research
Optimization problems with quasiconvex inequality constraints
- Publication date
- Publisher
Abstract
The constrained optimization problem min f(x), gj(x) 0 (j = 1, . . . , p) is considered, where f : X ! R and gj : X ! R are nonsmooth functions with domain X Rn. First-order necessary and first-order sufficient optimality conditions are obtained when gj are quasiconvex functions. Two are the main features of the paper: to treat nonsmooth problems it makes use of the Dini derivative; to obtain more sensitive conditions, it admits directionally dependent multipliers. The two cases, where the Lagrange function satisfies a non-strict and a strict inequality, are considered. In the case of a non-strict inequality pseudoconvex functions are involved and in their terms some properties of the convex programming problems are generalized. The efficiency of the obtained conditions is illustrated on an example. Key words: Nonsmooth optimization, Dini directional derivatives, quasiconvex functions, pseudoconvex functions, quasiconvex programming, Kuhn-Tucker conditions.