9,550 research outputs found

    KKT reformulation and necessary conditions for optimality in nonsmooth bilevel optimization

    No full text
    For a long time, the bilevel programming problem has essentially been considered as a special case of mathematical programs with equilibrium constraints (MPECs), in particular when the so-called KKT reformulation is in question. Recently though, this widespread believe was shown to be false in general. In this paper, other aspects of the difference between both problems are revealed as we consider the KKT approach for the nonsmooth bilevel program. It turns out that the new inclusion (constraint) which appears as a consequence of the partial subdifferential of the lower-level Lagrangian (PSLLL) places the KKT reformulation of the nonsmooth bilevel program in a new class of mathematical program with both set-valued and complementarity constraints. While highlighting some new features of this problem, we attempt here to establish close links with the standard optimistic bilevel program. Moreover, we discuss possible natural extensions for C-, M-, and S-stationarity concepts. Most of the results rely on a coderivative estimate for the PSLLL that we also provide in this paper

    Optimization problems with quasiconvex inequality constraints

    Get PDF
    The constrained optimization problem min f(x), gj(x) 0 (j = 1, . . . , p) is considered, where f : X ! R and gj : X ! R are nonsmooth functions with domain X Rn. First-order necessary and first-order sufficient optimality conditions are obtained when gj are quasiconvex functions. Two are the main features of the paper: to treat nonsmooth problems it makes use of the Dini derivative; to obtain more sensitive conditions, it admits directionally dependent multipliers. The two cases, where the Lagrange function satisfies a non-strict and a strict inequality, are considered. In the case of a non-strict inequality pseudoconvex functions are involved and in their terms some properties of the convex programming problems are generalized. The efficiency of the obtained conditions is illustrated on an example. Key words: Nonsmooth optimization, Dini directional derivatives, quasiconvex functions, pseudoconvex functions, quasiconvex programming, Kuhn-Tucker conditions.

    First-Order Conditions for C0,1 Constrained vector optimization

    Get PDF
    For a Fritz John type vector optimization problem with C0,1 data we define different type of solutions, give their scalar characterizations applying the so called oriented distance, and give necessary and sufficient first order optimality conditions in terms of the Dini derivative. While establishing the sufficiency, we introduce new type of efficient points referred to as isolated minimizers of first order, and show their relation to properly efficient points. More precisely, the obtained necessary conditions are necessary for weakly efficiency, and the sufficient conditions are both sufficient and necessary for a point to be an isolated minimizer of first order.vector optimization, nonsmooth optimization, C0,1 functions, Dini derivatives, first-order optimality conditions, lagrange multipliers

    Nonsmooth multiobjective optimization using limiting subdifferentials

    Get PDF
    AbstractIn this study, using the properties of limiting subdifferentials in nonsmooth analysis and regarding a separation theorem, some weak Pareto-optimality (necessary and sufficient) conditions for nonsmooth multiobjective optimization problems are proved

    On optimality conditions in nonsmooth semi-infinite vector optimization problems (Study on Nonlinear Analysis and Convex Analysis)

    Get PDF
    In this paper, we establish optimality conditions (both necessary and sufficient) for a nonsmooth semi-infinite vector optimization problem by using the scalarization method

    Optimality conditions for scalar and vector optimization problems with quasiconvex inequality constraints

    Get PDF
    Let X be a real linear space, X0 X a convex set, Y and Z topological real linear spaces. The constrained optimization problem minCf(x), g(x) 2 -K is considered, where f : X0 ! Y and g : X0 ! Z are given (nonsmooth) functions, and C Y and K Z are closed convex cones. The weakly efficient solutions (w-minimizers) of this problem are investigated. When g obeys quasiconvex properties, first-order necessary and first-order sufficient optimality conditions in terms of Dini directional derivatives are obtained. In the special case of problems with pseudoconvex data it is shown that these conditions characterize the global w-minimizers and generalize known results from convex vector programming. The obtained results are applied to the special case of problems with finite dimensional image spaces and ordering cones the positive orthants, in particular to scalar problems with quasiconvex constraints. It is shown, that the quasiconvexity of the constraints allows to formulate the optimality conditions using the more simple single valued Dini derivatives instead of the set valued ones. Key words: Vector optimization, nonsmooth optimization, quasiconvex vector functions, pseudoconvex vector functions, Dini derivatives, quasiconvex programming, Kuhn-Tucker conditions..

    Abstract convex approximations of nonsmooth functions

    Full text link
    In this article we utilise abstract convexity theory in order to unify and generalize many different concepts from nonsmooth analysis. We introduce the concepts of abstract codifferentiability, abstract quasidifferentiability and abstract convex (concave) approximations of a nonsmooth function mapping a topological vector space to an order complete topological vector lattice. We study basic properties of these notions, construct elaborate calculus of abstract codifferentiable functions and discuss continuity of abstract codifferential. We demonstrate that many classical concepts of nonsmooth analysis, such as subdifferentiability and quasidifferentiability, are particular cases of the concepts of abstract codifferentiability and abstract quasidifferentiability. We also show that abstract convex and abstract concave approximations are a very convenient tool for the study of nonsmooth extremum problems. We use these approximations in order to obtain various necessary optimality conditions for nonsmooth nonconvex optimization problems with the abstract codifferentiable or abstract quasidifferentiable objective function and constraints. Then we demonstrate how these conditions can be transformed into simpler and more constructive conditions in some particular cases.Comment: This is a slightly edited version of Accepted Manuscript of an article published by Taylor & Francis in Optimization on 13/01/2014, available online: https://doi.org/10.1080/02331934.2013.86981
    • ā€¦
    corecore