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Optimization problems with
quasiconvex inequality constraints∗

Ivan Ginchev† Vsevolod I. Ivanov‡

Abstract

The constrained optimization problem min f(x), gj(x) ≤ 0 (j = 1, . . . , p) is
considered, where f : X → R and gj : X → R are nonsmooth functions with domain
X ⊂ Rn. First-order necessary and first-order sufficient optimality conditions are
obtained when gj are quasiconvex functions. Two are the main features of the
paper: to treat nonsmooth problems it makes use of the Dini derivative; to obtain
more sensitive conditions, it admits directionally dependent multipliers. The two
cases, where the Lagrange function satisfies a non-strict and a strict inequality,
are considered. In the case of a non-strict inequality pseudoconvex functions are
involved and in their terms some properties of the convex programming problems are
generalized. The efficiency of the obtained conditions is illustrated on an example.

Key words: Nonsmooth optimization, Dini directional derivatives, quasiconvex
functions, pseudoconvex functions, quasiconvex programming, Kuhn-Tucker condi-
tions.

MCS 2000: 90C46, 90C26, 26B25, 49J52.

1 Introduction

The constrained optimization problem

min f(x), gj(x) ≤ 0 (j = 1 , . . . , p) (1)

is investigated, where f : X → R and gj : X → R (j = 1, . . . , p) are nonsmooth functions
with domain X ⊂ Rn. The scope of the paper is to obtain first-order necessary and suffi-
cient optimality conditions of Kuhn-Tucker type for problems with nonsmooth quasicon-
vex constraints, and in particular ones with quasiconvex objective functions. Quasiconvex
(quasiconcave) programming initiates in the well-known paper of Arrow, Enthoven [1] and
has been studied thereafter by various authors, e. g. in [10], [2], [3], [4], [7], [8], [12]. The
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main features of the paper are the following: to treat nonsmooth problems it makes use
of Dini directional derivatives; to obtain more sensitive conditions it admits directionally
dependent multipliers. This approach has been used in [6] for problems with locally Lips-
chitz data, making use of the set-valued Dini derivative. Here we show, that for problems
with quasiconvex constraints we can use instead the single-valued Dini derivative.

2 Basic definitions

For a set X ⊂ Rn and x ∈ X we denote by X(x) the set of the admissible directions, that
is the set of all u ∈ Rn for which t = 0 is an accumulating point for the set {t ∈ R+ |
x + tu ∈ X}. Consider the function f : X → R. The lower Dini derivative f

(1)
− (x, u) of f

at x ∈ dom f in direction u ∈ X(x) is defined as an element of R := R ∪ {−∞} ∪ {+∞}
by

f
(1)
− (x, u) = lim inf

t→0+

1

t
(f(x + tu)− f(x)) .

The role of the Dini derivatives for quasiconvex programming is stressed in [4].

Recall that a function f : X → R, X ⊂ Rn, is said quasiconvex (strictly quasiconvex) if
X is convex and for all x0, x1 ∈ X, x0 6= x1, such that f(x0) ≥ f(x1), and all t ∈ (0, 1),
it holds f((1− t)x0 + tx1) ≤ f(x0) (f((1− t)x0 + tx1) < f(x0)). If these properties hold
for a fixed x0 ∈ X, we say that f is quasiconvex (strictly quasiconvex) at x0. Moreover,
in the last definition we will not suppose that X is convex, but the above properties will
be assumed to hold only for those t ∈ (0, 1), for which 1− tx0 + tx1 ∈ X (this relaxed
definition allows for instance to state Theorem 1 without the hypothesis that X is convex).

Following Diewert [5], we use the Dini derivative to introduce pseudoconvexity for non-
smooth functions. We call the set X ⊂ Rn convex-like at x0 if for each x1 ∈ X it
holds x1 − x0 ∈ X(x0). We say that set X is convex-like if it is convex-like for each
x0 ∈ X (turn attention that the convex sets are convex-like). We say that the function
f : X → R, where X is convex-like at x0, is pseudoconvex (strictly pseudoconvex) at

x0 ∈ X, if f(x0) > f(x1) (f(x0) ≥ f(x1)) implies f
(1)
− (x0, x1 − x0) < 0. The function

f : X → R, where X is convex-like, is said pseudoconvex (strictly pseudoconvex) if it
is pseudoconvex (strictly pseudoconvex) at each point x ∈ X (the definition of Diewert
requires that the domain X is convex, here we relax this requirement to X is convex-like).

3 Conditions with non-strict inequalities

We can write problem (1) in the form

min f(x), g(x) ≤ 0 , (2)

accepting that g(x) = (g1(x), . . . , gp(x)) (the lower indexes will be used for the coordinates
of a vector) and that g(x) ≤ 0 means that the coordinates satisfy this inequality. We put

g
(1)
− (x, u) = (g1

(1)
− (x, u), . . . , gp

(1)
− (x, u)). The scalar product in Rp is denoted 〈·, ·〉, that is

〈η, z〉 =
∑p

j=1 ηjzj for η, z ∈ Rp. Besides the usual algebraic operations with infinities,
we accept that (±∞) · 0 = 0 · (±∞) = 0.
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We write as usual R+ = [0, +∞) and R+ = R+ ∪ {+∞}. If r ∈ R+ we put

R+[r] =

{
R , r > 0 ,
R+ , r = 0 ,

R+[r] =

{
R , r > 0 ,

R+ , r = 0 .

Given z0 ∈ Rp
+, we introduce the notations

Rp
+[z0] = R+[z0

1 ]× · · · × R+[z0
p ] ,

R p

+[z0] = R+[z0
1 ]× · · · × R+[z0

p ] .

Recall that there exists a standard topology on R, in which a neighbourhood of +∞
(−∞) is any set U ⊂ R containing an interval of the type (a, +∞] ([−∞, a)) for some
a ∈ R. When Ai ⊂ R (i=1,. . . ,k), then int

∏k
i=1 Ai =

∏k
i=1 int Ai is the interior of

∏k
i=1 Ai

with respect to the product topology Rk
. With these agreements the following lemma has

place.

Lemma 1. Let z0 ∈ Rp
+ and let ȳ ∈ R, z̄ ∈ R p

. Then the following two conditions are
equivalent:

(ȳ, z̄) /∈ −int (R+ × Rp

+[z0]) , (3)

and
∃(ξ0, η0) ∈ R+ × Rp

+ : (ξ0, η0) 6= (0, 0),
ξ0 = 0 if ȳ = −∞ , η0

j = 0 if z̄j = −∞ ,
η0

j z0
j = 0 (j = 1, . . . , p) and ξ0 ȳ + 〈η0, z̄〉 ≥ 0 .

(4)

Proof. If r ∈ R we put A(r) = R+ when r ≥ 0, and A(r) = R when r < 0. Now it is clear
that condition (3) is satisfied if and only if the set A(ȳ) ×

∏p
j=1 A(z̄j) is separated from

−int (R+ × Rp
+[z0]), the two sets are in Rp+1. Applying the Separation theorem for these

two sets, we see that (3) implies (4). Conversely, when condition (4) is satisfied, then (3)
follows immediately, since ξ0 y + 〈η0, z〉 < 0 for (y, z) ∈ −int (R+ × Rp

+[z0]).

Remark 1. In (4) due to z0 ∈ Rp
+ and η0 ∈ Rp

+ the slackness condition η0
j z0

j = 0 (j =
1, . . . , p) can be represented in the equivalent form 〈η, z〉 = 0. The sum ξ0 ȳ + 〈η0, z̄〉 =
ξ0 ȳ +

∑p
j=1 η0

j z̄j always has sense, since it has not addends equal to −∞. The proof of

Lemma 1 leads to a practical rule how to choose the multipliers ξ0 and η0 = (η0
1, . . . , η

0
p).

Namely, we can put

ξ0 =

{
1 , ȳ ≥ 0 ,
0 , ȳ < 0 ,

and η0
j =


1 , z0

j = 0, z̄j ≥ 0 ,
0 , z0

j = 0, z̄j < 0 ,
0 , z0

j > 0 .

The next theorem uses the following notion of a minimizer. We say that the feasible point
x0 is a radial minimizer (strict radial minimizer) of (1), if for all admissible directions
u ∈ X(x0), there exists δ(u) > 0, such that f(x0) ≤ f(x0 + tu) (f(x0) < f(x0 + tu))
whenever 0 < t < δ(u) and the point x0 + tu is feasible. Obviously, each local (strict
local) minimizer of (1) is its radial (strict radial) minimizer.

Recall that given a feasible point x0 ∈ X, the set of the active indexes for (1) at x0 is
defined by J(x0) = {j | gj(x

0) = 0}.
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Theorem 1 (Necessary conditions, non-strict inequalities). Consider problem (1) and let
x0 be a radial minimizer. Let the functions gj (j = 1, . . . , p) be continuous at x0 when
j /∈ J(x0) and quasiconvex at x0 when j ∈ J(x0). Then for each u ∈ X(x0) the following
condition is satisfied:

(f
(1)
− (x0, u), g

(1)
− (x0, u)) /∈ −int

(
R+ × R p

+[−g(x0)]
)

. (5)

Proof. Suppose on the contrary, that for some u0 ∈ X(x0) we have f
(1)
− (x0, u0) ∈

−int R+ and g
(1)
− (x0, u0) ∈ −int R p

+[−g(x0)]. Let f
(1)
− (x0, u0) = limk(1/tk)(y

k − y0)

and gj
(1)
− (x0, u0) = limk(1/sjk)(z

jk − zj0) for some sequences tk → 0+ and sjk → 0+

(j = 1, . . . , p), where yk = f(x0 + tku
0), y0 = f(x0), zjk = gj(x

0 + sjku
0), zj0 = gj(x

0).
Passing to a subsequence of {tk}, we may assume that tk < min(s1k, . . . , spk). Now
we prove that the points x0 + tku

0 are feasible for all sufficiently large k. The condi-
tion x0 + tku

0 ∈ X is imposed implicitly taking the value f(x0 + tku
0). Since f and gj

(j = 1, . . . , p) are supposed to have the same domain X, the values gj(x
0 + tku

0) are
defined. It remains to prove that gj(x

0 + tku
0) ≤ 0 (j = 1, . . . , p) for all sufficiently large

k. When j ∈ J(x0) we have gj(x
0 + sjku

0) ≤ 0 = g(x0). Since gj is quasiconvex at x0,
this gives gj(x

0 + tku
0) ≤ 0. When j /∈ J(x0), we have gj(x

0) < 0. Now the continuity of
gj at x0 implies gj(x

0 + tku
0) < 0 for all sufficiently large k. Thus, for all sufficiently large

k the point x0 + tku
0 is feasible, and at the same time f(x0 + tku

0)− f(x0) = yk − y0 < 0,
which contradicts the hypothesis that x0 is a radial minimizer.

Remark 2. Condition (5) will be referred as primal form condition. On the base of
Lemma 1 it is equivalent to the following dual form condition:

∃ (ξ0, η0) ∈ R+ × Rp
+ : 〈ξ0, η0〉 6= (0, 0),

ξ0 = 0 if f
(1)
− (x0, u) = −∞,

η0
j = 0 if gj

(1)
− (x0, u) = −∞ (j = 1, . . . , p),

η0
j gj(x

0) = 0 (j = 1, . . . , p),

and ξ0 f
(1)
− (x0, u) +

∑p
j=1 η0

j gj
(1)
− (x0, u) ≥ 0 .

(6)

The multipliers ξ0 and η0
j (j = 1, . . . , p) can be chosen according to Remark 1.

Remark 3. The last row in (6) is a non-strict inequality. Since only such conditions are
considered in this section, it is entitled “Conditions with non-strict inequalities”. In the
next section we will occupy with similar conditions, but with strict inequalities.

The following example shows, that without the hypothesis that gj is continuous at x0

when j /∈ J(x0) Theorem 1 is not true.

Example 1. Consider problem (2) with f, g : R → R given by f(x) = −x and

g(x) =

{
−1 , x ≤ 0 ,

1 , x > 0 .

The function g is quasiconvex. It holds g(x0) < 0 and g is not continuous at x0. The
point x0 = 0 is a radial (and global) minimizer, but condition (5) is not satisfied. Indeed,
for u = 1 it holds

(f
(1)
− (x0, u), g

(1)
− (x0, u)) = (−1, +∞) ∈ −int (R+ × R) = −int (R+ × R+[−g(x0)]) .
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If in Theorem 1 we replace the primal form condition (5) with the equivalent dual form
condition (6), we observe that, in contrast to the classical theory, the multipliers depend
on the directions. The next example shows that, when treating nonsmooth problems,
the hypotheses of Theorem 1 do not imply condition (6) with directionally independent
multipliers.

Example 2. Consider problem (2) with f, g : R → R given by

f(x) =

{
x , x ≥ 0 ,

2x , x < 0 ,
g(x) =

{
−2x , x ≥ 0 ,
−x , x < 0 .

The functions f and g are continuous and strictly quasiconvex (also strictly pseudoconvex).
The set of the feasible points is R+. Put x0 = 0. Obviously x0 is a global minimizer. Then
condition (6) is satisfied in virtue of Theorem 1, but cannot be satisfied with directionally
independent multipliers.

Indeed, assume in the contrary, that condition (6) is satisfied with some directionally

independent multipliers (ξ0, η0). For u ≥ 0 it holds f
(1)
− (x0, u) = u, g

(1)
− (x0, u) = −2u,

whence in particular we should have

ξ0 f
(1)
− (x0, 1) + η0 g

(1)
− (x0, 1) = ξ0 − 2η0 ≥ 0 .

Similarly, for u ≤ 0 it holds f
(1)
− (x0, u) = 2u, g

(1)
− (x0, u) = −u, whence in particular we

should have
ξ0 f

(1)
− (x0, −1) + η0 g

(1)
− (x0, −1) = −2ξ0 + η0 ≥ 0 .

Adding the two inequalities we obtain −(ξ0 + η0) ≥ 0, which obviously contradicts to
ξ0 ≥ 0, η0 ≥ 0, (ξ0, η0) 6= (0, 0).

Theorem 2 (Sufficient conditions, non-strict inequalities). Consider problem (1) with X
convex-like at x0. Let the functions gj, j ∈ J(x0), be strictly pseudoconvex at x0, and f
be pseudoconvex (strictly pseudoconvex) at x0. Suppose that for each u ∈ X(x0) condition
(5) is satisfied. Then x0 is a global minimizer (strict global minimizer).

Proof. Assume on the contrary, that x0 is not a global (strict global) minimizer. Then
there exists a feasible point x1 6= x0 such that f(x1)−f(x0) < 0 (f(x1)−f(x0) ≤ 0). Since

f is pseudoconvex (strictly pseudoconvex) at x0, it holds f
(1)
− (x0, u) < 0 with u = x1−x0.

Therefore condition (5) gives that g
(1)
− (x0, u) /∈ −int R p

+[−g(x0)]. On the other hand for
j ∈ J(x0) we have gj(x

1) ≤ 0 = gj(x
0). Since gj is strictly pseudoconvex at x0, we have

gj
(1)
− (x0, u) < 0. This gives g

(1)
− (x0, u) ∈ −int R p

+[−g(x0)], a contradiction.

The following example shows that in Theorem 2 the strict pseudoconvexity requirements
for the constraint functions gj cannot be relaxed to only pseudoconvexity.

Example 3. Consider problem (2) with f, g : R → R given by f(x) = −x and g(x) = 0.
Put x0 = 0. The function f is strictly pseudoconvex, and g is pseudoconvex but not
strictly pseudoconvex at x0. The point x0 is not a global minimizer, while condition (5) is
satisfied, since

(f
(1)
− (x0, u), g

(1)
− (x0, u)) = (−u, 0) /∈ −int (R+ × R+) = −int (R+ × R+[−g(x0)]) .
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The following example shows that also the pseudoconvexity requirements for the objective
function is essential for Theorem 2 and cannot be reduced to (strict) quasiconvexity.

Example 4. Consider problem (2) with f, g : R → R given by f(x) = x3 and g(x) = x.
Put x0 = 0. The functions f and g are strictly quasiconvex, g is strictly pseudoconvex at
x0, but f is not so. Since f

(1)
− (x0, u) = 0 and g

(1)
− (x0, u) = u, condition (5) is satisfied

(now f
(1)
− (x0, u) /∈ −int R+), but x0 is not a global minimizer.

The following theorem is a consequence of Theorems 1 and 2. Strengthening there the
pseudoconvexity and the strict pseudoconvexity requirements respectively to convexity
and strict convexity, we obtain a known classical result.

Theorem 3. Let in problem (1) the set X be convex (or more generally convex-like), the
functions f be pseudoconvex (strictly pseudoconvex), and gj (j = 1, . . . , p) be continuous
and strictly pseudoconvex. Then a point x0 ∈ X is a global minimizer of problem (1) if
and only if x0 satisfies condition (5).

The given so far examples serve to clarify to what extend the hypotheses of the theorems
are essential. Now we give an example to illustrate, that the obtained results are effective
in solving complex nonsmooth problems (the nonsmoothness here is due to the appearance
of the min function).

Example 5. Solve problem (2) with f : R2 → R and g : R2 → R given by

f(x1, x2) = min
(
x2

1 + 8x1x2 + 16x2
2 − 8x1 − 32x2 + 20, x1 + 4x2

)
,

g(x1, x2) = −x1 − x2 +
√

(x1 − x2)2 + 4 .

The function f can be written into the form

f(x1, x2) =

{
x2

1 + 8x1x2 + 16x2
2 − 8x1 − 32x2 + 20 , 4 ≤ x1 + 4x2 ≤ 5 ,

x1 + 4x2 , otherwise .

There are no solutions among the points outside the lines `1 : x1 + 4x2 = 4 and `2 :
x1 +4x2 = 5. We leave this case, since it can be checked easily with the given here theory,
but also with a classical approach (near such points both f and g are smooth).

At the points x ∈ `1 we have

f
(1)
− (x, u) =

{
0 , u1 + 4u2 ≥ 0 ,

u1 + 4u2 , u1 + 4u2 < 0 ,

g
(1)
− (x, u) = −u1 − u2 +

(x1 − x2)(u1 − u2)√
(x1 − x2)2 + 4

.

Now the sign of f
(1)
− (x, u) is easily estimated and from Remark 1 we can limit the choice

of ξ0 to:

f
(1)
− (x, u) ≥ 0 ⇒ ξ0 = 1 for u1 + 4u2 ≥ 0 ,

f
(1)
− (x, u) < 0 ⇒ ξ0 = 0 for u1 + 4u2 < 0 .

6



According to Remark 1 the choice of η0 can be conditioned by the sign of g
(1)
− (x, u) and

the solution of the system{
−x1 − x2 +

√
(x1 − x2)2 + 4 = 0 ,

x1 + 4x2 = 4 ,

(that is g(x) = 0, x ∈ `1). The latter has the unique solution x0 = (2, 1/2). At x0 we

have g
(1)
− (x0, u) = −2

5
u1 − 8

5
u2, which gives g

(1)
− (x0, u) ≥ 0 for u1 + 4u2 ≤ 0. Therefore the

choice of η0 can be restricted to:

η0 =


1 , x = x0, u1 + 4u2 ≤ 0 ,
0 , x = x0, u1 + 4u2 < 0 ,
0 , x ∈ `1 \ {x0} .

Now we see that at x0 = (2, 1/2) for all directions u ∈ R2 condition (6) can be satisfied
(in which case we call the point x0 stationary) with the choice:

(ξ0, η0) =

{
(1, 0) , u1 + 4u2 ≥ 0 ,
(0, 1) , u1 + 4u2 < 0 .

All the remaining points x ∈ `1 \ {x0} are not stationary, since for any such point x we
can choose at least one direction u, for which the obtained ξ0 and η0 give the zero pair
(ξ0, η0) = (0, 0).

Similarly, in the case x ∈ `2 we see that there are no stationary points.

Thus x0 = (2, 1/2) is the only point which satisfies the necessary condition from Theorem
1. Since, as it can be easily checked, the function f is pseudoconvex at x0, and g is strictly
pseudoconvex at x0, we can draw the conclusion that x0 = (2, 1/2) is a global minimizer
for the considered problem, and its only radial minimizer.

Let us note, that f is pseudoconvex and g is strictly pseudoconvex (not only at x0),
therefore looking for a solution of the considered problem, one can refer to Theorem 3.

4 Conditions with strict inequalities

In this section we show that the first-order conditions with strict inequalities are related
to the radial isolated minimizer.
Let k be a positive real. We say that the feasible point x0 ∈ X is a radial isolated
minimizer (of order 1) for problem (1) if for all u ∈ X(x0), there exist positive reals
δ = δ(u) and A = A(u), such that the inequality

f(x0 + tu) ≥ f(x0) + A t ‖u‖

is satisfied for all feasible points x0 + tu such that 0 ≤ t < δ(u). If the reals δ and A can
be chosen to be independent on u, then x0 is called an isolated minimizer for (1).

The following lemma is analogous of Lemma 1 and is proved in a similar way.
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Lemma 2. Let z0 ∈ Rp
+ and let ȳ ∈ R, z̄ ∈ R. Then the following two conditions are

equivalent:
(ȳ, z̄) /∈ −(R+ × Rp

+[z0]) (7)

and
∃(ξ0, η0) ∈ R+ × Rp

+ : (ξ0, η0) 6= (0, 0),
ξ0 = 0 if ȳ = −∞ , η0

j = 0 if z̄j = −∞ ,
〈η0, z0〉 = 0 , and ξ0 ȳ + 〈η0, z̄〉 > 0 .

(8)

Theorem 4 (Sufficient conditions, strict inequalities). Let x0 ∈ X be a feasible point for
problem (1). Suppose that for all u ∈ X(x0) \ {0} the following condition is satisfied:

(f
(1)
− (x0, u), g

(1)
− (x0, u)) /∈ −(R+ × Rp

+[−g(x0)]) . (9)

Then x0 is a radial isolated minimizer of (1). Under the additional assumption that X
is convex, f is quasiconvex (strictly quasiconvex) and gj (j = 1, . . . , p) are quasiconvex,
then x0 is a global (strict global) minimizer of (1).

Proof. Assume on the contrary, that x0 is not a radial isolated minimizer of (1). Choose a
sequence εk → 0+. From the made assumption, there exists u ∈ X(x0)\{0} and a sequence
tk → 0+, such that the points x0 + tku are feasible and (1/tk) (f(x0 + tku)− f(x0)) <

εk ‖u‖ . The latter gives f
(1)
− (x0, u) ≤ 0, that is f

(1)
− (x0, u) ∈ −R+. When gj(x

0) =

0 we have similarly (1/tk) (gj(x
0 + tku)− gj(x

0)) ≤ 0 . Hence gj
(1)
− (x0, u) ≤ 0, that is

gj
(1)
− (x0, u) ∈ −R+ = −R+[−gj(x

0)]. When gj(x
0) < 0, then R+[−gj(x

0)] = R and

again gj
(1)
− (x0, u) ∈ −R+[−gj(x

0)]. These reasonings show that (f
(1)
− (x0, u), g

(1)
− (x0, u)) ∈

−(R+ × Rp

+[−g(x0)]), which contradicts the hypothesis (9).

Let the mentioned additional assumption are fulfilled. Suppose on the contrary, that x0

is not a global (strict global) minimizer. Then there exists a feasible point x1 ∈ X \ {x0},
such that f(x0) > f(x1) (f(x0) ≥ f(x1)). Since gj (j = 1, . . . , p) are quasiconvex, the
points x0 + tu with u = x1 − x0 are feasible. Since x0, as proved above, is a radial
minimizer of (1), the point t0 = 0 is a local minimizer for the quasiconvex (strictly
quasiconvex) function φ(t) = f(x0 + tu), 0 ≤ t ≤ 1, and therefore its global (strict global)
minimizer. In particular f(x0) = φ(0) ≤ φ(1) = f(x1) (f(x0) = φ(0) < φ(1) = f(x1)), a
contradiction.

Remark 4. On the base of Lemma 2, the primal form condition (9) is equivalent to the
following dual form condition:

∃ (ξ0, η0) ∈ R+ × Rp
+ : 〈ξ0, η0〉 6= (0, 0),

ξ0 = 0 if f
(1)
− (x0, u) = −∞,

η0
j = 0 if gj

(1)
− (x0, u) = −∞ (j = 1, . . . , p),

η0
j gj(x

0) = 0 (j = 1, . . . , p),

and ξ0 f
(1)
− (x0, u) +

∑p
j=1 η0

j gj
(1)
− (x0, u) > 0 .

(10)

As an application consider the problem in Example 2 for x0 = 0 putting ξ0 = 3, η0 = 1
when u > 0, and ξ0 = 1, η0 = 3 when u < 0. Now it is easy to verify that

ξ0f
(1)
− (x0, u) + η0g

(1)
− (x0, u) = |u| > 0 for all u ∈ Rn \ {0} . (11)
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On the base of Theorem 4 we conclude that x0 is a strict global minimizer, hence the
unique minimizer, of the considered problem.

For the next theorem, being a reversal of Theorem 4, we need the following constraint
qualification of Kuhn-Tucker type:

Q ′
−(x0) :

If x0 is feasible and gj
(1)
− (x0, u) ∈ −R+[−gj(x

0)] for j = 1, . . . , p,
then exists t̄ > 0 such that x0 + t̄u is a feasible point for (1).

Theorem 5 (Necessary conditions, strict inequalities). Let the set X be convex, the
functions gj (j = 1, . . . , p) be quasiconvex, and the feasible point x0 be a radial isolated
minimizer of problem (1). Suppose that the constraint qualification Q ′

−(x0) has place.
Then for all u ∈ X(x0) \ {0} condition (9) is satisfied.

Proof. Condition (9) is certainly true when gj
(1)
− (x0, u) /∈ R+[−gj(x

0)] for some j. The

alternative is that gj
(1)
− (x0, u) ∈ −R+[−gj(x

0)] for j = 1, . . . , p. Then the assumed
constraint qualification implies the existence of a positive real t̄, such that the point x0+ t̄u
is feasible. From the quasiconvexity of gj it follows that all points x0 + tu, 0 ≤ t ≤ t̄, are
feasible. Since x0 is a radial isolated minimizer of order one, there exists a real A > 0,
such that (1/t) (f(x0 + tu)− f(x0)) ≥ A ‖u‖ is satisfied for all sufficiently small positive

t. This gives f
(1)
− (x0, u) ≥ A ‖u‖. Hence f

(1)
− (x0, u) /∈ −R+, which verifies (9) in this

case.

Like in the classical Kuhn-Tucker condition [9] (compare also with Mangasarian [11]) the
sense of the constraint qualification Q′

− is roughly speaking that a point cannot leave the
set of the feasible points in tangent directions. The following example shows that Q′

− is
essential for Theorem 5.

Example 6. Consider problem (2) with f, g : R → R given by f(x) = g(x) = x2 and let
x0 = 0. The function g is quasiconvex. The point x0, as the only feasible point, is a radial
isolated minimizer. It holds f

(1)
− (x0, u) = g

(1)
− (x0, u) = 0 for all u ∈ Rn, whence obviously

condition (9) is not satisfied.
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