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AUTONOMOUS THRUSTER FAILURE RECOVERY  
ON UNDERACTUATED SPACECRAFT  

USING MODEL PREDICTIVE CONTROL 

Christopher M. Pong,* Alvar Saenz-Otero,† and David W. Miller‡ 

Thruster failures historically account for a large percentage of failures that have 
occurred on orbit. These failures are typically handled through redundancy, 

however, with the push to using smaller, less expensive satellites in clusters or 

formations there is a need to perform thruster failure recovery without additional 

hardware. This means that a thruster failure may cause the spacecraft to become 

underactuated, requiring more advanced control techniques. A model of a thrus-

ter-controlled spacecraft is developed and analyzed with a nonlinear controlla-

bility test, highlighting several challenges including coupling, nonlinearities, se-

vere control input saturation, and nonholonomicity. Model Predictive Control 

(MPC) is proposed as a control technique to solve these challenges. However, 

the real-time, online implementation of MPC brings about many issues. A me-
thod of performing MPC online is described, implemented and tested in simula-

tion as well as in hardware on the Synchronized Position-Hold, Engage, Reo-

rient Experimental Satellites (SPHERES) testbed at the Massachusetts Institute 

of Technology (MIT) and on the International Space Station (ISS). These results 

show that MPC provided improved performance over a simple path planning 

technique. 

INTRODUCTION 

Failure detection, isolation, and recovery is an integral part of any robust space-based system. 
If a satellite fails on orbit, currently there is little to no chance of being able to send an agent to 

that satellite and provide on-orbit servicing. Thus, it is paramount for a satellite to be able to tell if 

something is wrong (failure detection), determine what subsystem or component has failed (isola-
tion), and appropriately change the system to handle this failure (recovery). 

An extensive review has been performed of failures that have occurred on 129 military and 

commercial spacecraft from 1980 to 2005.
1
 It was determined that thruster failures account for 

24% of all the attitude and orbit control subsystem failures. Because thruster failures are one of 
the more likely failures to occur on a spacecraft, many have developed ways to mitigate the effect 

of these failures. One of the obvious methods of handling these failures is through the use of addi-
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tional hardware. Sensors can be embedded in the thruster itself for thruster failure detection and 
additional redundant thrusters can be used to replace the failed thrusters. Additional hardware, 

however, impacts the cost, mass, volume, and power budgets of the spacecraft program. 

For large, monolithic spacecraft with a cost budget on the order of billions of dollars, redun-

dancy may well be justified. However, there is a move toward launching smaller, less expensive 
spacecraft. Examples include satellites developed for the Evolved Expendable Launch Vehicle 

(EELV) Secondary Payload Adapter (ESPA) ring and satellites adhering to the CubeSat standard. 

These satellites can be launched for a small fraction of the cost of a dedicated launch vehicle, 
dramatically driving down costs. There is also a push to replace the functionality of a monolithic 

spacecraft with multiple spacecraft (e.g., DARPA's System F6 Program). Including redundancy 

for each spacecraft to handle failures on top of this may be too costly to justify the benefits. With 
the prospect of smaller, less expensive spacecraft and having multiple spacecraft in a cluster or 

formation, methods of performing thruster failure recovery without the use of hardware redun-

dancy has become a vital topic of research. 

Overview of the SPHERES Testbed 

To aid in the development and maturation of esti-

mation and control algorithms for proximity opera-

tions such as formation flight, inspection, servicing, 
assembly, the Massachusetts Institute of Technology 

(MIT) Space Systems Laboratory (SSL) has devel-

oped the Synchronized Position Hold, Engage, Reo-
rient, Experimental Satellites (SPHERES) testbed. 

This testbed consists of six nanosatellites: three at the 

MIT SSL and three on board the International Space 

Station (ISS). The three satellites on the ISS can be 
seen flying in formation in Figure 1. These satellites 

will serve as a representative spacecraft on which to 

test the developed thruster failure recovery algorithm. 

 

Figure 1. SPHERES Satellites on the ISS. 

The SPHERES satellites contain all the necessary subsystem functionality of a typical satel-

lite: avionics, communication, metrology, power, propulsion. Additional information on the 
SPHERES testbed can be found in References 2 and 3. 

Testing in the space environment is typically a high-risk and costly endeavor where any ano-

maly or failure can easily result in the loss of a mission. The SPHERES testbed provides re-
searchers with the ability to push the limits of new algorithms by performing testing in a low-risk, 

representative environment. Three different development environments are used: the six-degree-

of-freedom (6DOF) MATLAB simulation, the three-degree-of-freedom (3DOF) ground testbed, 
and the 6DOF ISS testbed. These environments allow algorithms to be iteratively matured to 

higher levels of technology readiness. 

SPACECRAFT MODEL 

Before developing a control system that is able to handle thruster failures, a dynamic model of 
the spacecraft must first be developed and analyzed. First, a brief review of the equations of mo-

tion of a thruster-controlled spacecraft is given, then the controllability of a SPHERES satellite is 

analyzed, and finally the challenges associated with controlling this system are elucidated. 
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Equations of Motion of a Thruster-Controlled Spacecraft 

Thrusters are modeled as a body-fixed force that is applied to a set location on the spacecraft. 

The lever arms and thrust directions of all m thrusters can be arranged in matrices of size 3×m. 

The thruster lever arms are given by 

  TmlllL 21   (1) 

where li represents the vector describing the lever arm of the i
th
 thruster in the body frame. The 

thrust directions are given by 

  TmdddD 21   (2) 

where di represents the vector describing the direction of the i
th

 thruster in the body frame. The 
force provided by each thruster is given by a vector, u. It is important to note that these thruster 

forces are unilateral, meaning that they cannot produce negative thrust. A spacecraft is fully ac-

tuated if a linear combination of these thruster forces can produce any arbitrary force and torque. 
If the spacecraft has more than enough thrusters, it is overactuated. On the other hand, if the 

spacecraft does not have enough thrusters (i.e., it cannot produce any arbitrary force and torque), 

it is underactuated. If a spacecraft is fully actuated, and a thruster fails off, the spacecraft becomes 

underactuated. Therefore, the reconfigurable control of an underactuated spacecraft is the same 
problem as recovering from a thruster failure. 

These thruster control inputs drive both the translational and attitude dynamics. The position, 

r, and velocity, v, of the spacecraft are described by the following kinematic and kinetic equa-
tions 

 vr    (6) 

  DuqΘv
T

m

1
   (7) 

where m is the spacecraft mass
*
 and Θ

T
 is the direction cosine matrix (DCM) that transforms the 

thruster body forces, Du, into the inertial frame (the same frame as position and velocity). This 

DCM is a function of the current spacecraft attitude, which is represented as a unit quaternion. 
This quaternion represents the rotation from the inertial frame to the body frame and is defined as 

  
T

T
q 
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aqq   (8) 

where a is the normalized axis of rotation and θ is the angle of rotation. With this definition of the 

attitude quaternion, the DCM is given by
4
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* Because m refers to mass as well as the number of thrusters, the distinction must be made by context. 
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where the superscript × denotes the 3×3 skew-symmetric cross-product matrix associated with the 
3×1 column vector. In general, 

 









































 

0

0

0

12

13

23

3

2

1

aa

aa

aa

a

a

a

aa .  (10) 

The equations of motion for the spacecraft attitude, q, and the angular rate, ω, can now be 

stated as 

  qωΩq
2

1
   (11) 

  LuJωωJω  1   (12) 

where J is the spacecraft inertia matrix, and the matrix Ω(ω) is defined as
4
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Ω .  (13) 

Equations (6), (7), (11), and (12) form the complete dynamics of a thruster-controlled spacecraft. 
The main assumptions of these equations are that the origin of the body is at the center of mass of 

the spacecraft, and that the spacecraft can be treated as a rigid body (no flexibility or slosh in the 

spacecraft). 

Controllability 

Now that the model for a thruster-controlled spacecraft has been developed, it is useful to de-

rive the controllability of this system, which will give valuable insight into its complex nature. A 

system is controllable if for all states xi and xf there exists a feasible control input trajectory, u(t), 
defined on the interval [0, T] such that the solution to the initial value problem ẋ = f(x,u) with 

x(0) = xi has the solution x(T) = xf. 

Despite its fundamental role in control theory, a completely general set of conditions for con-

trollability of nonlinear systems does not currently exist.
5
 While there exist simple methods for 

determining controllability of linear, time-invariant (LTI) systems, it has been shown that these 

techniques, even when modified to handle the unilateral control inputs, does not provide complete 

controllability results for this system. This is because linearization ―freezes‖ the locations and 
directions of the thrusters and makes the controllability results only valid for a single attitude.

6
 

More advanced controllability tests are necessary to gain further insight into this system. 

Nonlinear controllability is considerably more complex than LTI controllability. The most de-
veloped concept of controllability of nonlinear systems is restricted to systems that can be ex-

pressed in control-affine form, 

    



m

i

ii u
1

xgxfx   (14) 
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where x is the state, f is the drift vector field, ui is the i
th

 control input, and gi is the i
th
 control vec-

tor field. In this formulation, it can easily be seen that the dynamics of the system are a linear 

combination of the drift vector field and control vector fields. Controllability can be viewed in 

terms of adjusting the coefficients, ui, to steer the system from one state to another. 

An interesting property of these vector fields, arising from the nonlinear nature of the system, 
is that combinations of multiple vector fields can produce motion in directions of the state space 

that is not possible with a single control input. The flow along a vector field g from state x0 for 

time t, φt
g
(x0), is defined as the solution to the differential equation ẋ = g(x) with initial condition 

x0. It can be shown
7
 that the composition of flows along two vector fields, g1 and g2 for an infini-

tesimally small amount of time, ε, 

       0
12124 xφφφφx

gggg
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can be written as 
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where O(ε
3
) denotes terms on the order of ε

3
 or higher. This result shows that the flow along these 

vector fields produces a net non-zero motion on the order of ε
2
, ignoring the higher-order terms. It 

is important to note that in this formulation, this net non-zero motion is valid only for states in the 
neighborhood of the initial state, x0. Therefore, this concept will be used to define small-time

*
 

local controllability. This net non-zero motion can be captured in the definition of the Lie bracket 

operation as
†
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 .  (17) 

The idea that Lie brackets can produce a non-zero vector field is connected with the idea of 
nonholonomicity. When a system contains nonintegrable constraints

‡
 it is considered nonholo-

nomic. Since it is often difficult to directly determine whether a constraint is truly nonintegrable 

versus one's lack of ability to determine how to integrate it, one can employ the Frobenius theo-
rem to determine whether a system is nonholonomic or holonomic. The Frobenius theorem states 

that a system is holonomic or integrable if and only if all Lie brackets are in the span of the origi-

nal system vector fields.
8
 Inversely, a system is nonholonomic if and only if there are Lie brackets 

that are not spanned by the original system vector fields. Knowing whether or not a system is 
nonholonomic is important when considering the control system design. 

Since the Lie bracket produces a new vector field, further vector fields can be defined recur-

sively (e.g., g3 = [g1,[g2, g1]]). The degree of a vector field, δ(·), is the number of times the origi-
nal system vector fields appear in the Lie bracket operation (e.g., δ([g1,[g2, g1]]) = 3). The degree 

with respect to a vector field, δgi(·), is the number of times gi appears in the Lie bracket operation 

                                                   

* The qualifier ―small-time‖ indicates that it holds for any time greater than zero. 
† This definition of the Lie bracket operation is a specific definition for defining small-time local controllability. The 
Lie bracket operation can be defined in any way such that the following three properties hold: bilinearity, skew symme-
try, and Jacobi identity. 
‡ Non-integrable constraints cannot be written in the form f(q,t) = 0, where q is the degrees of freedom and t is time. 
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(e.g., δg1([g1,[g2, g1]]) = 2). Intuitively, the degree of a vector field is equivalent to a measure of 
―speed‖ of the vector field. A higher degree corresponds to a slower motion. 

It is also necessary to define ―good‖ and ―bad‖ Lie bracket terms. One minor detail that was 

excluded from the flow definition of a Lie bracket is that vector fields such as the drift vector 

field can only be followed in a single direction. For the example of the drift vector field, flow in 
the opposite direction can only be possible if time were reversed. Lie brackets that exhibit this 

asymmetry are therefore called ―bad.‖ A Lie bracket, φ, is bad if δf(φ) is odd and δgi(φ) is even 

for all i = 1…m. The exact reasoning behind this definition of a bad Lie bracket is beyond the 
scope of this paper. The intuitive reasoning is that Lie brackets that meet these conditions have 

motions that contain only even exponents of the control inputs, ui, and can therefore only be fol-

lowed in a single direction.
9
 Another article gives an example where brackets that are seemingly 

bad (e.g., ones that have the drift vector field in them) can have their flows rearranged such that 

they are not bad.
10

 A Lie bracket that is not bad is called ―good.‖ It will be necessary, for control-

lability, to have these bad Lie brackets be ―neutralized‖ by good brackets. A bad Lie bracket can 

be neutralized if it can be written as a linear combination of good Lie brackets of lower degree. 
Intuitively, this means that the illegal motion of a bad Lie bracket can be counteracted by the fast-

er, legal motions of a good Lie bracket.  

With the definition of the Lie bracket, the Lie algebra of the system vector fields, L({f, g1, …, 
gm}) can now be defined. The Lie algebra includes all the system vector fields as well as all vec-

tor fields that can be produced by a finite number of nested Lie bracket operations.
8
 This vector 

space can be determined by finding an independent basis of vector fields which spans this vector 
space. Since finding this basis can be a tedious task, there is an approach that uses the Philip Hall 

basis to help prune the search space of possible nested Lie bracket operations.
8
 

Now that all of the necessary tools for determining controllability have been developed, the 

conditions for small-time local controllability (STLC) can be stated. The control-affine system 
given by Equation (14) is STLC from x0 if: 

1. The drift velocity field is zero at x0: f(x0) = 0. 

2. The Lie Algebra Rank Condition is satisfied by good Lie bracket terms up to degree i: 
dim(L{f,g1, …, gm}) = span({φ1, …, φn | φ1, …, φn are good}) = n. 

3. All bad Lie brackets of degree j ≤ i are neutralized. 

4. Inputs are symmetric. 

These are the sufficient conditions for STLC given in Reference 11 and summarized in Refer-
ence 9. The first condition arises since the drift vector field is a bad Lie bracket. Since it cannot 

be neutralized by good Lie brackets since it is already of the lowest possible degree, it must be 

equal to zero. The second and third conditions ensures that the motion produced by all possible 
combinations of the vector fields spans the full n-dimensional space, while all bad Lie brackets 

that are encountered can be neutralized. The final condition ensures that the inputs are symmetric, 

meaning the control vector fields can be followed in both directions. While this is a problem with 
unilateral control inputs, the conditions for STLC have been generalized, to an extent, for unila-

teral control inputs.
10

 These slightly generalized conditions will not be presented since the two 

approaches are equivalent in the case when thrusters are paired.
*
 This highlights an important li-

mitation of this analysis; when a single thruster has failed, its corresponding opposing thruster 

                                                   

* Each thruster has an opposing thruster that produces the exact opposite force and torque. 
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must also be removed from the controllability analysis for this analysis to be valid. This is neces-
sary since if a thruster fires without some set of thrusters that can immediately counteract it, this 

thruster firing necessarily produces a global change in state. 

The STLC property is important for a few reasons. First, a system that is STLC implies that it 

is controllable under a few mild conditions.
9
 Second, it means that the system can follow a curve 

arbitrarily close as long as it hovers around zero-velocity states. This is a useful property for a 

system where obstacles need to be avoided since the necessary motion to avoid an obstacle can be 

acheived through a ―wiggling‖ motion. In contrast, a system that is controllable but not STLC 
may need to go through large state changes to achieve a desired state and can therefore not follow 

any arbitrary trajectory. 

With the sufficient conditions above, the thruster-controlled spacecraft was tested to see if it is 
STLC. It turns out that the representative SPHERES satellite is STLC with all twelve thrusters 

operational, however does not pass the conditions for a single thruster failure. This is because the 

system has bad Lie brackets of degree three that cannot be neutralized.
6
 These results extend con-

trollability results presented in Reference 12, which only considered a rigid body constrained to a 
plane. The fact that the spacecraft is not STLC, means that to steer the spacecraft to a particular 

position and attitude, global state changes must occur. Feasible trajectory design, especially with 

obstacles, becomes nontrivial. 

It is important to note here that the STLC conditions presented are only sufficient conditions. 

Therefore, even if the conditions are not met, the system may still be STLC. This has been shown 

through counterexample. For example, Reference 13 showed that a system that does not meet the 
conditions for small-time local configuration controllability (STLCC), a concept very closely re-

lated to STLC, can actually be transformed into a system that does meet the STLCC conditions. 

While it is possible that a transformation can be found that makes the presented system STLC 

even in the event of thruster failures, determining if such a transformation exists is beyond the 
scope of this paper. Therefore, it has not been proven that an underactuated spacecraft is not 

STLC. Rather, it can be said that the underactued spacecraft model presented (excluding any 

transformations) is not STLC given the set of sufficient conditions used. 

Another conclusion that can be drawn from this analysis is that the spacecraft becomes 

second-order nonholonomic in the event of any thruster failure. This arises from the fact that 

when a thruster fails, the spacecraft becomes underactuated, causing a nonintegrable constraint on 

acceleration. Knowing that the system falls under the class of nonholonomic systems is useful to 
know when designing the control system. 

Control System Design Challenges 

Now that the spacecraft model has been developed and analyzed with nonlinear controllability 
techniques, the specific challenges with developing a control system for this spacecraft can be 

discussed. The main challenges are coupling of the translational and attitude dynamics, multiplic-

ative nonlinearities, control input saturation, and nonholonomicity. 

Coupling. In the formulation of the system dynamics, the control input, u, enters the system 

through both the translational and attitude dynamics. A very common method of handling this 

issue is to decouple position and attitude by treating the control inputs as generalized forces and 

torques instead of individual actuator commands. This approach decouples the translational and 
attitude dynamics. The translational dynamics are transformed into a set of linear equations, 

which is easily controlled with any linear control technique. The attitude dynamics are still nonli-

near but there exist many techniques to control these dynamics. A separate module, called a con-
trol allocator, must then convert the computed control forces and torques into individual thruster 
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forces. This module can be reconfigured to reallocate control authority from failed thrusters to 
other operational thrusters. The problem with this method is that it assumes that the spacecraft is 

at least fully actuated. If the spacecraft is underactuated, the control law may command a force 

and torque that is infeasible for the control allocator to produce. Therefore typical decoupling of 

translational and attitude control cannot be done while assuring a stable control system.
*
 

Multiplicative Nonlinearities. The equations of motion exhibit several terms with multiplica-

tive nonlinearities. A multiplicative nonlinearity is defined here as a term with state and/or con-

trol variables multiplied together (e.g., m
-1
Θ

T
(q)Du). As shown in Reference 6, the common ap-

proach of using the Jacobian to linearize the dynamics about a certain state does not produce use-

ful results since a linearization essentially ―freezes‖ the thruster locations to a particular attitude. 

This causes the linearized spacecraft to become uncontrollable. This means that any linear control 
technique will not be able to control the spacecraft. The control technique must be able to handle 

the nonlinearities directly. A common nonlinear control technique, feedback linearization (see 

Reference 
14

), transforms the nonlinear system into a linear system through feedback. The prob-

lem with this method, however, is that the control necessary to perform this transformation may 
not be admissible due to the stringent unilateral saturation of the control input. 

Saturation. A specific type of nonlinearity that is of special concern is the saturation nonli-

nearity of the control inputs. Since each thruster can only produce a positive force, saturation lim-
its the allowable control inputs to the range [0, umax). One potential option is to employ the design 

procedures of saturation control.
15

 The approach is to first characterize the null controllable re-

gion, a set of states where the system can be driven to the origin with an admissible control trajec-
tory. Then feedback laws can be defined that are valid on a large portion of this null controllable 

region. There are two issues with this approach. First, characterizing the null controllable region 

(equivalent to determining controllability for a set of states) has been extensively studied for li-

near systems but is still an open area of research for nonlinear systems, as noted previously. 
Second, many of these design procedures for deriving the feedback control laws are only valid for 

saturation that is symmetric
15

 about the origin or asymmetric
16

 saturation that has the origin in its 

interior. An intuitive reason why these restrictions exist is that explicit feedback control laws (i.e., 
u = -Kx) produce both positive and negative control inputs depending on the current state. As 

long as the saturation allows both positive and negative values, the feedback control law would be 

valid at least for some subset of the state space. When the saturation disallows negative values, 

linear feedback control laws alone are not valid. 

Nonholonomicity. As previously mentioned, an underactuated spacecraft is second-order non-

holonomic, meaning that it has non-integrable constraints on acceleration. Through the use of Lie 

brackets, it can be seen that motion in certain directions can be achieved only through combina-
tions of inputs separated in time. This is an interesting challenge because linear feedback control 

laws produce a single command input based on the current state of the state of the satellite. They 

do not produce a sequence of commands that will generate motion in these ―restricted‖ directions. 
Nonholonomic control techniques such as one presented in Reference 17 require the system to be 

driftless as well as STLC. 

                                                   

* Reference 6 tests reconfigurable control allocation techniques and shows that, in most cases, produce unstable sys-
tems. 
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MODEL PRECTIVE CONTROL 

Model Predictive Control (MPC) is the proposed technique in this paper to handle the chal-

lenges above. It is a control technique that relies heavily on a model of the dynamics of the sys-

tem to be controlled. Using this model, it predicts the state and control trajectory that the system 

will follow. An optimization method is then wrapped around this model to minimize some cost 
function as well as enforce constraints. This optimization is rerun periodically based on the cur-

rent estimated state to update the control inputs sent to the actuators to account for disturbances.  

The discrete-time MPC problem statement can be written as a minimization from time 0 to 
time p as 
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(18) 

where xi and ui denote the state and control at time i, x = [x0
T
, x1

 T
, …, xp

 T
]

T
 is the state trajectory, 

u = [u0
 T

, u1
 T

, …, up-1
 T

]
T
 is the control trajectory, Q and R are weighting matrices, f denotes the 

equivalent discrete dynamics, xc is the current estimated state, and umax/min are the saturation limits 

of the control inputs. The third constraint, xp = 0, is necessary to enforce stability, as shown in 
References 18 and 19 for discrete and continuous systems, respectively. This optimization prob-

lem is a regulation problem since it drives the state to the origin by the end of the prediction hori-

zon, p. To drive it to a state other than the origin, the state can be replaced by the state error. The 
vector part of the quaternion error, as defined in Reference 20, can be used as for this purpose. 

This optimization is essentially an open-loop planning technique based on the current esti-

mated state of the spacecraft, xc. To handle disturbances or unmodeled effects, this optimization 

is solved with new initial conditions at some multiple of the control period based on the new state 
of the spacecraft. If the computational burden is not too great, the optimization can even be per-

formed every control period. Because the prediction time horizon is fixed relative to the current 

time for periodic calls to the optimization algorithm, MPC is also referred to as receding horizon 
control. 

This inclusion of saturation constraints directly into the control system is one of the main ad-

vantages of this method. Since the saturation constraints appear explicitly in this formulation, un-

deractuation or thruster failures can easily be handled. For example, if the spacecraft has a thrus-
ter pair that is able to produce a bilateral force on the spacecraft, it would have the following con-

straint, 

 maxmin uuu  .  (19) 

If the thruster that produces the positive force were to fail, the constraint can be easily mod-
ified to 

 0 uumin .  (20) 
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The other challenges (coupling, multiplicative nonlinearities, and nonholonomicity) are also 
handled well in this framework. The predictive nature of the controller (i.e., the fact that the op-

timization problem looks p control periods into the future) means that the controller is able to de-

sign a trajectory where combinations of control actions separated in time can produce motions 

that are not feasible to produce instantaneously. Also, the coupling and multiplicative nonlineari-
ties are neatly folded into the first constraint given in Problem (18). 

Many of the challenges are addressed by including constraints in optimization problem. This 

really just shifts the burden from designing a control algorithm to designing an optimization algo-
rithm and there are many issues that make designing this optimization algorithm difficult. The 

issues of processing delay as well as feasibility and stability will be discussed in the following 

sections. 

Processing Delay 

One of the major assumptions of MPC is that a solution to the optimization problem can be 

calculated in zero time and executed by the actuators immediately. This is clearly not possible 

since the solution to the optimization problem requires some processing time. This processing 
time translates into a delay in the control system. As this delay increases, the system performance 

decreases until the system goes unstable from too much delay. This was not an issue for most of 

the early implementations of MPC since they were used to control large industrial chemical 
processes where the dynamics of the system were very slow relative to the available computing 

power. For space systems, however, the avionics that perform the computations are power, vo-

lume and mass limited. Because these limitations could limit performance and even cause stabili-
ty issues, a method has been developed to compensate for this large processing delay. This me-

thod is shown pictorially in Figure 2. 

 

Figure 2. Delay Compensation Method for Mitigating the Effects of Processing Delay. 

This figure shows two parallel ―threads,‖ the control loop and the MPC task. The control loop 

executes the actuator commands at a fixed rate while the MPC task is allotted some multiple of 

the control period, c, to perform its calculations. As long as c ≤ p, there will always be actuator 
commands for each control period. First, the MPC calculations are initiated knowing the current 

state and scheduled controls for the next c control periods. These scheduled controls are the com-

puted controls from a previous call to the MPC task. If there were no previous calls to the MPC 

task (i.e., for the first control period), the controls are set to zero. Since the control loop knows 
that the MPC task will not be complete for c control periods, it executes the previously computed 
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controls. Meanwhile, the MPC task thread uses the state and scheduled control commands to pre-
dict the state of the spacecraft c control periods from the current control period, k. This is the cru-

cial component for the delay compensation. The effectiveness of this method relies upon the ac-

curacy of this prediction step. The MPC optimization problem is then solved based on this pre-

dicted future state. Some amount of buffer time is left to account for variations in processing time 
for the optimization algorithm. At control period k+c, the updated controls are then implemented 

in the control loop and the process is repeated. 

Feasibility & Stability 

From the previous section, it is known that the optimization technique is given a fixed amount 

of time to converge to within the set tolerances. This poses a problem for determining if the sys-

tem is stable. It has been shown in Reference 21 that stability can be guaranteed as long as the 
constraints of the optimization problem are met (feasibility implies stability). One troublesome 

constraint is the third constraint of Problem (18). Ensuring that this terminal equality constraint, 

xp = 0, can be met, even with enough time to converge within tolerances, is equivalent to knowing 

that the system is globally controllable. As previously stated, however, determining the global 
controllability of a nonlinear system is still an open problem. Adding on top of this, the discrete 

finite parameterization of the control trajectory, the (finite) prediction horizon, and the control 

input saturation constraints, makes satisfaction of this constraint much more difficult to know a 
priori. Therefore, the terminal equality constraint cannot be guaranteed to be met and therefore 

stability of the spacecraft is not guaranteed. Further stability analysis is beyond the scope of this 

paper, but this is an interesting topic that can be pursued. There exist proofs on the convergence 
of optimization algorithms and the convergence of dynamic systems. Some kind of combination 

of these two fields could produce a way to provide and/or prove stability for this MPC algorithm 

under premature termination conditions. 

SIMULATION & HARDWARE RESULTS 

The MPC algorithm and a piecewise trajectory path planning technique (as a comparison) 

have been implemented in simulation and on the actual SPHERES testbed. Simulations of the 

6DOF spacecraft demonstrate the functionality of the MPC algorithm. To validate these simula-
tion results, on orbit testing of the offline MPC algorithm was also performed on the SPHERES 

ISS testbed. In addition to the 6DOF testing, 3DOF tests were also performed on the ground at 

MIT to test the delay compensation technique. 

Six-Degree-of-Freedom Results 

The control algorithms were tested by performing the same ―representative‖ maneuver. For li-

near systems, the step response of a system is a useful maneuver to perform because it provides 

many useful metrics to characterize the system (e.g., rise time, settling time, maximum percent 
overshoot, etc.). Characterization of this step response gives a good idea of how the system would 

react in many different situations. For this reason, a step command in position was chosen as the 

representative maneuver. The spacecraft starts at a position of r = [-0.3 -0.3 -0.3]
T
 m and is com-

manded to move to a position of r = [0.3 0.3 0.3]
T
 m, with an initial and final attitude of q = [0 0 

0 1]
T
. This is a good representative maneuver because if any of the twelve thrusters fails, the 

spacecraft must perform maneuvering other than simply accelerating to start the translation and 

decelerating to stop the translation. 
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For nonlinear systems, however, a step response 
is less useful because the system response depends 

on many factors such as initial conditions. There-

fore, there is no single representative maneuver that 

would provide all the information necessary to cha-
racterize how the system would respond for any 

arbitrary scenario. With this in mind, additional test 

maneuvers must be performed to ensure that all as-
pects of the system response have been observed. 

Table 1 gives the values of the 6DOF SPHERES 

parameters. Note that information for only 6 thrus-
ters are given because thrusters 7–12 can be paired 

with thrusters 1–6, as can be seen in Figure 3. 

 

Figure 3. Thruster Locations and Directions 

for the SPHERES Satellite. 

Table 1. 6DOF SPHERES Parameters. 

Parameter Variable Value 

Spacecraft mass m 4.3 kg 

Spacecraft inertia J diag([2.3 2.4 2.1]·10
-2
) kg·m

2
 

Thrust directions D 

















110000

001100

000011

 

Thruster lever arms L 

0.0965























001100

000011

110000

 m 

 

Baseline Translation. To begin, a simulation of the representative translation with a simple 

translational and attitude PD controller and with one thruster failed was performed to demonstrate 
the need for an improved control system. The control system implemented in this simulation has 

been used successfully on the ISS for multiple tests (see, e.g., Reference 3). The position control-

ler is run at 0.5 Hz and has a damping of ζ = 0.7 and bandwidth of ωn = 0.2 rad/s. The attitude 
controller is run at 1 Hz and has a damping of ζ = 0.7 and bandwidth of ωn = 0.4 rad/s. Control 

allocation is performed by multiplying the commanded forces and torques with precomputed mix-

ing matrix.
22

 

Figure 4 shows four plots of the position, velocity, attitude (converted to roll, pitch, and yaw 
Euler angles), and angular rates versus time. When the spacecraft approaches the desired position 

and attempts to stop, thruster 9, which would normally be used to stop the spacecraft fails to ac-

tuate. This causes the spacecraft to drift along a curved trajectory away from the desired position. 
Around 110 seconds, the spacecraft begins to rotate rapidly so that it can once again thrust to-

wards the desired position. Around 140 seconds, it reaches the desired position, but once again 

cannot stop itself and drifts away along a similar curved trajectory. In addition, large oscillations 

in the velocity and angular rate can be observed, which wastes fuel. This serves as a motivation 
for creating a control system that can properly handle thruster failures. 
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Figure 4. 6DOF Maneuver: PD Control, Thruster 9 Failed (Simulation). 

Piecewise Trajectory. A simple path planning technique was tested to serve as a comparison 

for the MPC algorithm. This method involves piecing together motions that are known to be feas-

ible to generate a feasible trajectory from the initial state to the final state. To complete the repre-
sentative maneuver, the spacecraft rotates about the body x-axis, rotates about the body y-axis, 

translates to the final position, rotates about the y-axis, and rotates about the x-axis. Nominally, 

this trajectory avoids the use of thruster 9. The normal control allocator and PD controllers are 
used in these tests. This test was run on the ISS during SPHERES Test Session 18 on August 15, 

2009. Results of this test compared against the simulation are shown in Figure 5. These results 

show that this technique was able to control the spacecraft from one position to another despite 

the failed thruster. 

 

Figure 5. 6DOF Maneuver: Piecewise Trajectory, Thruster 9 Failed (Hardware vs. Simulation). 
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The simulation and on orbit data match closely. The only noticeable difference between the 
simulation and hardware are offsets in time when the various maneuvers start. Since the maneuv-

ers terminate based on precise state errors, these differences are expected with slight differences 

in initial conditions and other noise sources. These results also show that there are low enough 

disturbances that this technique is valid. If the disturbances were too high, the spacecraft would 
diverge from its nominal trajectory, which the technique would not be able to correct. Running 

other cases are not really necessary for this technique since it is a series of decoupled maneuvers. 

Scaling and rearranging these maneuvers would result in achieving any final position and attitude. 

With a symmetry argument, it can be shown that this technique can handle any single thruster 

failure. If this technique was extended to multiple thruster failures, however, it would only handle 

43% of all double thruster failure cases and 4.8% of all triple thruster failure cases. This calcula-
tion is based on the SPHERES thruster geometry and the fact that this technique requires two 

body-fixed torques and one body-fixed force. This technique will serve as a baseline to compare 

the performance of the MPC algorithm against. 

Model Predictive Control. Finally, the MPC algorithm was tested in simulation as well as in 
hardware. The tuned parameters that were selected for the MPC algorithm are shown in Table 2. 

The control loop runs at 1 Hz while the MPC algorithm updates the scheduled controls every 4 

control periods (c = 4). With 5 predictions, the MPC algorithm was able to predict 20 seconds in 
advance (each time step is 4 seconds). The tuned weights and control bounds are also shown in 

this table. Due to onboard processing limitations of the SPHERES satellites, the algorithm was 

unable to be run in real-time on the ISS (see Reference 6 for more details). Therefore simulations 
were run offline to determine the control commands. For the tests on the ISS, these were stored in 

memory and actuated in an open loop fashion with closed-loop PD controllers keeping the system 

near the nominal trajectory, which was also stored in memory. These tests were run on the ISS 

during SPHERES Test Session 24 on October 7, 2010. 

Table 2. 6DOF MPC Parameters. 

Parameter Variable Value 

Control period - 1 s 

MPC update factor c 4 

Number of predictions p 5 

Position weight diag([Q(1:3,1:3)]) [10 10 10] 

Velocity weight diag([Q(4:6,4:6)]) [1000 1000 1000] 

Attitude weight diag([Q(7:9,7:9)]) [10 10 10] 

Angular velocity weight diag([Q(10:12,10:12)]) [100 100 100] 

Control weight diag(R) [1 1 1 1 1 1] 

Control bounds umax/min ±0.02 N 

 

Figure 6 shows the results with thruster 9 failed—again there is good agreement between the 

simulation and on orbit data. The spacecraft, from the start of its maneuvering, is able to predict 
that it will not be able to stop properly without thruster 9. Because of this, it begins rotating im-

mediately to point other thrusters in the direction of motion so that it can stop its motion towards 

the desired position. After it reaches the desired position, it is able to rotate back to the desired 
attitude. Additional simulations with different initial conditions were performed and it was ob-

served that the spacecraft was still able to execute the commanded maneuver. 
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Figure 6. 6DOF Maneuver: MPC, Thruster 9 Failed (Hardware vs. Simulation). 

Table 3 shows a comparison of MPC versus the piecewise trajectory technique in terms of 
several metrics. The first two metrics are the time and fuel used to execute the representative ma-

neuver. When using MPC, the maneuver is completed in a fraction of the time it takes to com-

plete the same maneuver with the piecewise trajectory technique. This increase in speed comes at 
the cost of a little more fuel usage. The next few metrics are the percentage of thruster failure 

cases the technique handles for different numbers of failures. As previously mentioned, for the 

piecewise trajectory approach these percentages were calculated by determining the thruster fail-
ures that could occur while still being able to produce the requisite body-fixed force and torques. 

For MPC, numerous simulations were run with various thruster failure cases run on the represent-

ative maneuver with two different initial conditions. The number of simulations that needed to be 

run was greatly reduced by using the symmetries of the SPHERES thruster placement. One im-
portant note from these simulations is that the weights did not need to be retuned for the various 

thruster failure cases. The same weights shown in Table 2 were equally valid for the various 

thruster failure cases. From Table 3, it can be seen that MPC handles a much larger percentage of 
double and triple thruster failures over the piecewise trajectory technique. 

Table 3. Comparison of the Piecewise Trajectory and MPC Techniques. 

Metric Piecewise Traj. MPC 

Maneuver completion time 90 s 35 s 

Maneuver fuel used 2.5% of tank 2.6% of tank 

Percent of single thruster failures handled 100% 100% 

Percent of double thruster failures handled 42.8% 85.7% 

Percent of triple thruster failures handled 4.8% 71.4% 
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Further hardware testing was performed to determine the effectiveness of the MPC algorithm 
with multiple thruster failures. Figure 7 shows the results on the representative maneuver, this 

time with thrusters 1 and 9 failed. Yet again, there is very close matching of the simulation with 

on orbit data. The fact that all on orbit tests performed closely to the simulation gives high confi-

dence in the simulation. The MPC algorithm once again is able to maneuver the spacecraft in a 
way without using thrusters 1 or 9. The performance in terms of steady state error is slightly 

worse than the case with only thruster 9 failed. 

 

Figure 7. 6DOF Maneuver: MPC, Thruster 1 & 9 Failed (Hardware vs. Simulation). 

Three-Degree-of-Freedom Results 

To test unexercised parts of the MPC algorithm, tests were also performed on the 3DOF 
SPHERES testbed at the MIT SSL. The 6DOF simulation is not a real-time simulation so the ef-

fects of finite computation time is not present, disallowing the testing of the delay compensation 

method. Also, since there is no capability to run the MPC algorithm online on the 6DOF ISS 
testbed, the MPC algorithm must also be tested on the 3DOF MIT testbed. 

The representative maneuver used for the 3DOF tests is similar to that used for the 6DOF 

tests. The spacecraft starts at a position of r = [0 0]
T
 m and is commanded to move to a position 

of r = [0.3 0.3]
T
 m, with an initial and final attitude of q = 0°. Table 4 gives the values of the 

3DOF SPHERES parameters. 

Table 4. 3DOF SPHERES Parameters. 

Parameter Variable Value 

Spacecraft mass m 12.4 kg 

Spacecraft inertia J 0.0856 kg·m
2
 

Thrust directions D 










110

001
 

Thruster lever arms L 0.0965 110   m 
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Baseline Translation. The first test performed on the 3DOF SPHERES hardware was a base-

line translation with all thrusters operational. The gains of the PD controller were adjusted to 

match the new mass and inertia of the spacecraft. 

Figure 8 shows the resulting trajectory. The satellite clearly is able to complete the maneuver, 
but there is some steady state error in position. This is actually due to the fact that the table sup-

porting the satellites cannot be perfectly leveled. The table legs' length can be adjusted to remove 

large errors, but small tip/tilt errors might still be present. In addition, the glass on the table is not 
perfectly flat. This non-zero gradient imparts a force due to gravity on the spacecraft, creating a 

steady state error in position since there is no integrator in the controller. It is important to recog-

nize this source of error because it appears in all of the following results. 

 

Figure 8. 3DOF Maneuver: PD Control, All Thrusters Operational (Hardware). 

Figure 9 shows the resulting trajectory when thruster 9 is failed. The behavior is qualitatively 

very similar to the behavior seen in for the 6DOF case. The spacecraft is unable to stop itself 
when it reaches the desired position and cannot reach the desired position or attitude after this 

point. This shows very undesirable behavior that will be fixed by using MPC. 
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Figure 9. 3DOF Maneuver: PD Control, Thruster 9 Failed (Hardware). 

Model Predictive Control. The MPC algorithm was tested on the 3DOF SPHERES testbed 

with the parameters given in Table 5. The main control loop was set to run at 1 Hz and the MPC 

algorithm was initiated every other control period (c = 2), for an effective rate of 0.5 Hz. This 
algorithm planned 10 time steps in advance (equivalent to 20 seconds since each time step is 2 

seconds) and was run online but off-board on a desktop computer. The MPC algorithm took ap-

proximately 1.5 seconds to run (per iteration) on a 2.83 GHz processor leaving approximately 0.5 
seconds as a buffer for processing time variations and communication delays to and from the 

spacecraft. Therefore, there is an effective 2 second delay between when the updated controls are 

requested and when the updated controls are actuated. Table 5 also shows the tuned state and con-

trol weights that were used and the control bounds. 

Table 5. 3DOF MPC Parameters. 

Parameter Variable Value 

Control period - 1 s 

MPC update factor c 2 

Number of predictions p 10 

Position weight diag([Q(1:2,1:2)]) [100 100] 

Velocity weight diag([Q(3:4,3:4)]) [100 100] 

Attitude weight diag([Q(5,5)]) 10 

Angular velocity weight diag([Q(6,6)]) 1000 

Control weight diag(R) [1000 1000 500] 

Control bounds umax/min ±0.04 N 

 

To test the effectiveness of the delay compensation method, the test was run with and without 

the prediction step. Note that this ―prediction step‖ is different from the predictive nature of 
MPC, despite its similar terminology. Without the prediction step, this two-second delay is too 

large for the controller to handle, causing the control system to not function properly. The result-

ing trajectory for this test was qualitatively very similar to that shown in Figure 9. 
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With the prediction step, the two-second delay can be mitigated. Figure 10 shows the resulting 
trajectory with the predicted states overlayed on the same plot. Ideally, if the model matched the 

actual dynamics perfectly, the predicted states would match perfectly with the actual states. How-

ever, due to process noise, sensor noise and other unmodeled effects, the predicted and actual 

states to not match exactly. Both the position and angle predictions match well, however there is 
an obvious delay in the velocity and angular velocity predictions. Despite this error, the predic-

tion allows the delay to be compensated enough to achieve stability in the system. The spacecraft 

is able to reach the desired position by executing an angular flip. The steady state error in position 
is due to local gradient of the glass table, as was also seen in Figure 8. 

 

Figure 10. 3DOF Maneuver: MPC, Thruster 9 Failed (Hardware). 

CONCLUSION 

MPC has been applied to solve the problem of controlling a spacecraft that has become unde-

ractuated due to failed thrusters. A model of a thruster-controlled spacecraft was developed and 

analyzed with the sufficient conditions for STLC. For an underactuated spacecraft, the sufficient 
conditions for STLC were not met. Analysis of the equations of motion and results from this test 

highlighted the main challenges of controller design for this system: coupling, multiplicative non-

linearites, severe control input saturation, and nonholonomicity. MPC has been proposed to solve 
these challenges. There were several issues with implementing MPC in real time: processing de-

lays as well as feasibility and stability. A method for mitigating the processing delay due to solv-

ing an optimization problem in real time has been developed. However, the issue of finding a 

feasible solution to ensure stability remains open. 

The MPC algorithm was implemented, tested, and compared against a simple path planning 

technique on the SPHERES testbed. The MPC algorithm performed better than the path planning 

technique in terms of completion time and number of thruster failure cases handled at the cost of 
a larger computational load and slightly increased fuel usage. Close agreement of the simulation 

and on orbit data validated the simulation results. In addition, 3DOF tests on the ground demon-

strated the processing delay compensation method since the 6DOF MPC tests could only be run 

offline. 
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