, this is not necessary. In this article we give a simple introduction to feedback control in quantum systems, and then describe verification theorems and viscosity solutions in simple language. We also illustrate their use with a concrete example of current interest.Comment: 12 pages, revtex

    Structural Identifiability of Systems Biology Models: A Critical Comparison of Methods

    Get PDF
    Analysing the properties of a biological system through in silico experimentation requires a satisfactory mathematical representation of the system including accurate values of the model parameters. Fortunately, modern experimental techniques allow obtaining time-series data of appropriate quality which may then be used to estimate unknown parameters. However, in many cases, a subset of those parameters may not be uniquely estimated, independently of the experimental data available or the numerical techniques used for estimation. This lack of identifiability is related to the structure of the model, i.e. the system dynamics plus the observation function. Despite the interest in knowing a priori whether there is any chance of uniquely estimating all model unknown parameters, the structural identifiability analysis for general non-linear dynamic models is still an open question. There is no method amenable to every model, thus at some point we have to face the selection of one of the possibilities. This work presents a critical comparison of the currently available techniques. To this end, we perform the structural identifiability analysis of a collection of biological models. The results reveal that the generating series approach, in combination with identifiability tableaus, offers the most advantageous compromise among range of applicability, computational complexity and information provided
    • …
    corecore