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Abstract. We give a distributed randomized algorithm to edge color a 
network. Given a graph G with n nodes and maximum degree Ll, the 
algorithm, 

- For any fixed,\> 0, colours G with (1+.A)Ll colours in time O(log n). 
- For any fixed positive integer s, colours G with Ll + (lo:.<l)" = (1 + 

o(l))Ll colours in time O(logn +log• L1 log log .::1). 
Both results hold with probability arbitrarily close to 1 as long as .::1( G) = 
J?(logi+d n), for some d > O. The algorithm is based on the ROdl Nibble, a 
probabilistic strategy introduced by Vojtech ROdl. The analysis involves 
a certain quasi-random phenomenon involving sets at the vertices of the 
graph. 

1 Introduction 

The edge coloring problem is a basic problem in graph theory and combinatorial 
optimization. Its importance in distributed computing, and computer science 
generally, stems from the fact that several scheduling and resource allocation 
problems can be modeled as edge coloring problems [9, 11, 14, 17). In this paper, 
we give a distributed randomized algorithm that computes a near-optimal edge 
coloring in time O(logn). By "near-optimal" we mean that the number of colors 
used is (1 + o(l))Ll where Ll denotes the maximum degree of the network and 
the o(l) term can be as small as 1/log8 Ll, for any s > 0. Both performance 
guarentees - the running time and the number of colours used - hold with high 
probability as long as the maximum degree grows at least logarithmically with 
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n. Our algorithm can be implemented directly in the PRAM model of compu
tation. 

Motivation and Related Work. The edge coloring problem can be used to mod
el certain types of jobshop scheduling, packet routing, and resource allocation 
problems in a distributed setting. For example, the problem of scheduling I/O 
operations in some parallel architectures can be modeled as follows [9, 6]. We are 
given a bipartite graph G = (P, n, E) where, intuitively, P is a set of processes 
and n is a set of resources (say, disks). Each processor needs data from a subset of 
resources R(p) ~ n. The edge set is defined to be E = {(p, r): r E R(p),p E P}. 
Due to hardware limitations only one edge at the time can be serviced. Under 
this constraints it is not hard to see that optimal edge colorings of the bipartite 
graph correspond to optimal schedules that is, schedules minimizing the overall 
completion time. Clearly, if a graph G has maximum degree L1 then at least L1 
colors are needed to edge color the graph. A classical theorem of Vizing shows 
that L1+1 colors are always sufficient, and the proof is actually a polynomial time 
algorithm to compute such a coloring (see for example (4]). Interestingly, given a 
graph G, it is NP-complete to decide whether it is L1 or ..d + 1 edge colorable [8], 
even for regular graphs [7]. Efforts at parallelizing Vizing's theorem have failed; 
the best PRAM algorithm known is a randomized algorithm by Karloff & Shmoys 
that computes an edge coloring using very nearly L1+ JLl = (1 +o(l))..d colors. 
The Karloff & Shmoys algorithm can be derandomized by using standard de
randomization techniques [3, 16]. In the distributed setting the previously best 
known result was a randomized algorithm by Panconesi & Srinivasan that uses 
roughly l.58L1+logn colors with high probability and runs in O(logn) time with 
high probability. For the interesting special case of bipartite graphs Lev, Pip
pinger & Valiant show that L1-colorings can be computed in NG, whereas this is 
provably impossible in the distributed model of computation even if randomness 
is allowed (see [18]). 

Our solution. To state our results precisely, we reproduce below our main theo
rem: 

Theorem 1. For any fixed .A > 0, given a graph with n vertices and maximum 
degee L1, we can edge colour the graph with (1 + .A)L1 colours in time O(logn) 
where n is the number of vertices in the graph. For any fixed positive integer 
s, we can edge colour it with L1 + L1 / lore L1 = ( 1 + o( 1)) L1 colours in time 
O( (log L1 )8 log log L1 + log n). The results hold with failure probability decreasing 
to O faster than any polynomial (inn) provided that L1 = n(logl+d n) for some 
d >0. 

Our algorithm is based on the Rodl Nibble, a beautiful probabilistic strategy 
introduced by Vojtech Rodl to solve a certain covering problem in hypergraphs 
[2, 20]. The method has subsequently been used very successfully to solve other 
combinatorial problems such as asymptotically optimal coverings and colorings 
for hypergraphs [2, 10, 19, 21]. In this paper, we introduce it as a tool for the 
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design and analysis of randomized algorithms. 4 Although the main component 
of our algorithm is the Rodi nibble and the intuition behind it rather compelling, 
the algorithm requires a non-trivial probabilistic analysis of a so called quasi
random process. To explain what this is, it is perhaps best to give a brief outline 
of our algorithm. Starting with the input graph Go the algorithm generates a 
sequence G0 , G1, ... , Gt of graphs. One can view each edge e as possessing a 
palette of available colors, starting with the whole set of (.d] colours initially. At 
an arbitrary stage, a small € fraction of uncolored edges is selected, and each 
selected edge chooses a tentative color at random from its current palette. If the 
tentative color is not chosen by any neighboring edge it becomes final. Palettes 
of the remaining uncolored edges are updated in the obvious fashion- by delet
ing colors used by neighboring edges. The process is then repeated. Like other 
proofs based on the same method our proof hinges on two key features of the 
Rodl nibble. The first key idea of the method is that if colors are chosen inde
pendently, the probability of color conflict is roughly €2 , a negligible fraction of 
all edges attempting coloring at this stage. If the same "efficiency" is maintained 
throughout, the overall "wastage" will be very small. The second aspect of the 
ROdl nibble is a deeper mathematical phenomenon called quasi-randomness (see 
[2]). In our context, quasi-randomness means that the palettes of available colors 
at the edges at any stage are "essentially" truly independent random subsets of 
the original full palette. The crux of the analysis is to show that despite the po
tential of a complicated interaction regulated by the topology of the underlying 
graph, the "nibbling" feature of the coloring process ensures that the palettes 
are evolving almost independently of each other. In all applications of the nibble 
method, it is the quasi-random aspect which is mathematically challenging and 
which usually requires a quite laborious probabilistic analysis. 

2 Preliminaries 

A message-passing distributed network is an undirected graph G = (V, E) where 
vertices (or nodes) correspond to processors and edges to bi-directional commu
nication links. Each processor has its unique id. The network is synchronous, , 
computation takes place in a sequence of rounds; in each round, each processor 
reads messages sent to it by its neighbors in the graph, does any amount of local 
computation, and sends messages back to all of its neighbors. The time com
plexity of a distributed algorithm, or protocol, is given by the number of rounds 
needed to compute a given function. If one wants to translate an algorithm for 
this model into one for the PRAM then computation locally done by each pro
cessor must be charged for. An edge cnloring of a graph G is an assignment of 
colors to edges such that incident edges always have different colors. The edge 

4 This research was originally prompted by a conversation that the second author had 
with Noga Alon and Joel Spencer, in which they suggested that the nibble approach 
should work. Noga Alon has recently informed us that he is already in possession of 
a solution with similar performance [1). However, at the time of writing, a written 
manuscript was not available for comparison. 
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coloring problem is to find an edge coloring with the aim of minimizing the num
ber of colors used. Given that determining an optimal (minimal) coloring is an 
NP-hard problem this requirement is usually relaxed to consider approximate, 
hopefully even near-optimal, colorings. The edge coloring problem in a distribut
ed setting is formulated as follows: a distributed network G wants to compute 
an edge coloring of its own topology. As remarked in the introduction such a 
coloring might be useful in the context of scheduling and resource allocation. 
The set {l, 2, ... , n} will be denoted by [n]. Given a graph G and a set of edges 
F, G[F] denotes the subgraph of G whose edge set is F. In the paper we will 
use the following approximations repeatedly: (1 - l/n)n ~ e-1 , and e€ :::::l 1 + E 

or e€ :::::l 1 + E + E2 /2, for small values of E. Whenever such an approximation is 
in effect, we will use the sign ~ in place of the equality sign. We will make use 
of a slight modification of a well-known vertex coloring algorithm by Luby [13]. 
Luby's algorithm computes a (.:1 + 1)-vertex coloring of a graph in expected 
time O(logn), where n is the number of vertices of a graph of maximum degree 
..:1. The running time of the algorithm is O(logn) with high probability [12, 13]. 
When applied to the line graph of G the algorithm computes a (2..:1 - 1 )-edge 
coloring. In the original algorithm each vertex is initially given a palette of ..:1+1 
colors; it can be easily verified that the algorithm still works in the same fashion 
if each vertex u is given a palette of deg( u) + 1 colors instead, where deg( u) is 
the degree of u. This modification is introduced for explanatory purposes. 

3 The Algorithm 

The algorithm is in two phases. The first phase is an application of the Rodl 
nibble and has the goal of coloring most of the edges using a palette of .:1 colors. 
By the end of this phase we will be left with a graph whose maximum degree 
is at most "'..:1 with high probability. In the second phase the modified Luby's 
algorithm is used to color the remaining graph with at most 2K..:1 fresh colors. As 
we shall see in section 4.1, the number of iterations needed to bring the degree 
down from .:1 to KLl is O(log(l//'\:)/ax:2), where a = t:(l - E)e-4€ • Hence, in 
order to get a (1 + )1)..:1, where >. > 0 is any fixed constant, the first phase takes 
constant time. To get a (1 + o(l)).:1 coloring takes O((log.:1)28 loglog..:1) time, 
where the o(l) term is 1/ (log ..:1)8 , for any s > 0. This holds with high probability. 
The exact probability of success will be determined in the section devoted to the 
analysis. We note here that an assumption on the maximum degree of the graph 
is needed, namely ..:1(G) = !l(logl+dn), for some d > 0 (n denotes the number 
of vertices of G). Phase 2 takes O(logn) time, with high probability. The basic 
idea underlying the first phase of the algorithm is for each vertex to select a 
small "nibble" of edges incident upon it and assign tentative colors to them 
independently at random. Most of these edges are expected to avoid conflicts 
with other edges vying for coloring, and get successfully colored at this stage. 
This is because the nibble keeps the "efficiency" of the coloring close to 1 at each 
stage. To describe the algorithm more precisely, we introduce some definitions 
that will also be used later in the analysis. At any stage k 2: 1, we have a graph 
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Gk(V, Ek)- Initially, Go(V, Eo) := G(V, E), the input graph. By ..dk we denote 
the maximum degree of the graph Gk (note .do= ..d(G) initially). Each vertex 
has a palette of availablecolors, Ak with Ag= [maJCwec5(uu{u} deg(w)]. (This can 
be arranged in one round with each vertex communicating its own degree to each 
of its neighbours.) The set of edges successfully colored at stage k is denoted by 
Ck. Then, Gk+l := Gk[E-Ck] is the graph passed on to the next stage. In the 
algorithm, t(c, /'i,) denotes the number of stages needed to bring the maximum 
degree of the graph from ..d to K..d with high probability, and has value 

I ln(l/K) l t € 7 /'i. = · ( ) c(l - c)e-4eK 

The algorithm is more precisely described as follows 

Phase 1. RonL NIBBLE 

For k = 1, 2, ... , t( c, K) stages repeat the following: 
- Each vertex u randomly selects an c fraction of the edges incident on 

itself, and independently at random assigns them a tentative color from 
its palette Ak of currently available colors. If an edge e = { u, v} is 
selected by both its endpoints, it is simply dropped and not considered 
for coloring at this stage. 

- Let e = {u, v} be a selected edge, and c(e) its tentative color. Color c(e) 
becomes the final color of e unless one of the following two conflict types 
arises: i) some edge incident on e is given the same tentative color, or 
ii) c(e) tJ. Ak n Ak, the tentative color given to e is not available at the 
other endpoint of e. 

- The graph is updated by setting 

Ak+l =Ai: - {c: e incident on u, c(e) = c is the final color of e} 

and Gk+l = Gk[Ek - Ck], where Ck is the set of edges which got a final 
color at stage k. 

Phase 2. 
Color Gt(E,1<.) with fresh new colors by using the modified Luby's algorithm. 

4 Analysis 

4.1 Intuitive Outline 

Suppose for a start that the graph is ..d-regular. Intuitively, the palettes Ai: are 
more-or-less random subsets of the base set [..d]. Let us assume they are indeed 
truly random subsets of [..d], so precisely, let us assume that the palette of each 
vertex at stage k 2: 0, is a uniformly and independently chosen random subset 
of [..1] of the same size Llk. Then, at stage k (with high probability), the size 
of the common palette between any two vertices is LlV .d. So the probability 
that a colour chosen by a vertex as a tentative colour for an incident edge is 
also valid at the other end-point is ..dk/ .d. Hence, the probability that an edge 
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is successfully coloured at stage k is roughly, e~ and we have the following 
recurrence for the vertex degree, 

This recurrence implies that given a fixed 0 < >. < 1, the vertex degree drops to 
>.L1 within a constant number of stages, or that for any positive integer s > 0, the 
degree drops to L1/ (log L1 )8 in a poly-logarithmic (in L1) number of stages. This 
yields the required time complexity analysis for the algorithm. Unfortunately, 
neither of the two assumptions above are in fact valid. First, because the graph 
G can have a very complex, irregular topology, it is not true that vertex degrees 
and palettes are uniform, at the outset, and they are even less likely to remain 
so at subsequent stages. In addition, the palettes are not truly independent 
random subsets either, as they can interact over the stages in a potentially 
complicated fashion governed by the topology of the graph. However, we show in 
§ 4.2 below, that despite the possibility of a complex interaction in the graph, the 
''nibbling" feature of the colouring process leads to an essentially local interaction 
of the palettes. So, while the palettes are not truly random subsets, they behave 
essentially as such, specifically, with regard to the relative size and composition 
of the common palettes and the palettes themselves. Given this one simple, but 
crucial feature of the interaction of the palettes,it follows that the decay law is 
essentially as given above. To highlight the essential ideas, we start with some 
simplifying assumptions and progressively, we remove the assumptions and refine 
the argument. First we give an analysis under the assumption that the initial 
network is L1-regular. This will bring out to both the nature of the interaction 
of the palettes due to the "nibbling" feature of the colouring, and how that 
determines the decay law. With a high probability analysis using a martingale, 
we show that the concerned random variables are sharply concentrated around 
their means. Thus the graph continues to remain almost L1k-regular at each 
stage k ~ 0. Finally, we indicate how to remove the assumptions of uniformity 
made at the outset. 

4.2 The Regular Case 

Let us start by assuming that the graph is initially L1-regular, and that it retains 
symmetry between vertices at each stage. Thus, at each stage k ~ 0, each vertex 
has some degree Llk which is also the size of its palette, and the common palette 
between any two neighbouring vertices also has the same value uniformly, which 
we denote by ek. The probability that an edge is successfully coloured at stage 
k is 

ek 4 ek 
Pk = 2E(l - e) Llk e- e = a Llk · 

where we define o = a( E) : = 2e ( 1-E )e-4£. (The factor 2e( 1-e) is the probability 
that the edge is chosen by exactly one endpoint. The fraction ek/ Llk is the 
probability that the tentative color chosen is present at the other endpoint and, 
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e-4< is the probability that there is no color conflict.) Hence, we have fork 2: O 
and any vertex u, 

" ek E[Llk+l I Llk, ek] = Llk - L.J a Llk 
wENk(u) 

= Llk-aek 
ek = Llk(l-a-) 
Llk 

= Llk(l - arJk) 

(1) 

where we put 'r/k := t· 
To compute E[Bk+iiLlk, ek] we make use of the "nibbling" feature of the 

colouring process. For each edge ( u, v) and color c, 

Pr[c E Ak+l n A%+1 IL1k, Bk] = 1 - Pr[c t/. Ak+i n A%+1 IL1k, Bk] 
= 1 - (Pr[c t/. Ak+i IL1k. ek] + Pr[c tJ. A%+1 IL1k, ek]) 

+Pr[c tJ. AJ:+1 , c t/. A%+1IL1k, ek] 
>:::! 1 - (Pr(c t/. Ak+i ILlk, ek] + Pr(c tJ. A%+1 IL1k, ek]) 
~ (1- Pr[c r/. Ak+ilL1k, ek])(l - Pr(c <f. Ak+1IL1k, Bk]) 
= Pr[c E Ak+1IL1k, Bk]Pr[c E A%+iJL1k, 8k] 

(since Pr[c t/. Ak+l•c t/. Ak+ilL1k,ek] = 0(E2) = Pr[c t/. Ak+ilLlk,ek]Pr[c tJ. 
A%+ilL1k, ek]). Thus, the "nibbling" feature of the colouring process is such 
that the common palette Ak+l n A%+1 evolves as if it were the intersection of 
two palettes evolving independently of each other. Thus for an edge ( u, v) at 
stage k? 0, 

It is important to note here the factor ( ~ )2 - this arises because when a colour 
is selected for an edge neighbouring ( u, v), it must be in the common palette of 
both edges. Then, z.from (2) it follows that 

E[ek+i] = E[E[ek+1 I Llk, ek]] 
= (1 - 2aryk)E[8k] 
::::: e-2a11k E[Bk]· (3) 

Let us write 'f/k := ~ >:::! ~f ~:J; we will justify this shortly by showing that the 
r.v.s Llk and ek are sharply concentrated at their means. Thus from (1) and (3), 
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if follows that 5 

This recurrence is well-studied, see for instance [5, § 8.5]. We have that 

E[ Llk] = L1 exp(-a L T/i) 
i~k 

(4) 

It can be verified that E[Llk] S .:\Ll whenever k 2 ko := (1°g£1j.Xl). In computing 
the expectations above, we assumed that the graph was Llk-regular at stage 
k. Even if we assume the initial graph is Ll-regular, it will not remain regular 
at later stages due to statistical fluctuations. However, we shall now refine the 
argument by a high-probability analysis and show that the random variables 
Llk (denoting the size of the palette of vertex u and also its degree) and e~,v 
(denoting the common palette size IA/: n A}.;j) are each sharply concentrated 
around their means computed in the last section. Thus, the graph does remain 
"almost" regular at each stage. We shall let Eek and ELlk be the recurrences 
determined by 

and 
ELlo := Ll, ELlk+l = e-a11k ELlk· 

where, as before, T/k is the sequence determined by the recurrence (4) (with 
110 := 1). We will show that for each vertex u and each edge (u, v), with high 
probability, 

and 
(1 - ok)Eek s ek :::; (1+8k)Eek, 

(for a sequence Ok to be specified). In this sense, if we start with a graph which 
is Ll-regular, it remains "almost" regular as we progress through the stages. We 
shall prove these statements by induction on k; they are trivially true at the start 
fork= 0. The number of edges coloured at any stage around a given vertex or 
edge is the sum of indicator random variables which are 1 with the probability 
computed earlier. We would like to use large deviation bounds to show that this 
sum is sharply concentrated around its mean. However, these random variables 
are manifestly not independent, and we cannot employ the usual Chernoff bound. 
However due to the nature of the association of the r.v.s in our case, we are able 
to salvage the Chernoff bound nevertheless. The most efficient way of doing this 
is to to use the following martingale argument sometimes called "the method of 
bounded differences" [15]: 

5 We use here our approximation that t=~ ~ 1 + y - x and so strictly should write ~
However, since e-(l+€):t :=; 1 -x :$ e-x for any E > 0 if x is sufficiently small, we can 
use = with the tacit understanding that one can substitute these exact inequalities 
if required. 
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Proposition2 (Method of Bounded Differences). Let X := X1, ... , Xm 
be independent random variables with Xk taking values in a set Ak. Suppose the 
measurable function f : fh Ak -+ R satisfies 

lf(X) - f(X')I $Ck, 

whenever X and X' differ only in the kth co-ordinate for each k E (m] and for 
some constants ci, .•• , Cm· Then, for any t > O, 

Pr(l/(X) - E(J(X)]I > t] $ 2exp(-2t2 / I:c%). 
k 

To apply this proposition to compute the palette size of a given vertex or edge 
after an arbitrary stage k ~ 0, we proceed as follows. Let us consider the edge 
palettes. Fix a certain order of considering the vertices, and think of the random 
colouring process at stage k as determining the tentative colour assignments 
to edges in order corresponding to the vertices they are incident on. For an 
edge e incident on a fixed vertex u, let Xe be the tentative colour it is assigned 
at this stage, provided it is also available at the other endpoint and suffers 
no conflict at that endpoint (we can think of each Xe being a special colour 
J_ at the start, thus the sets Ak in the proposition are each [L\] U {j_}). By 
the properties of the algorithm, these variables (which are IA~I in number) are 
indeed independent. The function f, we choose is the size of the resulting edge 
palette, under these choices at stage k. It can be verified that this function has 
the "bounded difference" property with each Ck := 2. Given L\k, ek, we have 
computed the expectations before. Now, applying the Chernoff bound shows 
that given L\k, ek, we have with high probability (namely that given above), for 
any 0 < 5 < 1, 

e-2aek(l - 5) $ ek+l $ e-2aek(l + 5), 

and inductively assuming high probability bounds on ek, this implies that 

or, 
E8k+le-51c-5 $ 8k+1 $ E8k+1e61c+5• 

So, taking Ok :== ko verifies the inductive claim. Similarly for L\k, with high 
probability, 

EL1k(l - ok) $ L\k $ EL\k(l + ok)· 

The analysis is exactly the same for the vertex palettes. The failure probability 
is pessimistically estimated as kon times the failure probability at a vertex at the 
last stage ko. This in turn is given by Proposition 2. We are interested only in 
vertices which have degree at least >.Ll at this stage. Noting that L\k+l ~ e-2€ .Llk 
for any k ~ 0, we get that the failure probability is at most 

2nko exp(->.2 L\). 

The statement on the failure probability in Theorem 1 follows ifrom this (recall 
that we assume L1 == .O(logl+d n) for some d > 0). 
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4.3 Removing the Regularity Assumption 

In this section, we outline how to remove the assumption that the graph is 
initially Ll-regular. Note that because we want our algorithm to work in a truly 
distributed fashion, we cannot assume that the maximum degree is known to all 
vertices. As we shall demonstrate below, the essential feature of the interaction 
of the palettes (namely the locality) and the decay law obeyed by the palettes 
continues to hold without the regularity assumption. Let 17"f1ax be determined 
by the recurrence relations 

and 
11f+~ = 11lnax exp(-a771,llax). 

Similarly, let 77min be determined by the corresponding recurrence with max 
replaced by min. It is easy to verify by induction that for each k 2'.: 0, 

1 :S rt"ffax / rtr1in :S 17-g:iax / 17g-iin. 

Let us now write down the equation corresponding to (2) in the non-regular 
setting (with ek, Lik denoting the vector of the random variables at stage k). 
Recall that the algorithm sets LJ.0 = IDaJCwEN(u)u{u} deg(w) initially and that 
8~,v = min(L10, .<l~). 

eu,W et<,W 811,W ev,W 
E[B~~l I ek, L1k] = e~·"' - a L ( ~u ) 2 + ( ~w ) 2 - a L ( ~v ) 2 + ( ~w ) 2 

wENk(u) k k wEN•(v) k k 

= e:·" - a :L (11:·w)2 + (r1~,t<? - a E (TJ"·w)2 + (TJw.v)2 

wENk(u) wEN•(11) 

Now, once again, inductively, we have for any two edges ( u, v) and ( u', v'), 
min 71u,v max 

!1Q__ < _. ,_k - < !!Q___ 
ma.x: - u',v' - min. 

710 11k 110 

Using this in the previous equation, we get: 
max max 

e~·"-o:T/~1in E (11~·")2+(11~"')2-a7)~nin L (7Jv,u)2+(7J"''")2 s; E[B~~l I L1k,ek]· 
T/o wEN•(u) 7Jo wEN,(v) 

and 
min min 

E[e~~l I ..1k,ek] s e~·"-aTJTJ?nax L (11~'")2 +(11~·")2-a~~ax L (TJ"'")2+(ry"·")2. 
o ~~W o ~~M 

Thus, 
e~·v(l - a'):::; E[8~:;'1 I Llk, ek] ::; e~·v(l - et''). 

We are thus back in essentially the same situation as before and we can refine 
the calculation of expected values into a high probability argument as before. 
Finally we have proved: 
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Theorem3. For any foxed A.> 0, given a graph with n vertices and maximum 
dege,e. L1, we can edge colour the graph with (1 + A.)Ll colours in time O(logn) 
where n is the number of vertices in the graph. For any foxed positive integer 
s, we can edge colour it with Ll + Ll / lor: Ll = ( 1 + o( 1)) L1 colours in time 
0( (log L1 )8 log log L1 + log n). The results hold with failure probability decreasing 
to 0 faster than any polynomial (in n) provided that L1 = il(log1+d n) for some 
d>O. 

REMARK: It is unlikely that one can improve the above analysis to get a colour
ing better than the L1 + Ll/(logLl)8 bound above, while still retaining a poly
logarithmic running time {in n and L1). To see this, recall from the intuitive 
outline in§ 4.1, that even if we assume that the initial graph is regular and that 
the palettes evolve as truly random independent subsets, the decay law has the 
form 

Llk 
L1k+l ~ exp(-€Lf )L1k. 

If 1Jk is the determined by the recurrence 

then one can show (see for instance, (5, § 8.5]) that 'f'/k ~ 1/k. So, if the shrinking 
of a vertex degree is governed by an equation of the form 1'/k+l := e-0tttT'/1c 'f'/k the 
number of iterations needed to bring the degree down to Ll/g(Ll) is k(L1) = 
il(g(L1)). 
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