624 research outputs found

    Nonholonomic Motion Planning for a Free-Falling Cat Using Quasi-Newton Method

    Get PDF
    The motion planning problem of a free-falling cat is investigated. Nonholonomicity arises in a free-falling cat subject to nonintegrable velocity constraints or nonintegrable conservation laws. When the total angular momentum is zero, the rotational motion of the cat subjects to nonholonomic constraints. The equation of dynamics of a free-falling cat is obtained by using the model of two symmetric rigid bodies. The control of system can be converted to the motion planning problem for a driftless system. Based on the input parameterization, the continuous optimal control problem is transformed into the discrete one. The quasi-Newton method of motion planning for nonholonomic multibody system is proposed. The effectiveness of the numerical algorithm is demonstrated by numerical simulation

    Bio-mimetic trajectory generation of robots via artificial potential field with time base generator

    Full text link

    Flat systems, equivalence and trajectory generation

    Get PDF
    Flat systems, an important subclass of nonlinear control systems introduced via differential-algebraic methods, are defined in a differential geometric framework. We utilize the infinite dimensional geometry developed by Vinogradov and coworkers: a control system is a diffiety, or more precisely, an ordinary diffiety, i.e. a smooth infinite-dimensional manifold equipped with a privileged vector field. After recalling the definition of a Lie-Backlund mapping, we say that two systems are equivalent if they are related by a Lie-Backlund isomorphism. Flat systems are those systems which are equivalent to a controllable linear one. The interest of such an abstract setting relies mainly on the fact that the above system equivalence is interpreted in terms of endogenous dynamic feedback. The presentation is as elementary as possible and illustrated by the VTOL aircraft

    Autonomous thruster failure recovery on underactuated spacecraft using model predictive control

    Get PDF
    Thruster failures historically account for a large percentage of failures that have occurred on orbit. These failures are typically handled through redundancy, however, with the push to using smaller, less expensive satellites in clusters or formations there is a need to perform thruster failure recovery without additional hardware. This means that a thruster failure may cause the spacecraft to become underactuated, requiring more advanced control techniques. A model of a thruster-controlled spacecraft is developed and analyzed with a nonlinear controllability test, highlighting several challenges including coupling, nonlinearities, severe control input saturation, and nonholonomicity. Model Predictive Control (MPC) is proposed as a control technique to solve these challenges. However, the real-time, online implementation of MPC brings about many issues. A method of performing MPC online is described, implemented and tested in simulation as well as in hardware on the Synchronized Position-Hold, Engage, Reorient Experimental Satellites (SPHERES) testbed at the Massachusetts Institute of Technology (MIT) and on the International Space Station (ISS). These results show that MPC provided improved performance over a simple path planning technique

    A global approach to kinematic path planning to robots with holonomic and nonholonomic constraints

    Get PDF
    Robots in applications may be subject to holonomic or nonholonomic constraints. Examples of holonomic constraints include a manipulator constrained through the contact with the environment, e.g., inserting a part, turning a crank, etc., and multiple manipulators constrained through a common payload. Examples of nonholonomic constraints include no-slip constraints on mobile robot wheels, local normal rotation constraints for soft finger and rolling contacts in grasping, and conservation of angular momentum of in-orbit space robots. The above examples all involve equality constraints; in applications, there are usually additional inequality constraints such as robot joint limits, self collision and environment collision avoidance constraints, steering angle constraints in mobile robots, etc. The problem of finding a kinematically feasible path that satisfies a given set of holonomic and nonholonomic constraints, of both equality and inequality types is addressed. The path planning problem is first posed as a finite time nonlinear control problem. This problem is subsequently transformed to a static root finding problem in an augmented space which can then be iteratively solved. The algorithm has shown promising results in planning feasible paths for redundant arms satisfying Cartesian path following and goal endpoint specifications, and mobile vehicles with multiple trailers. In contrast to local approaches, this algorithm is less prone to problems such as singularities and local minima

    Coordinated multi-robot formation control

    Get PDF
    Tese de doutoramento. Engenharia ElectrotƩcnica e de Computadores. Faculdade de Engenharia. Universidade do Porto. 201
    • ā€¦
    corecore