633 research outputs found

    Distributed (Δ+1)(\Delta+1)-Coloring in Sublogarithmic Rounds

    Full text link
    We give a new randomized distributed algorithm for (Δ+1)(\Delta+1)-coloring in the LOCAL model, running in O(logΔ)+2O(loglogn)O(\sqrt{\log \Delta})+ 2^{O(\sqrt{\log \log n})} rounds in a graph of maximum degree~Δ\Delta. This implies that the (Δ+1)(\Delta+1)-coloring problem is easier than the maximal independent set problem and the maximal matching problem, due to their lower bounds of Ω(min(lognloglogn,logΔloglogΔ))\Omega \left( \min \left( \sqrt{\frac{\log n}{\log \log n}}, \frac{\log \Delta}{\log \log \Delta} \right) \right) by Kuhn, Moscibroda, and Wattenhofer [PODC'04]. Our algorithm also extends to list-coloring where the palette of each node contains Δ+1\Delta+1 colors. We extend the set of distributed symmetry-breaking techniques by performing a decomposition of graphs into dense and sparse parts

    Near-optimal distributed edge coloring

    Get PDF

    Distributed Deterministic Edge Coloring using Bounded Neighborhood Independence

    Full text link
    We study the {edge-coloring} problem in the message-passing model of distributed computing. This is one of the most fundamental and well-studied problems in this area. Currently, the best-known deterministic algorithms for (2Delta -1)-edge-coloring requires O(Delta) + log-star n time \cite{PR01}, where Delta is the maximum degree of the input graph. Also, recent results of \cite{BE10} for vertex-coloring imply that one can get an O(Delta)-edge-coloring in O(Delta^{epsilon} \cdot \log n) time, and an O(Delta^{1 + epsilon})-edge-coloring in O(log Delta log n) time, for an arbitrarily small constant epsilon > 0. In this paper we devise a drastically faster deterministic edge-coloring algorithm. Specifically, our algorithm computes an O(Delta)-edge-coloring in O(Delta^{epsilon}) + log-star n time, and an O(Delta^{1 + epsilon})-edge-coloring in O(log Delta) + log-star n time. This result improves the previous state-of-the-art {exponentially} in a wide range of Delta, specifically, for 2^{Omega(\log-star n)} \leq Delta \leq polylog(n). In addition, for small values of Delta our deterministic algorithm outperforms all the existing {randomized} algorithms for this problem. On our way to these results we study the {vertex-coloring} problem on the family of graphs with bounded {neighborhood independence}. This is a large family, which strictly includes line graphs of r-hypergraphs for any r = O(1), and graphs of bounded growth. We devise a very fast deterministic algorithm for vertex-coloring graphs with bounded neighborhood independence. This algorithm directly gives rise to our edge-coloring algorithms, which apply to {general} graphs. Our main technical contribution is a subroutine that computes an O(Delta/p)-defective p-vertex coloring of graphs with bounded neighborhood independence in O(p^2) + \log-star n time, for a parameter p, 1 \leq p \leq Delta

    Asymptotic Error Free Partitioning over Noisy Boolean Multiaccess Channels

    Full text link
    In this paper, we consider the problem of partitioning active users in a manner that facilitates multi-access without collision. The setting is of a noisy, synchronous, Boolean, multi-access channel where KK active users (out of a total of NN users) seek to access. A solution to the partition problem places each of the NN users in one of KK groups (or blocks) such that no two active nodes are in the same block. We consider a simple, but non-trivial and illustrative case of K=2K=2 active users and study the number of steps TT used to solve the partition problem. By random coding and a suboptimal decoding scheme, we show that for any T(C1+ξ1)logNT\geq (C_1 +\xi_1)\log N, where C1C_1 and ξ1\xi_1 are positive constants (independent of NN), and ξ1\xi_1 can be arbitrary small, the partition problem can be solved with error probability Pe(N)0P_e^{(N)} \to 0, for large NN. Under the same scheme, we also bound TT from the other direction, establishing that, for any T(C2ξ2)logNT \leq (C_2 - \xi_2) \log N, the error probability Pe(N)1P_e^{(N)} \to 1 for large NN; again C2C_2 and ξ2\xi_2 are constants and ξ2\xi_2 can be arbitrarily small. These bounds on the number of steps are lower than the tight achievable lower-bound in terms of T(Cg+ξ)logNT \geq (C_g +\xi)\log N for group testing (in which all active users are identified, rather than just partitioned). Thus, partitioning may prove to be a more efficient approach for multi-access than group testing.Comment: This paper was submitted in June 2014 to IEEE Transactions on Information Theory, and is under review no

    The Complexity of Distributed Edge Coloring with Small Palettes

    Full text link
    The complexity of distributed edge coloring depends heavily on the palette size as a function of the maximum degree Δ\Delta. In this paper we explore the complexity of edge coloring in the LOCAL model in different palette size regimes. 1. We simplify the \emph{round elimination} technique of Brandt et al. and prove that (2Δ2)(2\Delta-2)-edge coloring requires Ω(logΔlogn)\Omega(\log_\Delta \log n) time w.h.p. and Ω(logΔn)\Omega(\log_\Delta n) time deterministically, even on trees. The simplified technique is based on two ideas: the notion of an irregular running time and some general observations that transform weak lower bounds into stronger ones. 2. We give a randomized edge coloring algorithm that can use palette sizes as small as Δ+O~(Δ)\Delta + \tilde{O}(\sqrt{\Delta}), which is a natural barrier for randomized approaches. The running time of the algorithm is at most O(logΔTLLL)O(\log\Delta \cdot T_{LLL}), where TLLLT_{LLL} is the complexity of a permissive version of the constructive Lovasz local lemma. 3. We develop a new distributed Lovasz local lemma algorithm for tree-structured dependency graphs, which leads to a (1+ϵ)Δ(1+\epsilon)\Delta-edge coloring algorithm for trees running in O(loglogn)O(\log\log n) time. This algorithm arises from two new results: a deterministic O(logn)O(\log n)-time LLL algorithm for tree-structured instances, and a randomized O(loglogn)O(\log\log n)-time graph shattering method for breaking the dependency graph into independent O(logn)O(\log n)-size LLL instances. 4. A natural approach to computing (Δ+1)(\Delta+1)-edge colorings (Vizing's theorem) is to extend partial colorings by iteratively re-coloring parts of the graph. We prove that this approach may be viable, but in the worst case requires recoloring subgraphs of diameter Ω(Δlogn)\Omega(\Delta\log n). This stands in contrast to distributed algorithms for Brooks' theorem, which exploit the existence of O(logΔn)O(\log_\Delta n)-length augmenting paths
    corecore