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Abstract

For a Fritz John type vector optimization problem with C0,1 data we define different type
of solutions, give their scalar characterizations applying the so called oriented distance, and
give necessary and sufficient first order optimality conditions in terms of the Dini derivative.
While establishing the sufficiency, we introduce new type of efficient points referred to as
isolated minimizers of first order, and show their relation to properly efficient points. More
precisely, the obtained necessary conditions are necessary for weakly efficiency, and the suf-
ficient conditions are both sufficient and necessary for a point to be an isolated minimizer of
first order.

Key words: Vector optimization, Nonsmooth optimization, C0,1 functions, Dini deriva-
tives, First-order optimality conditions, Lagrange multipliers.
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1 Introduction

In this paper we consider the vector optimization problem

f(x) → minC , g(x) ∈ −K , (1)

where f : Rn → Rm, g : Rn → Rp. Here n, m and p are positive integers and C ⊂ Rm and
K ⊂ Rp are closed convex cones.

Problem (1) generalizes from scalar to vector optimization the Fritz John problem [20]. The
latter is the scalar constrained problem obtained by (1) for n = 1, C = R+ and K = Rp

+.

There are different type of solutions of problem (1). Usually the solutions are called points of
efficiency. We prefer, like in the scalar optimization, to call them minimizers. In Section 2 we
define different type of minimizers and give their scalar characterizations applying the so called
oriented distance.

We assume that the functions f and g are C0,1, that is f and g are locally Lipschitz. The
purpose of the paper is to give necessary and sufficient first-order optimality conditions in terms
of Dini directional derivatives. This result is obtained in Section 3. While establishing it we
introduce new type of efficient points referred to as isolated minimizers of first order, and show
their relation to properly efficient points. More precisely, the obtained necessary conditions are
necessary for weakly efficiency, and the sufficient conditions are both sufficient and necessary
for a point to be an isolated minimizer of first order.
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We confine to functions f , g defined on the whole space Rn. Usually in optimization functions
on open subsets are considered, but such a more general assumption does not introduce new
features in the problem.

The present paper is a part of a project, whose aim is to establish first and higher-order opti-
mality conditions for Ck,1 vector optimization problems in terms of Dini derivatives. The class
of C0,1 functions is the natural environment, when looking for first-order conditions, while the
class C1,1 is the natural environment for second-order conditions. Second-order theory for un-
constrained problems is developed in Ginchev, Guerraggio, Rocca [13]. The present paper opens
the perspective for second-order theory of Fritz John type constrained problems. The direc-
tion for further development is the general constrained vector optimization problem, this means
problems containing also equality constraints. Some hints on classical optimization level for the
relation of F. John type problem and general constrained problems we find in the textbook of
Kenderov, Christov, Dontchev [21]. or in some monographs like Alekseev, Tikhomirov, Fomin
[2]. In the framework of these perspectives, recall that a vector function is said to be of class
Ck,1 if it is k-times Fréchet differentiable with locally Lipschitz k-th derivative. The functions
from the class C0,1 are simply called locally Lipschitz and are traditionally in the limelight of
the nonsmooth analysis, see e. g. Clarke [8] and Rockafellar, Wets [34]. The C1,1 functions
in optimization and second-order optimality conditions have been introduced in Hiriart-Urruty,
Strodiot, Hien Nguen [17]. Thereafter an intensive study of various aspects of C1,1 functions
was undertaken, let us mention the papers Klatte, Tammer [22], Yang , Jeyakumar [35], Yang
[36, 37], La Torre, Rocca [24]. For Taylor expansion formula and other aspects of Ck,1 functions
with arbitrary k see Luc [29]. The optimality conditions in vector optimization are studied lately
intensively, e.g. in Aghezzaf [1], Bolintenéanu, El Maghri [6], Amahroq, Taa [3], Ciligot-Travain
[7], Ginchev, Guerraggio, Rocca [12]. Through scalarization this problem naturally transforms
into scalar optimization with nonsmooth data, which gives some relations to Demyanov, Ru-
binov [10], Ginchev [11], Luc [28], Yang [37]. For optimization problems with C0,1 and C1,1

data (including vector problems and constrained problems) see Hiriart-Urruty, Strodiot, Hien
Nguen [17], Klatte, Tammer [22], Yang, Jeyakumar [35], Yang [36], Liu [25], Liu, Kř́ı̌rek [26],
Liu, Neittaanmäki, Kř́ı̌rek [27], Guerraggio, Luc [15, 16], Ginchev, Guerraggio, Rocca [13].

2 Concepts of optimality and scalar characterizations

We denote the unit sphere and the open unit ball in Rn respectively by S = {x ∈ Rn | ‖x‖ = 1}
and B = {x ∈ Rn | ‖x‖ < 1}. For the norm and the scalar product in the considered finite-
dimensional spaces we write ‖ · ‖ and 〈·, ·〉. From the context it should be clear to exactly which
spaces these notations are applied.

We consider problem (1) with C ⊂ Rn and K ⊂ Rp closed convex cones. The point x is said to
be feasible if g(x) ∈ −K (equivalently x ∈ g−1(−K)). There are different concepts of solutions
of this problem. In any case a solution x0 should be a feasible point, which is assumed in the
following definitions. As for the assumption C and K closed convex cones, we consider it as a
natural and do not care for possible relaxations to non-closed cones. At the same time often
results in vector optimization deal with pointed cones with non-empty interior. Our point of
view is to avoid assumptions of this type as far as possible. However, let us underline, that
such a more general point of view may meet with obstacles by possible generalization to infinite-
dimensional spaces. For instance, in the proof of Proposition 1 we use that intC = ∅ implies
that C is contained in a hyperplane, which is not true in general for infinite-dimensional spaces.

The feasible point x0 is said to be weakly efficient (efficient) point, if there is a neighbourhood
U of x0, such that if x ∈ U ∩ g−1(−K) then f(x)− f(x0) /∈ −intC (respectively f(x)− f(x0) /∈
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−(C \ {0}) ). The feasible point x0 is said to be properly efficient if there exists a closed convex
cone C̃ ⊂ Rn, such that C \ {0} ⊂ int C̃ and x0 is weakly efficient point with respect to C̃ (that
is x0 is weakly efficient for the problem f(x) → minC̃ , g(x) ∈ −K). In this paper the weakly
efficient, the efficient and the properly efficient points of problem (1) are called respectively
w-minimizers, e-minimizers and p-minimizers.
The unconstrained problem

f(x) → minC (2)

should be considered as a particular case of problem (1). The concepts of efficiency are obviously
valid also for this problem. For instance, the point x0 is said to be weakly efficient, here called
w-minimizer (or efficient, here called e-minimizer), if there is a neighbourhood U of x0, such
that if x ∈ U then f(x)− f(x0) /∈ −intC (respectively f(x)− f(x0) /∈ −(C \ {0}) ).
Each p-minimizer is e-minimizer, which follows from the implication f(x) − f(x0) /∈ −int C̃
⇒ f(x) − f(x0) /∈ −(C \ {0}), a consequence of C \ {0} ⊂ int C̃. Assuming C 6= Rm, each
e-minimizer is w-minimizer, which follows from the implication f(x) − f(x0) /∈ −(C \ {0}) ⇒
f(x)− f(x0) /∈ −intC, a consequence of intC ⊂ C \ {0}.
For the cone M ⊂ Rk its positive polar cone M ′ is defined by M ′ = {ζ ∈ Rk | 〈ζ, φ〉 ≥
0 for all φ ∈ M}. The cone M ′ is closed and convex. It is well known that M ′′ := (M ′)′ =
cl coM , see e. g. Rockafellar [33, Chapter III, § 15]. In particular for the closed convex cone
M we have M ′ = {ζ ∈ Rk | 〈ζ, φ〉 ≥ 0 for all φ ∈ M} and M = M ′′ = {φ ∈ Rk | 〈ζ, φ〉 ≥
0 for all ζ ∈M ′}.
The linear span of the cone M ⊂ Rk, that is the smallest subspace of Rk containing M , is
denoted LM . The positive polar cone of M related to the linear span of M is

M ′
LM

= {ζ ∈ LM | 〈ζ, φ〉 ≥ 0 for all φ ∈M} = M ′ ∩ LM .

The relative interior riM of M is defined as the interior of M with respect to the relative
topology of the linear span LM ⊂ Rk of M , that is riM = intLM

M .
The closed convex cone M and its relative interior admit the following description in terms of
positive polar cones.

M = {φ ∈ LM | 〈ζ, φ〉 ≥ 0 for all ζ ∈M ′
LM

} ,

riM = {φ ∈ LM | 〈ζ, φ〉 > 0 for all ζ ∈M ′
LM

} .

An essential and important for the next considerations property is that riM 6= ∅ for any convex
cone M .
Let φ ∈ −cl coM . Then 〈ζ, φ〉 ≤ 0 for all ζ ∈ M ′. We denote M ′(φ) = {ζ ∈ M ′ | 〈ζ, φ〉 =
0}. Then M ′(φ) is a closed convex cone and M ′(φ) ⊂ M ′. Consequently its positive polar
cone M(φ) = (M ′(φ))′ is a close convex cone, M ⊂ M(φ) and its positive polar cone satisfies
(M(φ))′ = M ′(φ). In this paper we apply this notation for M = K and φ = g(x0). Then we
write for short K ′(x0) instead of K ′(g(x0)) (and call this cone the index set of problem (1) at
x0) and K(x0) instead of K(g(x0)). We find this abbreviation convenient and not ambiguous,
since further this is the unique case, in which we make use of the cones M ′(φ) and M(φ).
For the closed convex cone M ′ we apply in the sequel the notations ΓM ′ = {ζ ∈ M ′ | ‖ζ‖ = 1}
and ΓM ′∩LM

= {ζ ∈ M ′ ∩ LM | ‖ζ‖ = 1} = {ζ ∈ M ′
LM

| ‖ζ‖ = 1}. The sets ΓM ′ and ΓM ′∩LM

are compact, since they are closed and bounded.
Further we make use of the orthogonal projection. Let L ⊂ Rk be a given subspace of Rk.
The orthogonal projection is a linear function πL : Rk → L determined by πLφ ∈ L and
〈ζ, φ− πLφ〉 = 0 ⇔ 〈ζ, φ〉 = 〈ζ, πLφ〉 for all ζ ∈ L. It follows easily from the Cauchy inequality
that ‖πL‖ := max(‖πLφ/‖φ‖) = 1 if L 6= {0} and ‖πL‖ = 0 if L = {0}.
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If L ⊂ Rk is a subspace fixed from the context and Φ : Rn → Rk is a given function, then we
usually denote by Φ̄ the composition Φ̄ = πL ◦ Φ.

A relation of the vector optimization problem (1) to some scalar optimization problem can be
obtained in terms of positive polar cones.

Proposition 1 The feasible point x0 ∈ Rn is w-minimizer of problem (1), with C and K closed
convex cones, if and only if x0 is a minimizer of the scalar problem

ϕ(x) = max
{
〈ξ, f(x)− f(x0)〉 | ξ ∈ C ′, ‖ξ‖ = 1

}
→ min , g(x) ∈ −K . (3)

Proof 10. Let intC = ∅. Then each feasible point x0 is w-minimizer. At the same time C is
contained in some hyperplane H = {z ∈ Rm | 〈ξ0, z〉 = 0} with ξ0 ∈ Rm, ‖ξ0‖ = 1. Then both
ξ0 ∈ C ′ and −ξ0 ∈ C ′, whence

ϕ(x) ≥ max
(
〈ξ0, f(x)− f(x0)〉, −〈ξ0, f(x)− f(x0)〉

)
= |〈ξ0, f(x)− f(x0)〉| ≥ 0 = ϕ(x0) ,

which shows that each feasible point x0 is a minimizer of the corresponding scalar problem (3).

20. Let intC 6= ∅. Suppose x0 is w-minimizer of problem (1). Let U be the neighbourhood
from the definition of a w-minimizer and fix x ∈ U ∩ g−1(−K). Then f(x)− f(x0) /∈ −intC 6=
∅. From the well known Separation Theorem there exists ξx ∈ Rm, ‖ξx‖ = 1, such that
〈ξx, f(x) − f(x0)〉 ≥ 0 and 〈ξx,−y〉 = −〈ξx, y〉 ≤ 0 for all y ∈ C. The latter inequality shows
that ξx ∈ C ′ and the former one shows that ϕ(x) ≥ 〈ξx, f(x) − f(x0)〉 ≥ 0 = ϕ(x0). Thus
ϕ(x) ≥ ϕ(x0), x ∈ U ∩ g−1(−K), and therefore x0 is a minimizer of the scalar problem (3).

Let now x0 be a minimizer of the scalar problem (3). Choose the neighbourhood U of x0, such
that ϕ(x) ≥ ϕ(x0) for all x ∈ U ∩ g−1(−K) and fix one such x. Then there exists ξx ∈ C ′,
‖ξx‖ = 1, such that ϕ(x) = 〈ξx, f(x) − f(x0)〉 ≥ ϕ(x0) = 0 (here we use the compactness of
the set {ξ ∈ C ′ | ‖ξ‖ = 1}). From ξx ∈ C ′ it follows 〈ξx,−y〉 < 0 for y ∈ intC. Therefore
f(x)− f(x0) /∈ −intC. Consequently x0 is w-minimizer of problem (1). 2

If intC = ∅, then each feasible point x0 of problem (1) is w-minimizer. For this case the concept
of a relatively weakly efficient point (rw-minimizer) turns to be reacher in content. We use in
the sequel the concept of rw-minimizer instead of w-minimizer in some of the results for the
case if intC = ∅ or intK = ∅ (and rather intK(x0) = ∅). Let us say in advance that if both
intC 6= ∅ and intK 6= ∅ the concepts of rw-minimizer and w-minimizer coincide.

In order to define a rw-minimizer we consider the problem

f̄(x) → minC , ḡ(x) ∈ −K , (4)

where f̄ = πLC
◦ f and ḡ = πLC

◦ g. Then we call the feasible point x0 of problem (1) its
rw-minimizer, if there exists a neighbourhood U of x0 such that f̄(x) − f̄(x0) /∈ −riC for
x ∈ U ∩ ḡ−1(−K). The following proposition characterizes the rw-minimizers.

Proposition 2 The feasible point x0 is rw-minimizer of problem (1), with C and K closed
convex cones, if and only if x0 is a minimizer for the scalar problem

ψ(x) = max
{
〈ξ, f(x)− f(x0)〉 | ξ ∈ C ′LC

= C ′ ∩ LC , ‖ξ‖ = 1
}
→ min , ḡ(x) ∈ −K , (5)

where f̄ = πLC
◦ f and ḡ = πLC

◦ g.
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Proof Due to 〈ξ, f(x)〉 = 〈ξ, f̄(x)〉 and 〈ξ, f(x0)〉 = 〈ξ, f̄(x0)〉 for ξ ∈ LC , the scalar product
in (scp-r ) can be written into the form 〈ξ, f(x)− f(x0)〉 = 〈ξ, f̄(x)− f̄(x0)〉.
Let x0 be a minimizer of problem (5). Then there exists a neighbourhood U of x0, such that
ψ(x) ≥ ψ(x0) for x ∈ U∩ḡ−1(−K). Fix one such x. From the definition of ψ and the compactness
of ΓC′∩LC

, there exists ξ0 ∈ ΓC′∩LC
, such that ψ(x) = 〈ξ0, f̄(x) − f̄(x0)〉 ≥ ψ(x0) = 0, whence

f̄(x)− f̄(x0) /∈ −riC and consequently x0 is rw-minimizer.

Conversely, let x0 be rw-minimizer and let U be the neighbourhood from the definition of the
rw-minimizer. Fix x ∈ U ∩ ḡ−1(−K). Since f̄(x)− f̄(x0) /∈ −riC 6= ∅, there exists ξ0 ∈ ΓC′∩LC

,
such that 〈ξ0, f̄(x) − f̄(x0)〉 ≥ 0. Then ψ(x) ≥ 〈ξ0, f̄(x) − f̄(x0)〉 ≥ 0 = ψ(x0) = 0. Therefore
x0 is a minimizer of problem (5). 2

We see that the proof of Proposition 2 repeats in some sense the proof of Proposition 1, and is
even simpler, since riC in Proposition 2, being an analogue of intC from Proposition 1, is never
empty. While the phase space in Proposition 1 is Rm, in Proposition 2 it is LC .
After Proposition 2 the following definitions look natural. We call the feasible point x0 of
problem (1) relatively efficient point, for short re-minimizer, (relatively properly efficient point,
for short rp-minimizer) if x0 is efficient (properly efficient) point for problem (4).

We call x0 a strong e-minimizer (strong re-minimizer), if there is a neighbourhood U of x0,
such that f(x) − f(x0) /∈ −C for x ∈ (U \ {x0}) ∩ g−1(−K) ( f̄(x) − f̄(x0) /∈ −C for x ∈
(U \{x0})∩ ḡ−1(−K) ). Obviously, each strong e-minimizer (strong re-minimizer) is e-minimizer
(re-minimizer). The following characterization of the strong e-minimizers (strong re-minimizers)
holds. The proof is omitted, since it nearly repeats the one from Proposition 1 (Proposition 2).

Proposition 3 The feasible point x0 is a strong e-minimizer (strong re-minimizer) of problem
(1) with C and K closed convex cones, if and only if x0 is a strong minimizer of problem (3)
(problem (5)).

Proposition 1 claims that the statement x0 is w-minimizer of problem (1) is equivalent to the
statement x0 is a minimizer of the scalar problem (3). Applying some first or second-order
sufficient optimality conditions to check the latter, we usually get more, namely that x0 is an
isolated minimizer respectively of first and second order of (3). Recall, that the feasible point x0

is said to be an isolated minimizer of order κ (κ positive) of problem (3) if there is a constant
A > 0 such that ϕ(x) ≥ ϕ(x0)+A ‖x−x0‖κ for all x ∈ U ∩g−1(−K). The concept of an isolated
minimizer has been popularized by Auslender [4].

It is natural to introduce the following concept of optimality for the vector problem (1):

Definition 1 We say that the feasible point x0 is an isolated minimizer of order κ for vector
problem (1) if it is an isolated minimizer of order κ for scalar problem (3).

Obviously, also a “relative” variant of an isolated minimizer, and as well for other type of efficient
points, does exist. From here on we skip such definitions.

To interpret geometrically the property that x0 is a minimizer of problem (1) of certain type we
introduce the so called oriented distance. Given a set A ⊂ Rk, then the distance from y ∈ Rk

to A is given by d(y,A) = inf{‖a− y‖ | a ∈ A}. The oriented distance from y to A is defined by
D(y,A) = d(y,A) − d(y,Rk \ A). The function D is introduced in Hiriart-Urruty [18, 19] and
is used later in Ciligot-Travain [7], Amahroq, Taa [3], Miglierina [31], Miglierina, Molho [32].
Zaffaroni [38] gives different notions of efficiency and uses the function D for their scalarization
and comparison. Ginchev, Hoffmann [14] use the oriented distance to study approximation of
set-valued functions by single-valued ones and in case of a convex set A show the representation
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D(y,A) = sup‖ξ‖=1 (infa∈A〈ξ, a〉 − 〈ξ, y〉). From this representation, if C is a convex cone and
taking into account

inf
a∈C

〈ξ, a〉 =
{

0 , ξ ∈ C ′,
−∞ , ξ /∈ C ′,

we get easily D(y,−C) = sup‖ξ‖=1, ξ∈C′ (〈ξ, y〉) . In particular the function ϕ in (3) is expressed
by ϕ(x) = D(f(x) − f(x0), −C). Propositions 1 and 3 are easily reformulated in terms of the
oriented distance, namely:

x0 w-minimizer ⇔ D(f(x)− f(x0),−C) ≥ 0 for x ∈ U ∩ g−1(−K) ,
x0 strong e-minimizer ⇔ D(f(x)− f(x0),−C) > 0 for x ∈ (U \ {x0}) ∩ g−1(−K) .

The definition of the isolated minimizers gives

x0 isolated minimizer of order κ ⇔
D(f(x)− f(x0),−C) ≥ O(‖x− x0‖κ) as x→ x0, x ∈ g−1(−K) .

We see, that the isolated minimizers (of a positive order) are strong e-minimizers. The next
proposition gives a relation of the p-minimizers and the isolated minimizers of first order. The
proof for the unconstrained case can be found in Crespi, Ginchev, Rocca [9].

Proposition 4 Let in problem (1) f be Lipschitz in a neighbourhood of the feasible point x0

and let x0 be isolated minimizer of first order. Then x0 is p-minimizer of (1).

Proof Assume in the contrary, that x0 is isolated minimizer of first order, but not p-minimizer.
Let f be Lipschitz with constant L in x0 + r clB. Take sequences δk → +0 and εk → +0 and
define the cones C̃k = cone {y ∈ Rm | D(y, C) ≤ εk, ‖y‖ = 1}. It holds int C̃k ⊃ C \ {0}. From
our assumption, there exists a sequence of feasible points xk ∈ (x0 + δkB)∩ g−1(−K), such that
f(xk)− f(x0) ∈ −int C̃k, and in particular f(xk)− f(x0) 6= 0. From the definition of C̃k we get

D(f(xk)− f(x0),−C) ≤ εk ‖f(xk)− f(x0)‖ ≤ εk L ‖xk − x0‖ ,

which contradicts to x0 isolated minimizer of first order. 2

We introduce now two other concepts of efficiency.

Definition 2 We say that the feasible point x0 for problem (1) is linearly scalarized weakly
efficient, for short lw-minimizer (linearly scalarized properly efficient, for short lp-minimizer),
if there exists a pair (ξ0, η0) ∈ C ′ × K ′(x0) \ {(0, 0)}, such that x0 is a minimizer (isolated
minimizer of first order) for the scalar function

ϕ0(x) = 〈ξ0, f(x)− f(x0)〉+ 〈η0, g(x)〉 . (6)

Proposition 5 If x0 is lw-minimizer for problem (1) with ξ0 6= 0, then x0 is w-minimizer. By
the way, let

for each neighbourhood U of x0 there exists x ∈ U ∩ g−1(−K)
such that 〈η, g(x)〉 < 0 for all η ∈ K ′(x0) \ {0} . (7)

Then if x0 is a minimizer of some function (6) with (ξ0, η0) ∈ C ′ ×K ′(x0) \ {(0, 0)}, that is if
x0 is lw-minimizer, we have ξ0 6= 0.
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Proof We show, that the made assumptions imply that x0 is a minimizer of the scalar problem
(3), whence according to Proposition 1 x0 is w-minimizer. Let U be the neighbourhood of x0,
for which ϕ0(x) ≥ ϕ0(x0) for x ∈ U ∩ g−1(−K). Without loss of generality, we may assume
that ‖ξ0‖ = 1, otherwise we replace in (6) ξ0 by ξ0/‖ξ0‖. Fix x ∈ U ∩ g−1(−K). Then for the
function ϕ in (3) we have

ϕ(x) ≥ 〈ξ0, f(x)− f(x0)〉 ≥ 〈ξ0, f(x)− f(x0)〉+ 〈η0, g(x)〉 = ϕ0(x) ≥ ϕ0(x0) = 0 = ϕ(x0) ,

which had to be demonstrated. Here we have applied that 〈η0, g(x)〉 ≤ 0 coming from g(x) ∈
−K, and 〈η0, g(x0)〉 = 0 coming from η0 ∈ K ′(x0). 2

Preassigned properties of the constraints are called constraint qualifications. The given con-
straint qualification (7) is referred usually to as a qualification of Slater type.

In Section 3 we show that each lp-minimizers is p-minimizers, see Proposition 10.

Developing second-order optimality conditions for C1,1 functions, we meet with isolated mini-
mizers of second order, compare with Ginchev, Guerraggio, Rocca [13]. The property x0 iso-
lated minimizer of second order can be considered as some refinement of the property x0 is
p-minimizer. The isolated minimizers of second order are related to strictly efficient points,
referred to as s-minimizers of problem (1), and defined as follows.

Definition 3 (Bednarczuk, Song [5]) A feasible point x0 is said to be strictly efficient point
of problem (1) (or s-minimizer), if there exists a neighborhood U of x0 such that for every ε > 0
there exists δ > 0 with

(f(x)− f(x0)) ∩ (δB − C) ⊆ εB for all x ∈ U ∩ g−1(−K) .

It is known, see Zălinescu [39], that if x0 is p-minimizer of the unconstrained problem (2), then
it is also s-minimizer. Hence, strictly efficient points form an intermediate class between efficient
and properly efficient points. The following proposition gives a relation to isolated minimizers
of second order and is proved in Crespi, Ginchev, Rocca [9].

Proposition 6 Let f and g be a continuous function. If x0 is an isolated minimizer of second-
order of the unconstrained problem (2), then x0 is s-minimizer of (2).

Let C be a closed convex cone with intC 6= ∅. Then its positive polar C ′ is a pointed closed
convex cone. Recall that the set Ξ is a base for C ′, if Ξ is convex with 0 /∈ Ξ and C ′ = cone Ξ :=
{y | y = λ ξ, λ ≥ 0, ξ ∈ Ξ}. The property C ′ pointed closed convex cone in Rm implies that C ′

possesses a compact base Ξ and

0 < α = min{‖ξ‖ | ξ ∈ Ξ} ≤ max{‖ξ‖ | ξ ∈ Ξ} = β < +∞ . (8)

Further we assume that Ξ0 is compact and Ξ = conv Ξ0. With the help of Ξ0 we define the
problem

ϕ0(x) = max
{
〈ξ, f(x)− f(x0)〉 | ξ ∈ Ξ0

}
→ min , g(x) ∈ −K . (9)

Proposition 7 Let Ξ be a base of C ′ satisfying (8), ϕ be the function in (3) and

ϕΞ(x) = max{〈ξ, f(x)− f(x0)〉 | ξ ∈ Ξ} .

Then αϕ(x) ≤ ϕΞ(x) ≤ β ϕ(x).
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Proof If ξ ∈ ΓC′ = {ξ ∈ Rm | ξ ∈ C ′, ‖ξ‖ = 1}, then there exists λξ > 0, such that λξ ξ ∈ Ξ. In
fact, λξ = ‖λξ ξ‖, whence from inequality (8) we have 0 < α ≤ λξ = ‖λξ ξ‖ ≤ β.

Fix x ∈ Rn. From the compactness of ΓC′ there exists ξx ∈ ΓC′ , such that

ϕ(x) = 〈ξx, f(x)− f(x0)〉 =
1
λξx

〈λξx ξx, f(x)− f(x0)〉 ≤ 1
λξx

ϕΞ(x) ≤ 1
α
ϕΞ(x) ,

whence αϕ(x) ≤ ϕΞ(x). For the other inequality, from the compactness of Ξ there exists ηx ∈ Ξ,
such that ϕΞ(x) = 〈ηx, f(x)− f(x0)〉. Put λ = ληx/‖ηx‖. Then

ϕΞ(x) = 〈ηx, f(x)− f(x0)〉 = λ 〈η
x

λ
, f(x)− f(x0)〉 ≤ λϕ(x) ≤ β ϕ(x) .

2

Proposition 8 Propositions 1 and 3, and Definition 1 remain true, if in their formulation
problem (3) is replaced by problem (9).

Proof We show first, that ϕ0(x) = ϕΞ(x), where ϕΞ(x) is the function from Proposition 7.

The inequality ϕ0(x) ≤ ϕΞ(x) follows directly from Ξ0 ⊂ Ξ. To prove the converse inequality, fix
x and let ϕΞ(x) = 〈ξx, f(x)− f(x0)〉, ξx ∈ Ξ. Let ξx be the convex combination ξx =

∑
j λjξ

j ,
where ξj ∈ Ξ0,

∑
j λj = 1, λj ≥ 0. Then

ϕΞ(x) = 〈ξx, f(x)− f(x0)〉 =
∑

j

λj〈ξj , f(x)− f(x0)〉 ≤
∑

j

λjϕ0(x) = ϕ0(x) .

A consequence of the proved equality and Proposition 7 is the inequality αϕ(x) ≤ ϕ0(x) ≤
β ϕ(x). In order to prove the proposition, we have to show that x0 is a minimizer of problem
(3) if and only if it is minimizer of (9). Assume x0 is a minimizer of (3) and ϕ(x) ≥ ϕ(x0) for
x ∈ U ∩ g−1(−K). Then ϕ0(x) ≥ αϕ(x) ≥ αϕ(x0) = 0 = ϕ0(x) , whence x0 is a minimizer of
(9). Conversely, if x0 is a minimizer of (9), then ϕ(x) ≥ 1

β ϕ0(x) ≥ 1
β ϕ0(x0) = 0 = ϕ(x0) . 2

Corollary 1 In the important case C = Rn
+ (and suitable choice of Ξ) the function ϕ0 in (9)

transforms into

ϕ0(x) = max
1≤i≤n

(
fi(x)− fi(x0)

)
. (10)

Proof Clearly, C ′ = Rn
+ has a base Ξ = conv Ξ0, where Ξ0 = {e1, . . . , en} are the unit vectors

on the coordinate axes. With this set we get immediately that the function ϕ0 in (9) transforms
into that in (10). 2

More generally, the cone C is said to be polyhedral, if C ′ = cone Ξ0 with some finite set of
nonzero vectors Ξ0 = {ξ1, . . . , ξk}. In this case, similarly to Corollary 1 the function ϕ0 in (9)
transforms into the maximum of the finite number of functions

ϕ0(x) = max
1≤i≤k

〈ξi, fi(x)− fi(x0)〉 .
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3 First-order conditions for C0,1 problems

In this section we investigate problem (1) under the assumption that f and g are C0,1 functions.
We obtain optimality conditions in terms of the first-order Dini directional derivative.
Given a C0,1 function Φ : Rn → Rk we define the Dini directional derivative (we use to say
just Dini derivative) Φ′u(x0) of Φ at x0 in direction u ∈ Rn as the set of the cluster points of
(1/t)(Φ(x0 + tu)− Φ(x0)) as t→ +0, that is as the Kuratowski limit

Φ′u(x0) = Limsup
t → +0

1
t

(
Φ(x0 + tu)− Φ(x0)

)
.

If Φ is Fréchet differentiable at x0 then the Dini derivative is a singleton, coincides with the
usual directional derivative and can be expressed in terms of the Fréchet derivative Φ′(x0)
(called sometimes the Jacobian of Φ at x0) by

Φ′u(x0) = lim
t→+0

1
t

(
Φ(x0 + tu)− Φ(x0)

)
= Φ′(x0)u .

In connection with problem (1) we deal with the Dini directional derivative of the function Φ :
Rn → Rm+p, Φ(x) = (f(x), g(x)), and then we use to write Φ′u(x0) = (f(x0), g(x0))′u. If at least
one of the derivatives f ′u(x0) and g′u(x0) is a singleton, then (f(x0), g(x0))′u = (f ′u(x0), g′u(x0)).
Let us turn attention that always (f(x0), g(x0))′u ⊂ f ′u(x0) × g′u(x0), but in general these two
sets do not coincide. Indeed, for f any C0,1 function, (f(x0), f(x0))′u is the diagonal of f ′u(x0)×
f ′u(x0). If f ′u(x0) is not a singleton, then the two sets are different.

Lemma 1 Let Φ : Rn → Rk be Lipschitz with constant L in x0 + r clB, where x0 ∈ Rn and
r > 0. Then for u, v ∈ Rn and 0 < t < r/max(‖u‖, ‖v‖) it holds∥∥∥∥1

t

(
Φ(x0 + tv)− Φ(x0)

)
− 1
t

(
Φ(x0 + tu)− Φ(x0)

)∥∥∥∥ ≤ L ‖v − u‖ , (11)

In particular for v = 0 and 0 < t < r/‖u‖ we get∥∥∥∥1
t

(
Φ(x0 + tu)− Φ(x0)

)∥∥∥∥ ≤ L ‖u‖ . (12)

Proof The left hand side of (11) is obviously transformed and estimated by∥∥∥∥1
t

(
Φ(x0 + tv)− Φ(x0 + tu)

)∥∥∥∥ ≤ L ‖v − u‖ .

2

Lemma 2 Let Φ : Rn → Rk be Lipschitz with constant L in x0 + r clB, where x0 ∈ Rn and
r > 0. Then Φ′u(x0), u ∈ Rn, is non-empty compact set, bounded by sup{‖φ‖ | φ ∈ Φ′u(x0)} ≤
L ‖u‖. For each u, v ∈ Rn and φu ∈ Φ′u(x0), there exists a point φv ∈ Φ′v(x

0), such that
‖φv − φv‖ ≤ L ‖v − u‖ . Consequently, the set-valued function u → Φ′u(x0) is Lipschitz with
constant L (and hence continuous) with respect to the Hausdorff distance in Rk.

Proof The closedness of Φ′u(x0) follows from the definition of the Dini derivative. Esti-
mation (12) shows that Φ′u(x0) is not empty and ‖φu‖ ≤ L ‖u‖ for each φu ∈ Φ′u(x0).
Let φu = limk(1/tk)

(
Φ(x0 + tku)− Φ(x0)

)
. Passing to a subsequence we may assume that

φv = limk(1/tk)
(
Φ(x0 + tkv)− Φ(x0)

)
(to make this conclusion we use also the boundedness
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expressed in (12)). A passing to a limit in (11) gives ‖φv − φv‖ ≤ L ‖v − u‖. Now the Lipschitz
property of the set-valued function u→ Φ′u(x0) becomes obvious. 2

Recall the definition of the index set. Let x0 be feasible point for problem (1). Then g(x0) ∈ −K,
which gives 〈η, g(x0)〉 ≤ 0 for all η ∈ K ′. The index set is defined by K ′(x0) = {η ∈ K ′ |
〈η, g(x0)〉 = 0}. We put K(x0) = (K ′(x0))′. Then K ′(x0) is the positive polar cone of the cone
K(x0), and K ⊂ K(x0), the latter follows from K ′(x0) ⊂ K ′.

Lemma 3 Consider problem (1) with f , g being C0,1 functions and C and K closed convex
cones. If x0 is w-minimizer and (y0, z0) ∈ (f(x0), g(x0))′u, then (y0, z0) /∈ −(intC × intK(x0)).

Proof Suppose that (y0, z0) ∈ (f(x0), g(x0))′u and (y0, z0) ∈ −int (C × K(x0)) = −(intC ×
intK(x0)). Let

y0 = lim
k

1
tk

(
f(x0 + tku)− f(x0)

)
, z0 = lim

k

1
tk

(
g(x0 + tku)− g(x0)

)
. (13)

Without loss of generality, we may assume that 0 < tk < r/‖u‖ for all k and that f and g are
Lipschitz with constant L in x0 + r clB.
We show now that there exists k0, such that g(x0 + tku) ∈ −intK ⊂ −K for k > k0, that
is, x0 + tku is feasible for k > k0. Recall the notation ΓK′ = {η ∈ K ′ | ‖η‖ = 1} and
ΓK′(x0) = {η ∈ K ′(x0) | ‖η‖ = 1}. The sets ΓK′ and ΓK′(x0) are compact as being closed and
bounded sets in an Euclidean space.
Let η̄ ∈ ΓK′ . We show that there exists a positive integer k(η̄) and a neighbourhood V (η̄) of η̄
in ΓK′ , such that 〈η, g(x0 + tku)〉 < 0 for k > k(η̄) and η ∈ V (η̄).
10. Let η̄ ∈ ΓK′(x0). From our assumption, we have 〈η̄, z0〉 < −ε < 0 for some ε = ε(η̄) > 0.
Then

lim
k

1
tk
〈η̄, g(x0 + tku)− g(x0)〉 = 〈η̄, z0〉 < 0 ,

whence there exists k(η̄), such that for all k > k(η̄) it holds

〈η̄, g(x0 + tku)〉 < 〈η̄, g(x0)〉 = 0 .

Let 〈η̄, g(x0 + tku)〉 < −ε < 0 for some ε = ε(η̄) > 0. Then

〈η, g(x0 + tku)〉 = 〈η̄, g(x0 + tku)〉+ 〈η − η̄, g(x0 + tku)〉
< −ε+ ‖η − η̄‖

(
‖g(x0 + tku)− g(x0)‖+ ‖g(x0)‖

)
≤ −ε+ ‖η − η̄‖

(
Lr + ‖g(x0)‖

)
< −ε+ 1

2ε = −1
2ε < 0

as far as ‖η − η̄‖ < ε/(2(Lr + ‖g(x0)‖)) (which determines V (η̄)).
20. Let η̄ ∈ ΓK′ \ ΓK′(x0). We have 〈η̄, g(x0)〉 < −ε < 0 for some ε = ε(η̄) > 0. Then

〈η, g(x0 + tku)〉 = 〈η̄, g(x0〉+ 〈η, g(x0 + tku)− g(x0)〉+ 〈η − η̄, g(x0〉
< −ε+ ‖g(x0 + tku)− g(x0)‖+ ‖η − η̄‖‖g(x0)‖

< −ε+ L tk + ‖η − η̄‖‖g(x0)‖ < −ε− 1
3ε−

1
3ε = −1

3ε < 0

as far as tk < ε/(3L) (we choose k(η̄) in a way that this inequality holds for k > k(η̄)) and
‖η − η̄‖ < ε/(3‖g(x0)‖) (which determines V (η̄)).
Since ΓK′ is compact, ΓK′ ⊂ V (η̄1)∪ . . .∪ V (η̄s). Let k0 = max(k(η̄1)∪ . . .∪ k(η̄s)). For k > k0

we have 〈η, g(x0 + tku)〉 < 0 for all η ∈ ΓK′ (and hence for all η ∈ K ′). This shows that
g(x0 + tku) ∈ −intK ⊂ −K, in other words the points x0 + tku for k > k0 are feasible.
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According to the made assumption y0 ∈ −intC. Since y0 = limk(1/tk)(f(x0 + tku)− f(x0)), we
see that f(x0 + tku)− f(x0) ∈ intC for all sufficiently large k. This fact, together with x0 + tku
feasible, contradicts the assumption that x0 is w-minimizer. 2

The following constraint qualification appears in the Sufficient Conditions part of Theorem 1.

Q0,1(x0) :
If g(x0) ∈ −K and

1
tk

(
g(x0 + tku

0)− g(x0)
)
→ z0 ∈ −K(x0)

then ∃uk → u0 : ∃ k0 ∈ N : ∀ k > k0 : g(x0 + tku
k) ∈ −K .

The next theorem is our main result.

Theorem 1 (First-order conditions) Consider problem (1) with f , g being C0,1 functions
and C and K closed convex cones.

(Necessary Conditions) Let x0 be w-minimizer of problem (1). Then for each u ∈ S the
following condition is satisfied:

N′0,1 :
∀(y0, z0) ∈ (f(x0), g(x0))′u : ∃(ξ0, η0) ∈ C ′ ×K ′ :

(ξ0, η0) 6= (0, 0), 〈η0, g(x0)〉 = 0 and 〈ξ0, y0〉+ 〈η0, z0〉 ≥ 0 .

(Sufficient Conditions) Let x0 ∈ Rn and suppose that for each u ∈ S the following condition
is satisfied:

S′0,1 :
∀(y0, z0) ∈ (f(x0), g(x0))′u : ∃(ξ0, η0) ∈ C ′ ×K ′ :

(ξ0, η0) 6= (0, 0), 〈η0, g(x0)〉 = 0 and 〈ξ0, y0〉+ 〈η0, z0〉 > 0 .

Then x0 is an isolated minimizer of first order for problem (1).

Conversely, if x0 is an isolated minimizer of first order for problem (1) and the constraint
qualification Q0,1(x0) holds, then condition S′0,1 is satisfied.

Proof of the Necessary Conditions Let u ∈ S and (y0, z0) ∈ (f(x0), g(x0))′u. According to
Lemma 3 we have (y0, z0) /∈ −int (C ×K(x0)) = −(int (C)× int (K(x0))), whence there exists

(ξ0, η0) ∈ (C ×K(x0))′ \ {(0, 0)} = C ′ ×K ′(x0) \ {(0, 0)} ,

such that (ξ0, η0) (y0, z0) = (ξ0, y0) + (η0, z0) ≥ 0, which proves N′0,1 (let us underline that
η0 ∈ K ′(x0) is equivalent to η0 ∈ K ′ and 〈η0, g(x0)〉 = 0). 2

Proof of the Sufficient Conditions Assume in the contrary, that x0 is not an isolated mini-
mizer of first order and choose a monotone decreasing sequence εk → +0. From the assumption,
there exist sequences tk → +0 and uk ∈ S, such that g(x0 + tku

k) ∈ −K and

D(f(x0 + tku
k)− f(x0),−C) = max

ξ∈ΓC′
〈ξ, f(x0 + tku

k)− f(x0)〉 < εktk .

Here, according to the accepted notation, ΓC′ = {ξ ∈ C ′ | ‖ξ‖ = 1}. We may assume that
0 < tk < r and both f and g are Lipschitz with constant L in x0 + r clB. Passing to a
subsequence, we may assume also that uk → u0 and that equalities (13) hold with u = u0. From
them we have (y0, z0) ∈ (f(x0), g(x0))′u0 .

Denote zk = (1/tk)(g(x0 + tku
k)− g(x0)) and z0,k = (1/tk)(g(x0 + tku

0)− g(x0)). We show that
zk → z0. This follows from the estimation

‖zk − z0‖ ≤ 1
tk
‖g(x0 + tku

k)− g(x0 + tku
0)‖+ ‖z0,k − z0‖ ≤ L ‖uk − u0‖+ ‖z0,k − z0‖ .
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We show that z0 ∈ −K(x0). For this purpose we must check that 〈η, z0〉 ≤ 0 for η ∈ K ′(x0).
We observe that x0 + tku

k feasible and η ∈ K ′(x0) gives 〈η, g(x0 + tku
k)〉 ≤ 0, whence

〈η, 1
tk

(g(x0 + tku
k)− g(x0))〉 =

1
tk
〈η, g(x0 + tku

k)〉 ≤ 0 .

A passing to a limit gives 〈η, z0〉 ≤ 0.

In order to obtain contradiction, we show that S′0,1 is not satisfied at x0 for u = u0 and (y0, z0)
as above. Denote yk = (1/tk)(f(x0 + tku

k) − f(x0)) and y0,k = (1/tk)(f(x0 + tku
0) − f(x0)).

We have yk → y0, which follows from the estimation

‖yk − y0‖ ≤ 1
tk
‖f(x0 + tku

k)− f(x0 + tku
0)‖+ ‖y0,k − y0‖ ≤ L ‖uk − u0‖+ ‖y0,k − y0‖ . (14)

Let ξ̄ ∈ ΓC′ . Then

〈ξ̄, yk〉 =
1
tk
〈ξ̄, f(x0 + tku

k)− f(x0)〉 ≤ 1
tk

max
ξ∈ΓC′

〈ξ, f(x0 + tku
k)− f(x0)〉

=
1
tk
D(f(x0 + tku

k)− f(x0),−C) <
1
tk
εk tk = εk .

Passing to a limit with k → ∞ we get 〈ξ̄, y0〉 ≤ 0 for arbitrary ξ̄ ∈ ΓC′ . Therefore 〈ξ, y0〉 ≤ 0
for arbitrary ξ ∈ C ′. The latter for ξ 6= 0 follows from 〈ξ, y0〉 = ‖ξ‖ 〈(ξ/‖ξ‖, y0〉 ≤ 0. At the
same time 〈η, z0〉 ≤ 0 for all η ∈ K ′(x0). Therefore for all ξ ∈ C ′ and η ∈ K ′(x0) we have
〈ξ, y0〉+ 〈η, , z0〉 ≤ 0, whence the opposite strong inequality from S′0,1 cannot have place. 2

Reversal of the Sufficient Conditions Let x0 be an isolated minimizer of first order for
problem (1), which means that g(x0) ∈ −K and there exists r > 0 and A > 0 such that
g(x) ∈ −K and ‖x− x0‖ ≤ r implies

D(f(x)− f(x0),−C) = max
ξ∈ΓC′

〈ξ, f(x)− f(x0)〉 ≥ A ‖x− x0‖ . (15)

Let u0 ∈ S and (y0, z0) ∈ (f(x0), g(x0))′u is determined by (13) with u = u0. We may assume
that 0 < tk < r and that f and g are Lipschitz with constant L on x0 + r clB.

One of the following two cases has place:

10. z0 /∈ −K(x0). Then there exists η0 ∈ K ′(x0), such that 〈η0, z0〉 > 0 (obviously, the strong
inequality gives η0 6= 0). Putting ξ0 = 0, we get the pair (ξ0, η0) satisfying condition S′0,1.

20. z0 ∈ −K(x0). Then from the constraint qualification Q0,1(x0) it follows g(x0 + tkuk) ∈ −K
for some sequence uk → u0 and all sufficiently large k. Taking a subsequence, we may assume
that this holds for all k. From inequality (15) we get that there exists ξ0 ∈ ΓC′ (and hence
ξ0 ∈ C ′, ξ0 6= 0), such that

〈ξ0, 1
tk

(
f(x0 + tku

k)− f(x0)
)
〉 ≥ A‖uk‖ .

Putting yk = (1/tk)(f(x0 + tku
k) − f(x0)) and y0,k = (1/tk)(f(x0 + tku

0) − f(x0)), we have
yk → y0, which follows from (14). A passing to a limit gives 〈ξ0, y0〉 ≥ A > 0. Putting η0 = 0,
we get the pair (ξ0, η0) satisfying condition S′0,1. 2

Obviously, the proved theorem is valid also for the unconstrained problem (2). We give this
case, since then some of the conditions simplify.
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Theorem 2 Consider problem (2) with f being C0,1 function and C closed convex cones.

(Necessary Conditions) Let x0 be w-minimizer of problem (2). Then for each u ∈ S and
y0 ∈ f ′u(x0) there exists ξ0 ∈ C ′ \ {0} such that 〈ξ0, y0〉 ≥ 0.

(Sufficient Conditions) Let x0 ∈ Rn. Suppose that for each u ∈ S and y0 ∈ f ′u(x0) there
exists ξ0 ∈ C ′ \ {0} such that 〈ξ0, y0〉 > 0. Then x0 is an isolated minimizer of first order for
problem (2).

Conversely, the given condition is not only sufficient, but also necessary the point x0 to be an
isolated minimizer of first order.

While the Sufficient Conditions in Theorem 1 admit a reversal, already from the scalar opti-
mization we know, that this is not the case for the Necessary Conditions.

Example 1 Consider the unconstrained problem (2) with f : R → R, f(x) = x3 and C = R+.
Then Condition N′0,1 is satisfied at x0 = 0, but x0 is not w-minimizer.

In this example f ′u(x) = 3x2u, which for x0 = 0 gives y0 = f ′u(x0) = 0. The positive polar
cone is C ′ = R+ and for any ξ0 > 0 we have ξ0y0 = 0. Hence Condition N′0,1 is satisfied, while
obviously x0 is not a minimizer.

The following simple example on one hand illustrates Theorem 1 in practice and on the other
hand is applied in the forthcoming discussion.

Example 2 Consider the unconstrained problem (2) with

f : R → R2, f(x) =
{

(x, −2x) , x ≥ 0,
(2x, −x) , x < 0,

optimized with respect to C = R2
+. The function f is C0,1 but not C1. Then the point x0 = 0 is

both p-minimizer and isolated minimizer of first order, the latter can be established on the base
of the Sufficient Conditions of Theorem 1.

Here the positive polar cone is C ′ = R2
+. For u = 1 we have y0 = f ′u(x0) = (1, −2) and

〈ξ0, y0〉 = ξ01 − 2ξ02 > 0 if we choose ξ0 = (1, 0) ∈ R2
+ \ {(0, 0)}. For u = −1 we have

y0 = f ′u(x0) = (−2, 1) and 〈ξ0, y0〉 = −2ξ01 + ξ02 > 0 if we choose ξ0 = (0, 1) ∈ R2
+ \ {(0, 0)}.

The constraint qualification Q0,1(x0) is of Kuhn-Tucker type. In 1951 Kuhn, Tucker [23] pub-
lished the classical variant for differentiable functions and since then it is the best known
constraint qualification. One may be astonished, that in the hypothesis of Q0,1(x0) we have
z0 ∈ −K(x0), while in the conclusion g(x0 + tku

0) ∈ −K it stands K instead of K(x0). If the
cone K is polyhedral, we may take in the conclusion g(x0 + tku

0) ∈ −K(x0), but in general with
such a weaker conclusion the reversal of the Sufficient Conditions of Theorem 1 is not true. This
is shown in the next example.

Example 3 Let f : R → R, g : R → R3 with C = R+ , K = {z ∈ R3 | z2
3 ≥ z2

1 + z2
2} and f(x) =

x2, g(x) = (x |x|, −1, −1). Then f and g are C1 functions, x0 = 0 is an isolated minimizer of
first order, Q0,1(x0) does not hold, but we have similar condition with g(x0 + tku

0) ∈ −K(x0)
in the conclusion, instead of g(x0 + tku

0) ∈ −K. At the same time, whatever u ∈ R be, there is
no pair (ξ0, η0) ∈ C ′ ×K ′(x0) for which 〈ξ0, f ′(x0)u〉+ 〈η0, g′(x0)u〉 > 0.
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Here x0 is the only feasible point, and according to the definition x0 is an isolated minimizer
of first order. (This means D(f(x) − f(x0),−C) ≥ A‖x − x0‖ for x ∈ U ∩ g−1(−K), which
is true, since U ∩ g−1(−K) = {x0}). The index sets K(x0) is a half-space determined by the
unique tangent plane to the cone −K at g(x0), whence the modified constraint qualification is
checked immediately. More precisely, −K(x0) = {z ∈ R3 | −z2 + z3 ≥ 0}. For any u ∈ R we
have limk(1/tk)(g(x0 + tku) − g(x0)) = (0, 0, 0) ∈ −K(x0). At the same time g(x0 + tku) =
(t2ku|u|,−1,−1) /∈ −K, but g(x0 + tku) ∈ −K(x0). Now, for any u ∈ R we have f ′(x0)u = 0,
g′(x0)u = (0, 0, 0) and therefore 〈ξ0, f ′(x0)u〉+ 〈η0, g′(x0)u〉 = 0 for all pairs (ξ0, η0).

If g is Fréchet differentiable at x0, then instead of constraint qualification Q0,1(x0) we may
consider the constraint qualification Q1(x0) given below.

Q1(x0) :
If g(x0) ∈ −K and g′(x0)u0 = z0 ∈ −K(x0) then

there exists δ > 0 and a differentiable injective function
ϕ : [0, δ] → −K such that ϕ(0) = x0 and ϕ′(0) = g′(x0)u0 .

In the case of a polyhedral cone K in Q1(x0) the requirement ϕ : [0, δ] → −K can be replaced
by ϕ : [0, δ] → −K(x0). This condition coincides with the classical Kuhn-Tucker constraint
qualification (compare with Mangasarian [30, p. 102]).
The next theorem is a reformulation of Theorem 1 for C1 problems, that is problems with f
and g being C1 functions.

Theorem 3 Consider problem (1) with f , g being C1 functions and C and K closed convex
cones.

(Necessary Conditions) Let x0 be w-minimizer of problem (1). Then for each u ∈ S the
following condition is satisfied:

N′1 :
∃(ξ0, η0) ∈ C ′ ×K ′ \ {(0, 0)} :

〈η0, g(x0)〉 = 0 and 〈ξ0, f ′(x0)u〉+ 〈η0, g′(x0)u〉 ≥ 0 .

(Sufficient Conditions) Let x0 ∈ Rn.

Suppose that for each u ∈ S the following condition is satisfied:

S′1 :
∃(ξ0, η0) ∈ C ′ ×K ′ \ {(0, 0)} :

〈η0, g(x0)〉 = 0 and 〈ξ0, f ′(x0)u〉+ 〈η0, g′(x0)u〉 > 0 .

Then x0 is an isolated minimizer of first order for problem (1).

Conversely, if x0 is an isolated minimizer of first order for problem (1) and let the constraint
qualification Q1(x0) have place, then condition S′1 is satisfied.

We underline without proof, that Theorem 3 remains true assuming for f and g only Fréchet
differentiable at x0, instead of being C1.

The pairs of vectors (ξ0, η0) are usually referred to as the Lagrange multipliers. Here we have
different Lagrange multipliers to different u ∈ S (and different (y0, z0) ∈ (f(x0), g(x0))′u). The
natural question arises, whether a common pair (ξ0, η0) can be chosen to all directions. The
next example shows that the answer is negative even for C1 problems.

Example 4 Let f : R2 → R2, f(x1, x2) = (x1, x
2
1 + x2

2), and g : R2 → R2, f(x1, x2) = (x1, x2).
Define C = {y ∈ (y1, y2) ∈ R2 | y2 = 0}, K = R2. Then f and g are C1 functions and the point
x0 = (0, 0) is w-minimizer of problem (1) (in fact x0 is also isolated minimizer of second order,
but not isolated minimizer of first order). At the same time the only pair (ξ0, η0) ∈ C ′ ×K ′ for
which 〈ξ0, f ′(x0)u〉+ 〈η0, g′(x0)u〉 ≥ 0 for all u ∈ S is ξ0 = (0, 0) and η0 = (0, 0).
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The point x0 is w-minimizer, since intC = 0, whence each feasible point is w-minimizer. We have
f ′(x)u = (u1, 2x1u1+2x2u2), where from f ′(x0)u = (u1, 0), and g′(x0)u = u. The positive polar
cones are C ′ = {ξ ∈ R2 | ξ1 = 0} and K ′ = {0}. If ξ0 = (ξ01 , ξ

0
2) ∈ C ′ and η0 = (η0

1, η
0
2) ∈ K ′

satisfy the desired inequality, then η0 = (0, 0), ξ0 = (ξ01 , 0) and the inequality turns into
ξ01u1 ≥ 0, which should be true for all u1 ∈ R. This gives ξ01 = 0 and finally ξ0 = (0, 0) and
η0 = (0, 0).

The next Theorem 4 guarantees, that in the case when x0 is rw-minimizer of the C1 problem
(1), a nonzero pair (ξ0, η0) exists, which satisfies the Necessary Conditions of Theorem 1 and
which is common for all directions. In order to prepare the proof, we need the following two
lemmas.

Lemma 4 Let f : Rn → Rm be C0,1 function and let L ⊂ Rm be a subspace. Denote f̄ = πL ◦f .
Then f̄ is C0,1 function and f̄ ′u(x0) = πL ◦ f ′u(x0). Similarly, if f is C1 function, then f̄ is C1

function and f ′(x0)u = πL ◦ f ′(x0)u .

Proof The function f̄ is locally Lipschitz, hence C0,1, as a composition of a bounded linear
function and a locally Lipschitz function.

Let y0 ∈ f ′u(x0) and y0 = limk(1/tk)(f(x0 + tku)− f(x0)). Since the projection commutes with
the passing to a limit and with the linear operations, we see that

πL ◦ y0 = lim
k

1
tk

((πL ◦ f)(x0 + tku)− (πL ◦ f)(x0)) ∈ f̄ ′u(x0) .

Conversely, let ȳ0 = limk(1/tk)(f̄(x0 + tku) − f̄(x0)). From f locally Lipschitz, it follows that
there exists a subsequence {tk′} of {tk}, such that limk′(1/tk′)(f(x0 + tk′u)− f(x0)) = y0. Now
y0 ∈ f ′u(x0) and ȳ0 = πL ◦ y0 ∈ πL ◦ f ′u(x0).

The case of f ∈ C1 is treated similarly. 2

Lemma 5 Consider problem (1) with f and g being C0,1 functions and C and K closed convex
cones. If x0 is rw-minimizer and (y0, z0) ∈ (f̄(x0), ḡ(x0))′u (here f̄ = πLC

◦f and ḡ = πLK
◦ g),

then (y0, z0) /∈ −(riC × ri (K(x0) ∩ LK)) .

The proof is omitted, since it nearly repeats that of Lemma 3, but relating the considerations
to the phase space LC × LK instead of Rm × Rp.

Theorem 4 (Necessary Conditions) Consider problem (1) with f , g being C1 functions and
C and K closed convex cones. Let x0 be rw-minimizer of problem (1). Then there exists a pair
(ξ0, η0) ∈ C ′LC

×K ′
LK

\ {(0, 0)} such that 〈η0, g(x0)〉 = 0 and 〈ξ0, f ′(x0)u〉+ 〈η0, g′(x0)u〉 = 0
for all u ∈ Rn. The latter equality could be written also as ξ0f ′(x0) + η0g′(x0) = 0.

Proof Put f̄ = πLC
◦ f and ḡ = πLK

◦ g. According to Lemma 5, (f̄ ′(x0)u, ḡ′(x0)u) /∈ −(riC ×
ri (K(x0) ∩ LK)) 6= ∅ for all u ∈ Rn. Therefore the convex set M = {(f̄ ′(x0)u, ḡ′(x0)u) | u ∈
Rn} ⊂ LC ×LK (the convexity is implied from the properties of the Fréchet derivative) does not
intersect the non-empty interior (relative to LC × LK) of the convex set −C × (K(x0) ∩ LK).
From the Separation Theorem there exists a nonzero pair (ξ0, η0) ∈ C ′LC

× K ′
LK

such that
〈ξ0, f̄ ′(x0)u〉+ 〈η0, ḡ′(x0)u〉 ≥ 0 for all u ∈ Rn. This leads to an equality, since

0 ≤ 〈ξ0, f̄ ′(x0)(−u)〉+ 〈η0, ḡ′(x0)(−u)〉 = −
(
〈ξ0, f̄ ′(x0)u〉+ 〈η0, ḡ′(x0)u〉

)
≤ 0 .
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Since ξ0 ∈ LC we have 〈ξ0, f̄ ′(x0)u〉 = 〈ξ0, f ′(x0)u〉. Indeed, applying Lemma 4, we get

〈ξ0, f̄ ′(x0)u〉 = 〈ξ0, (πLC
◦ f)′(x0)u〉 = 〈ξ0, πLC

◦ f ′(x0)u〉 = 〈ξ0, f ′(x0)u〉 .

Similarly, since η0 ∈ LK , we get 〈ξ0, ḡ′(x0)u〉 = 〈ξ0, g′(x0)u〉. Finally η0 ∈ (K(x0) ∩ LK)′LK

gives 0 = 〈η0, ḡ(x0)〉 = 〈η0, πLK
◦ g(x0)〉 = 〈η0, g(x0)〉. 2

The established in Theorem 4 common for all directions u ∈ Rn multipliers are the reason to
come back to Theorem 1 and to investigate more carefully this situation. We discover a relation
to lw-minimizers.

Remark 1 Consider problem (1) with f and g being C0,1 functions and C and K closed convex
cones. Suppose that x0 is such that

∃ (ξ0, η0) ∈ C ′ ×K ′(x0) \ {(0, 0)} : ∀u ∈ Rn :
∀ (y0, z0) ∈ (f(x0), g(x0))′u : 〈ξ0, y0〉+ 〈η0, z0〉 ≥ 0 .

Then obviously (ξ0, η0) separates the cone −(C ×K(x0)) ⊂ Rm+p from the set

F ′ = {(y, z) ∈ Rm+p | (y, z) ∈ (f(x0), g(x0))′u for some u ∈ Rn} (16)

in the sense that
〈ξ0, y〉+ 〈η0, z〉 ≤ 0 for all (y, z) ∈ −(C ×K(x0))

〈ξ0, y〉+ 〈η0, z〉 ≥ 0 for all (y, z) ∈ F ′ .

The latter inequality is valid also for (y, z) ∈ coF ′.

Proposition 9 The feasible point x0 is lw-minimizer for problem (1) if and only if there exists
a pair (ξ0, η0) ∈ C ′×K ′(x0)\{(0, 0)} and a neighbourhood U of x0, such that (ξ0, η0) separates
the cone −(C ×K(x0)) from the set

F = {(y, z) ∈ Rm+p | y = f(x)− f(x0), z = g(x), x ∈ U}

(and also from coF ), in the sense that

〈ξ0, f(x)− f(x0)〉+ 〈η0, g(x)〉 ≥ 0 for all x ∈ U,
〈ξ0, y〉+ 〈η0, z〉 ≤ 0 for all (y, z) ∈ −(C ×K(x0)) .

(17)

Proof Let x0 be lw-minimizer and let U be the neighbourhood of x0 for which ϕ0(x) ≥ ϕ0(x0),
u ∈ U , where ϕ0 is the function in (6). This inequality with account of ϕ0(x0) = 0 and
(ξ0, η0) ∈ C ′ ×K(x0) \ {(0, 0)} gives (17).
Conversely, if (ξ0, η0) ∈ C ′ ×K(x0) \ {(0, 0)} separates −(C ×K(x0)) from F for some neigh-
bourhood U of x0, then for the function ϕ0 in (6) and x ∈ U we have

ϕ0(x) = 〈ξ0, f(x)− f(x0)〉+ 〈η0, g(x)〉 ≥ 0 = ϕ0(x0) .

Thus, x0 is a minimizer of ϕ0, and therefore lw-minimizer of problem (1). 2

Corollary 2 Consider problem (1) with f , g being C0,1 functions and C and K closed convex
cones. If x0 is lw-minimizer, then there exists (ξ0, η0) ∈ C ′ × K(x0) \ {(0, 0)}, such that the
inequality

〈ξ0, y0〉+ 〈η0, z0〉 ≥ 0 (18)

holds for each u ∈ Rn and (y0, z0) ∈ (f(x0), g(x0)′u. This implies that −(intC× intK(x0)) does
not intersect the set coF ′, where F ′ is given by (16).
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Proof Let (y0, z0) ∈ (f(x0), g(x0)′u are determined by (13). Then (17) gives for k sufficiently
large

〈ξ0, 1
tk

(
f(x0 + tku)− f(x0)

)
〉+ 〈η0,

1
tk

(
g(x0 + tku)− g(x0)

)
〉 ≥ 0 ,

whence passing to a limit we get (18). Further −(intC× intK(x0)) and F ′ are separated, which
cannot have place it −(intC × intK(x0)) and coF ′ intersect. 2

Restricting the considerations to the phase space LC × LK instead to Rm × Rp and replacing
problem (1) by (4), we can introduce as in Definition 2 the concept of a relatively linearly
scalarized weakly efficient point, for short rlw-minimizer (and similarly rlp-minimizer). Now
under the assumptions of Corollary 2 and assuming also x0 rlw-minimizer, we get that −(riC×
ri (K(x0) ∩ LK)) and coF ′ do not intersect.

In Example 2 the point x0 = 0 is w-minimizer, and even p-minimizer. We show that x0 is not
lw-minimizer. Indeed, in this case we have f ′1(x

0) = (1, −2), f ′−1(x
0) = (−2, 1) and 1

2f
′
1(x

0) +
1
2f

′
−1(x

0) = (−1
2 , −

1
2) belongs both to −intC = −int R2

+ and to coF ′, where F ′ is the set (16).

The considered in Example 2 problem is C0,1 but not C1. In connection with Theorem 4 the
following question arises. Is it true, that each w-minimizer of a C1 problem is lw-minimizer?
The next Example 5 gives a negative answer.

Example 5 Consider the unconstrained problem (2) with

f : R → R2, f(x) =
{

(x2, −2x2) , x ≥ 0,
(2x2, −x2) , x < 0,

optimized with respect to C = R2
+. The function f is C1. Then the point x0 = 0 is w-minimizer

(it is also s-minimizer though not p-minimizer), but not lw-minimizer.

To establish that f is C1 is quite easy. The function ϕ0 in Corollary 1 is ϕ0(x) = x2. Since x0

is an isolated minimizer of second order, but not an isolated minimizer of first order for ϕ0, it is
w-minimizer and s-minimizer for the initial problem, but not p-minimizer.
To show that x0 = 0 is not lw-minimizer, observe that the function ϕ0 in (6) is

ϕ0(x) =
{

(ξ01 − 2ξ02)x
2 , x ≥ 0,

(−2ξ01 + ξ02)x
2 , x < 0.

Then ϕ0(x) ≥ ϕ0(0), x > 0, implies ξ01−2ξ02 ≥ 0 and ϕ0(x) ≥ ϕ0(0), x < 0, implies −2ξ01+ξ02 ≥ 0.
Adding the two inequalities, we get −ξ01 − ξ02 ≥ 0. At the same time ξ0 ∈ C ′ \ {0} gives ξ01 ≥ 0,
ξ02 ≥ 0, where the two inequalities are not simultaneously satisfied. This however contradicts to
the obtained above inequality.
In the following proposition, as an application of Theorem 1, we find a relation of lp-minimizers
and p-minimizers.

Proposition 10 Let in problem (1) f and g be locally Lipschitz functions. If x0 is lp-minimizer,
then x0 is p-minimizer.

Proof Let u ∈ S and the pair (y0, z0) ∈ (f(x0), g(x0))′u is determined by (13). From x0 isolated
minimizer of first order for the scalar function ϕ0 : Rn → R in (6), there exists A > 0, such that
ϕ0(x0 + tku)− ϕ(x0) ≥ Atk, whence

〈ξ0, 1
tk

(
f(x0 + tku)− f(x0)

)
〉+ 〈η0,

1
tk

(
g(x0 + tku)− g(x0)

)
〉 ≥ A > 0 .

17



A passing to a limit gives 〈ξ0, y0〉+〈η0, z0〉 ≥ A > 0 . Now the Sufficient Condition in Theorem 1
gives that x0 is an isolated minimizer of first order for problem (1), and according to Proposition
4 it is also p-minimizer. 2

If intC = ∅ each feasible point of problem (1) is w-minimizer and the Necessary Conditions
are trivially satisfied. In this case a more essential information is that x0 is rw-minimizer. The
next Theorem 5 generalizes the Necessary Conditions part of Theorem 1 to relative concepts.
Obviously, the Sufficient Conditions part admits also a generalization, which is not given here.

Theorem 5 (First-order conditions) Consider problem (1) with f , g being C0,1 functions
and C and K closed convex cones.

(Necessary Conditions) Let x0 be rw-minimizer of problem (1). Then for each u ∈ S the
following condition is satisfied:

r-N′0,1 :
∀(y0, z0) ∈ (f(x0), g(x0))′u : ∃(ξ0, η0) ∈ LC

′ × LK
′ :

(ξ0, η0) 6= (0, 0), 〈η0, g(x0)〉 = 0 and 〈ξ0, y0〉+ 〈η0, z0〉 ≥ 0 .

We omit the proof. In principle it repeats the proof of the Necessary Conditions of Theorem 1
replacing the phase space from Rm×Rp to LC ×LK , replacing the considered problem from (1)
to (4) and making use of Lemma 4.

4 Isolated minimizers and proper efficiency

Consider the unconstrained problem (2) with C0,1 function f . According to Proposition 4 if x0

is an isolated minimizer of first order, then x0 is p-minimizer. It is natural to ask, whether the
converse is true. The next example gives a negative answer of this question.

Example 6 Let tk → +0 , k = 0, 1, . . . , be a strictly decreasing sequence with t0 = +∞. Define
the function h : R → R,

h(t) =
{

min (tk−1 − |t|, |t| − tk) , tk ≤ |t| ≤ tk−1,
0 , t = 0 .

Consider the unconstrained problem (2) with f : R → R2, f(x) = (h(x), h(x)) and C = R2
+.

Then x0 = 0 is p-minimizer, but not an isolated minimizer of first order.

The function f is C0,1, since h is C0,1. The latter follows by the easy-to-prove inequality
|h(t′)− h(t′′| ≤ |t′ − t′′|, t′, t′′ ∈ R.

According to Proposition 8 and Corollary 1,if x0 is an isolated minimizer of first order for (2), we
should have, that x0 is an isolated minimizer of first order for the function ϕ0(x) = min(f1(x)−
f1(x0), f2(x) − f2(x0)) = h(x). However, this is not the case, since for xk = tk → x0 = 0 we
have ϕ0(xk) = h(tk) = 0. Indeed, assuming in the contrary, that x0 is an isolated minimizer of
first order, we should have for some A > 0 and all sufficiently large k

0 = ϕ0(xk) = ϕ0(xk)− ϕ0(x0) ≥ A ‖xk − x0‖ = A tk > 0 ,

a contradiction.

The point x0 is p-minimizer. Indeed, let C̃ = {y ∈ R2 | y1 + y2 ≥ 0}. Then int C̃ = {y ∈ R2 |
y1 + y2 > 0} ⊃ C \ {0} = R2

+ \ {(0, 0)} and x0 is w-minimizer of the problem

f(x) → minC̃ . (19)
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The latter follows from f(x) = (h(x), h(x)) ∈ R2
+ = C and R2

+ disjoint from −int C̃ = {y ∈ R2 |
y1 + y2 < 0}.

By a slight modification of this example we can see, that even the additional assumption x0

strong e-minimizer does not guarantee that x0 is an isolated minimizer of first order.

Example 7 Let h be like in Example 6. Consider problem (2) with f : R2 → R, f(x) =
(h(x) + x2, h(x) + x2) and C = R2

+. Then f is C0,1, x0 = 0 is both strong e-minimizer and
p-minimizer, but not an isolated minimizer of first order.

Here ϕ0(x) = h(x) + x2 has x0 = 0 as a strong minimizer, but not as an isolated minimizer of
first order.

We can strengthen the property x0 is p-minimizer in a way, that we get x0 is an isolated minimizer
of first order.

For the constrained problem (1) we introduce the property

P(x0, u) : (y0, z0) ∈ (f(x0), g(x0))′u ⇒ (y0, z0) 6= (0, 0) .

For the unconstrained problem (2) this property transforms into y0 ∈ f ′u(x0) ⇒ y0 6= 0 . In the
next Proposition 11 we show, that this property, together with x0 p-minimizer implies that x0

is an isolated minimizer of first order.

Proposition 11 Consider the unconstrained problem (2) with f being C0,1 function. Let x0 be
p-minimizer, which satisfies property P(x0, u) for each u ∈ S. Then x0 is an isolated minimizer
of first order.

Proof Since x0 is p-minimizer, therefore there exists a closed convex cone C̃, such that int C̃ ⊃
C \ {0} and x0 is w-minimizer for problem (19). According to the Necessary Conditions of
Theorem 1 (and Theorem 2), this means, that for each u ∈ S and y0 ∈ f ′u(x0), there exists
ξ̃0 ∈ C̃ ′ \ {0}, such that 〈ξ̃0, y0〉 ≥ 0. This inequality, together with property P(x0, u), shows
that y0 /∈ −int C̃ ∪ {0}. Since C ⊂ int C̃ ∪ {0}, we see that y0 /∈ C. This implies, that there
exists ξ0 ∈ C ′, such that 〈ξ0, y0〉 > 0. According to the Sufficient Conditions of Theorem 1 (and
Theorem 2), the point x0 is an isolated minimizer of first order. 2

In the next section we discuss similar reversal of Proposition 4 for the constrained problem (1).

5 The related unconstrained problem

We relate to the constrained problem (1) and the feasible point x0 the unconstrained problem

(f(x), g(x)) → minC×K(x0) . (20)

In Section 2 we defined the concept of a p-minimizer of problem (1), which from here on is called
p-minimizer in sense I. The same definition determines the p-minimizers of problem (20), which
seem to have a closer link to the isolated minimizers of first order. This justifies the following
definition: We say, that the feasible for problem (1) point x0 is a p-minimizer in sense II of the
constrained problem (1), if it is a p-minimizer for the unconstrained problem (20). Similarly, to
each defined in Section 2 type of minimizer of the constrained problem (1) (we call it a minimizer
in sense I), we juxtapose the respective type of minimizer of the related unconstrained problem
(20) (we call it a minimizer in sense II).

The next proposition illustrates, that there is a relation between the two type of minimizers.
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Proposition 12 Let x0 be a feasible point for problem (1). If x0 is w-minimizer in sense II,
then x0 is w-minimizer in sense I.

Proof If x0 is w-minimizer in sense II, then x0 is a minimizer of the function

ϕII(x) = max{〈ξ, f(x)− f(x0)〉+ 〈η, g(x)− g(x0)〉 | ξ ∈ C ′, η ∈ K ′(x0), ‖(ξ, η)‖ = 1} .

Let ϕII(x) ≥ ϕII(x0), for x ∈ U , where U is some neighbourhood of x0. Choose x ∈ U ∩
g−1(−K). From K ⊂ K(x0) we have g(x) ∈ −K ⊂ −K(x0), whence

max{〈η, g(x)〉 | ξ ∈ C ′, η ∈ K ′(x0), ‖(ξ, η)‖ = 1} ≤ 0 .

Therefore ϕII(x) ≥ ϕII(x0) = 0 implies

max{〈ξ, f(x)− f(x0)〉 | ξ ∈ C ′, η ∈ K ′(x0), ‖(ξ, η)‖ = 1} ≥ 0 ,

whence for the function (3) we have

ϕ(x) = max{〈ξ, f(x)− f(x0)〉 | ξ ∈ C ′, η ∈ K ′(x0), ‖(ξ, η)‖ = 1} ≥ 0 = ϕ(x0) .

Therefore x0 is w-minimizer of problem (1). 2

Next we write Theorem 2 for the unconstrained problem (20) and on this base we compare the
isolated minimizers in sense I and II.

Theorem 6 Consider problem (20) with f and g being C0,1 functions and C and K closed
convex cones.
(Necessary Conditions) Let x0 be w-minimizer of (20), i. e. w-minimizer in sense II of (1).
Then for each u ∈ S and (y0, z0) ∈ (f(x0), g(x0))′u there exists (ξ0, η0) ∈ C ′×K ′(x0)\{(0, 0)},
such that 〈ξ0, y0〉+ 〈η0, z0〉 ≥ 0.
(Sufficient Conditions) Let x0 be feasible for (1). Suppose that for each u ∈ S and (y0, z0) ∈
(f(x0), g(x0))′u there exists (ξ0, η0) ∈ C ′ ×K ′(x0) \ {(0, 0)}, such that 〈ξ0, y0〉 + 〈η0, z0〉 > 0.
Then x0 is an isolated minimizer of first order of (20), i. e. an isolated minimizer of first order
in sense II of (1).

Conversely, the given condition is not only sufficient, but also necessary the point x0 to be an
isolated minimizer of first order in sense II of (1).

We obtain the next proposition as a corollary of Theorem 6.

Proposition 13 Let x0 be a feasible point for problem (1). If x0 is an isolated minimizer of
first order in sense I, then x0 is an isolated minimizer of first order in sense II.

Proof Let x0 be an isolated minimizer in sense I. According to Theorem 1, for any u ∈ S and
(y0, z0) ∈ (f(x0), g(x0))′u there exists (ξ0, η0) ∈ C ′ × K ′(x0) \ {(0, 0)}, such that 〈ξ0, y0〉 +
〈η0, z0〉 > 0. Now the reversal of the Sufficient Conditions of Theorem 6 gives that x0 is an
isolated minimizer of first order in sense II. 2

Let us say, that by a symmetry it does not follow, that if x0 is an isolated minimizer of first
order in sense II, then x0 is an isolated minimizer of first order in sense I. The obstacle is, that
the reversal of the Sufficient Conditions of Theorem 1 is proved only under the assumption that
the constrained qualification Q0,1(x0) has place.
Perhaps it is not trivial to find a relation between p-minimizers in sense I and II. However,
concerning p-minimizers in sense II, we can apply the results for the unconstrained problem
obtained in Sections 2 and 4.
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Proposition 14 Let in problem (1) f , g be C0,1 functions and let x0 be a feasible point. If x0

is an isolated minimizer of first order in sense II, then x0 is p-minimizer of (1) in sense II.

The proof is an immediate application of Proposition 4.

Proposition 15 Let in problem (1) f and f be C0,1 functions and x0 be a feasible point. Let
x0 be p-minimizer in sense II, which satisfies Property P(x0, u) for each u ∈ S. Then x0 is an
isolated minimizer of first order in sense II of (1).

The proof is an immediate application of Proposition 11.
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