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Abstract

In this study, using the properties of limiting subdifferentials in nonsmooth analysis and regarding
a separation theorem, some weak Pareto-optimality (necessary and sufficient) conditions for nonsmooth
multiobjective optimization problems are proved.
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1. Introduction

Recently, much attention has been paid to characterize the Pareto-optimality conditions for
multiple-objective optimization problems, under various types of conditions. Under smooth
conditions (say, convexity and generalized convexity as well as differentiability) optimality con-
ditions for these problems have been studied by some scholars, see, e.g., Hanson and Mond [8],
Giorgi and Guerraggio [5], Kaul et al. [10], Rueda and Hanson [18], Aghezzaf and Hachimi [1,2],
Mishra et al. [11–13,15], Soleimani-damaneh [19] and references therein. The nondifferentiable
case has been studied by some scholars, too. See, e.g., Hachimi and Aghezzaf [6], Mishra et al.
[14,16], and Yang et al. [20], among others.
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In this paper we deal with the limiting subdifferentials for Lipschitz functions following
[4,17] as well as the concept of invexity along the lines of [7,9] and characterize the weak
Pareto-optimal solutions under locally Lipschitz and invexity conditions. Our idea is based on
an algebraic construction for the set of improving directions and the set of feasible directions
using limiting subdifferential properties in nonsmooth analysis and finally using a separation
theorem in convex analysis to derive the optimality conditions. Section 2 contains some basic
definitions and primary results. In Section 3 the main results of our study have been sketched and
established through four theorems.

2. Preliminaries

For x, y ∈ R
n, x < y means xi < yi for all i = 1, . . . , n. x � y means xi � yi for all

i = 1, . . . , n, but x �= y. x � y allows equality. In this paper we consider the multiobjective
optimization problem

min
{
f (x) = (

f1(x), . . . , fm(x)
)
: x ∈ X, gj (x) � 0; j = 1,2, . . . , p

}
, (1)

where X is a nonempty open set in R
n, f : Rn → R

m, and g = (g1, . . . , gp) : Rn → R
p .

This section contains some basic definitions and results which are useful for the rest of the
paper.

Consider the feasible set of (1) as follows:

S = {
x ∈ X: g(x) = (

g1(x), . . . , gp(x)
)
� 0

}
.

Definition 2.1. Let φ �= S ⊆ R
n and let x̄ ∈ clS. The set of feasible directions of S at x̄, denoted

by Dx̄ , is given by

Dx̄ = {
d ∈ R

n: d �= 0 and ∃δ > 0 such that x̄ + λd ∈ S ∀λ ∈ (0, δ)
}
.

Note that if x̄ ∈ intS, then Dx̄ = R
n.

Definition 2.2. Let φ �= S ⊆ R
n and let x̄ ∈ S. The set of descent directions at x̄, denoted by F x̄ ,

is given by

F x̄ = {
d ∈ R

n: ∃δ > 0 such that f (x̄ + λd) < f (x̄) ∀λ ∈ (0, δ)
}
.

Definition 2.3. We say that x̄ ∈ S is a weak Pareto-optimal solution (WPOS) of problem (1) if
there exists no x ∈ S such that f (x) < f (x̄).

Lemma 2.1. If x̄ is a WPOS of (1) then F x̄ ∩ Dx̄ = φ.

Proof. Straightforward. �
Let A be a nonempty subset of R

n and y ∈ R
n. The metric projection of y on A is defined as

ProjA(y) = {
x̄ ∈ A: ‖y − x̄‖ � ‖y − x‖ ∀x ∈A

}
.

The proximal cone to A at x̄, denoted by NP
A(x̄), is given by

NP
A(x̄) = {

ζ ∈ R
n: ∃(

λ � 0, y ∈ R
n
)

such that x̄ ∈ ProjA(y) and ζ = λ(y − x̄)
}
.
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Considering h :A ⊆ R
n → R, the set of proximal subdifferential vectors of h at x̄, denoted by

∂P h(x̄), is defined as

∂P h(x̄) = {
ζ ∈ R

n: (ζ,−1) ∈ NP
epih

(
x̄, h(x̄)

)}
.

Definition 2.4. A vector η ∈ R
n is a limiting subdifferential vector of h at x̄ if there exist two

sequences {ζi} and {xi} in R
n such that ζi ∈ ∂P h(xi), ζi → η, xi → x̄, and h(xi) → h(x̄). The

set of all limiting subdifferential vectors of h at x̄ is denoted by ∂Lh(x̄).

Definition 2.5. A function h :A ⊆ R
n → R is (V ,α)-invex at x̄ ∈ A if there exist a positive

real-valued function α and an n-dimensional vector-valued function V :A×A → R
n such that

h(x) − h(x̄) � α(x, x̄)ηT V (x, x̄),

for every x ∈ A and every η ∈ ∂Lh(x̄). h is said to be invex near x̄ if it is invex at each point of a
neighborhood of x̄.

Recall that a function h :A ⊆ R
n → R is said to be Lipschitz on A if there exists a k ∈ R such

that ∣∣h(x) − h(y)
∣∣ � k‖x − y‖ ∀x, y ∈A.

h is said to be Lipschitz near x if it is Lipschitz on a neighborhood of x. Also, h is locally
Lipschitz on A if it is Lipschitz near x for every x ∈ A.

The following results are known in nonsmooth analysis (see [4,17]).

Lemma 2.2. Let h be Lipschitz near x, then ∂Lh(x̄) �= φ.

Proof. See [17, Remark 2.1]. �
Lemma 2.3. Let h be locally Lipschitz on x̄ ∈ S, then ∂Lh(x̄) is a convex and closed set. In fact,
if xi → x̄, ηi ∈ ∂Lh(xi), ηi → η, then η ∈ ∂Lh(x̄).

Theorem 2.1. Let function h be locally Lipschitz on a neighborhood of line segment [x, y]. Then
for every ε > 0 there exists a point z in the ε-neighborhood of [x, y] and ζ ∈ ∂P h(z) such that
h(x) − h(y) � ζ T (y − x) + ε.

The following separation theorem is known in convex analysis (see [3]).

Theorem 2.2. Let A be a nonempty closed convex set in R
n and y /∈ A. Then, there exists a

nonzero p ∈ R
n and a scalar α such that pT y > α and pT x � α for each x ∈ A.

3. Main results

The first two theorems of this section give an algebraic representation of one of the subsets of
F x̄ and Dx̄ , respectively.

Theorem 3.1. Consider f = (f1, . . . , fm) : Rn → R
m such that fi for each i, 1 � i � m, is

Lipschitz near x̄, and there exists a d ∈ R
n such that ηT d < 0 for all η ∈ ⋃

1�i�m ∂Lfi(x̄). Then

d ∈ F x̄ .
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Proof. By the assumption of the theorem for each 1 � i � m there exists a γi > 0 such that fi is
Lipschitz on Bγi

(x̄) = {x ∈ R
n: ‖x − x̄‖ < γi}. Considering λ ∈ (0,

γi

2‖d‖ ), fi is locally Lipschitz
on a neighborhood of the line segment [x̄, x̄ +λd]. Using Theorem 2.1 for each ε > 0, there exist
zε in the ε-neighborhood of [x̄, x̄ + λd] and ζε ∈ ∂P fi(zε) such that

fi(x̄ + λd) − fi(x̄)

λ
� dT ζε + ε

λ
.

If ε → 0, then the sequence {ζε} has a subsequence, say {ζ̄ε}, and there exists a correspond-
ing subsequence of {zε}, say {z̄ε}, such that ζ̄ε ∈ ∂P fi(z̄ε), z̄ε → x̂, and ζ̄ε → ζ̂ , where
x̂ ∈ [x̄, x̄ + λd] and hence ζ̂ ∈ ∂Lfi(x̂) by Lemma 2.3. Now λ → 0 implies x̂ → x̄ and ζ̂ →
η ∈ ∂Lfi(x̄) by Lemma 2.3. Therefore

lim
λ→0+ lim

ε→0+ dT ζε + ε

λ
= ηT d

and thus

lim
λ→0+ lim

ε→0+
fi(x̄ + λd) − fi(x̄)

λ
< 0.

This implies that there exists a δi > 0 such that fi(x̄ +λd) < fi(x̄) for each λ ∈ (0, δi). Therefore
f (x̄ + λd) < f (x̄) for each λ ∈ (0, δ), where δ = min1�i�m{δi}. Thus d ∈ F x̄ and the proof is
complete. �
Theorem 3.2. Let x̄ ∈ S be a feasible solution for (1) and I (x̄) = {j : gj (x̄) = 0}. Suppose that
gj (x) for j ∈ I (x̄) is Lipschitz near x̄ and gj (x) for j /∈ I (x̄) is continuous at x̄. Also suppose
that there exists a d ∈ R

n such that ηT d < 0 for all η ∈ ⋃
j∈I (x̄) ∂Lgj (x̄). Then d ∈ Dx̄ .

Proof. By the assumption of the theorem and similar to the proof of Theorem 3.1, it can be
shown that for each j ∈ I (x̄) there exists a δj > 0 such that gj (x̄ + λd) < gj (x̄) = 0 for each
λ ∈ (0, δj ).

For each j /∈ I (x̄), since gj (x) is continuous at x̄ and gj (x̄) < 0, there exists a δ′
j > 0 such

that gj (x̄ + λd) < 0 for each λ ∈ (0, δ′
j ).

Since X is open, there exists a δ′′ > 0 such that x̄ + λd ∈ X for each λ ∈ (0, δ′′).
Now by setting

δ = min
{
δ′′, min

j∈I (x̄)
{δj }, min

j /∈I (x̄)

{
δ′
j

}}
we get x̄ + λd ∈ S for each λ ∈ (0, δ). Hence d ∈ Dx̄ and the proof is complete. �

The rest of this section contains two theorems which characterize the WPOSs of problem (1).

Theorem 3.3 (Necessary condition). Let x̄ ∈ S be a feasible solution for (1) and I (x̄) =
{j : gj (x̄) = 0}. Suppose that fi(x) for i = 1,2, . . . ,m and gj (x) for j ∈ I (x̄) are Lipschitz
near x̄ and gj (x) for j /∈ I (x̄) is continuous at x̄. If x̄ is a WPOS of (1), then there exists a
u = (v1, . . . , vm,u1, . . . , up) � 0 such that

0 ∈
m∑

vi∂Lfi(x̄) +
p∑

uj∂Lgj (x̄)
i=1 j=1
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and

ujgj (x̄) = 0, j = 1,2, . . . , p.

Proof. To start the proof we define

F x̄
0 =

{
d ∈ R

n: ηT d < 0 ∀η ∈
⋃

1�i�m

∂Lfi(x̄)

}
, (2)

Dx̄
0 =

{
d ∈ R

n: ηT d < 0 ∀η ∈
⋃

j∈I (x̄)

∂Lgj (x̄)

}
. (3)

Since x̄ is a WPOS, then F x̄ ∩ Dx̄ = φ by Lemma 2.1 and hence F x̄
0 ∩ Dx̄

0 = φ regarding Theo-
rems 3.1 and 3.2. Furthermore we form the set

B =
{

b ∈ R
n: ∃u = (

v1, . . . , vm,uj ; j ∈ I (x̄)
)
� 0 and ∃(

d1, . . . , dm, d ′
j ; j ∈ I (x̄)

)

such that di ∈ ∂Lfi(x̄), d ′
j ∈ ∂Lgj (x̄) and b =

m∑
i=1

vidi +
∑

j∈I (x̄)

uj d
′
j

}
.

This set is convex and closed. If 0 ∈ B, then the claim of the theorem is proved by setting uj = 0
for j /∈ I (x̄). By contradiction suppose that 0 /∈ B, then using Theorem 2.2 there exist a nonzero
p ∈ R

n and a scalar α such that pT (0) > α and pT b � α for each b ∈ B. Hence pT b < 0 for
each b ∈ B.

For each η ∈ ⋃
1�i�m ∂Lfi(x̄) as well as for each η ∈ ⋃

j∈I (x̄) ∂Lgj (x̄), we have η ∈ B.

Therefore pT η < 0 for each η ∈ ⋃
1�i�m ∂Lfi(x̄) as well as for each η ∈ ⋃

j∈I (x̄) ∂Lgj (x̄).

Hence p ∈ F x̄
0 ∩ Dx̄

0 which contradicts the result obtained in the first part of the proof and com-
pletes the proof. �
Theorem 3.4 (Sufficient condition). Let x̄ ∈ S be a feasible solution for (1) and I (x̄) =
{j : gj (x̄) = 0}. Suppose that fi(x) for i = 1,2, . . . ,m and gj (x) for j ∈ I (x̄) are (αi,V )-
invex and (βj ,V )-invex near x̄, respectively, for some real-valued functions αi,βj , defined
on X × X and the same vector-valued function V :X × X → R

n. F x̄
0 is as defined in (2). If

F x̄
0 ∩ {d ∈ R

n: ηT d � 0 ∀η ∈ ⋃
j∈I (x̄) ∂Lgj (x̄)} = φ, then x̄ is a local WPOS of (1).

Proof. By the assumption of the theorem, for each 1 � i � m there exists an εi > 0 such that fi

is Lipschitz on Bεi
(x̄) and

fi(x) − fi(x̄) � αi(x, x̄)ηT
i V (x, x̄), (4)

for each x ∈ Bεi
(x̄) and for every ηi ∈ ∂Lfi(x̄). Also for each j ∈ I (x̄) there exists a δj > 0 such

that gj is Lipschitz on Bδj
(x̄) and

βj (x, x̄)ηT
j V (x, x̄) � gj (x) − gj (x̄) = gj (x) � 0, j ∈ I (x̄), (5)

for every x ∈ Bδj
(x̄) and for every ηj ∈ ∂Lgj (x̄).

Setting ε = min{min1�i�m{εi},minj∈I (x̄){δj }}, relations (4) and (5) are valid for each
x ∈ Bε(x̄).
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If there exists an x̂ ∈ Bε(x̄) such that f (x̂) < f (x̄), then by (4) and (5) and regarding the fact
that αj s and βj s are positive, we get

ηT
i V (x̂, x̄) < 0, ∀ηi ∈ ∂Lfi(x̄), i = 1,2, . . . ,m,

ηT
j V (x̂, x̄) � 0, ∀ηj ∈ ∂Lgj (x̄), j ∈ I (x̄).

These imply that

V (x̂, x̄) ∈ F x̄
0 ∩

{
d ∈ R

n: ηT d � 0 ∀η ∈
⋃

j∈I (x̄)

∂Lgj (x̄)

}

which contradicts the assumption. Therefore there exists no x ∈ Bε(x̄) such that f (x) < f (x̄),
which completes the proof. �
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