14 research outputs found

    QuakeTM: Parallelizing a complex serial application using transactional memory

    Get PDF
    'Is transactional memory useful?' is the question that cannot be answered until we provide substantial applications that can evaluate its capabilities. While existing TM applications can partially answer the above question, and are useful in the sense that they provide a first-order TM experimentation framework, they serve only as a proof of concept and fail to make a conclusive case for wide adoption by the general computing community. This work presents QuakeTM, a multiplayer game server; a complex real life TM application that was parallelized from the serial version with TM-specific considerations in mind. QuakeTM consists of 27,600 lines of code spread among 49 files and exhibits irregular parallelism and coarse-grain transactions with large read and write sets. In spite of its complexity, we show that QuakeTM does scale, however more effort is needed to decrease the overhead and the abort rate of current software transactional memory systems. We give insights into development challenges, suggest techniques to solve them and provide extensive analysis of transactional behavior of QuakeTM, with an emphasis and discussion of the TM promise of making parallel programming easy.Postprint (published version

    The Computer Graphics Scene in the United States

    Get PDF
    We briefly survey the major thrusts of computer graphics activities, examining trends and topics rather than offering a comprehensive survey of all that is happening. The directions of professional activities, hardware, software, and algorithms are outlined. Within hardware we examine workstations, personal graphics systems, high performance systems, and low level VLSI chips; within software, standards and interactive system design; within algorithms, visible surface rendering and shading, three-dimensional modeling techniques, and animation. Note: This paper was presented at Eurographics\u2784 in Copenhagen, Denmark

    Simultaneous Generation of Stereoscopic Views

    Get PDF
    Currently almost all computer graphic stereoscopic images are generated by doubling the work required to create a single image. In this paper we derive and analyze algorithms for simultaneous generation of the two views necessary for a stereoscopic image. We begin with a discussion of the similarities of the two perspective views of a stereo pair. Following this, several graphics algorithms that have been optimized from known single-view methods are described and performance results obtained from testing the new stereo algorithms against the originals are presented

    Simultaneous Generation of Stereoscopic Views

    Full text link

    Three--dimensional medical imaging: Algorithms and computer systems

    Get PDF
    This paper presents an introduction to the field of three-dimensional medical imaging It presents medical imaging terms and concepts, summarizes the basic operations performed in three-dimensional medical imaging, and describes sample algorithms for accomplishing these operations. The paper contains a synopsis of the architectures and algorithms used in eight machines to render three-dimensional medical images, with particular emphasis paid to their distinctive contributions. It compares the performance of the machines along several dimensions, including image resolution, elapsed time to form an image, imaging algorithms used in the machine, and the degree of parallelism used in the architecture. The paper concludes with general trends for future developments in this field and references on three-dimensional medical imaging

    On indexing highly dynamic multidimensional datasets for interactive analytics

    Get PDF
    Orientador : Prof. Dr. Luis Carlos Erpen de BonaTese (doutorado) - Universidade Federal do Paraná, Setor de Ciências Exatas, Programa de Pós-Graduação em Informática. Defesa: Curitiba, 15/04/2016Inclui referências : f. 77-91Área de concentração : Ciência da computaçãoResumo: Indexação de dados multidimensionais tem sido extensivamente pesquisada nas últimas décadas. Neste trabalho, um novo workload OLAP identificado no Facebook é apresentado, caracterizado por (a) alta dinamicidade e dimensionalidade, (b) escala e (c) interatividade e simplicidade de consultas, inadequado para os SGBDs OLAP e técnicas de indexação de dados multidimensionais atuais. Baseado nesse caso de uso, uma nova estratégia de indexação e organização de dados multidimensionais para SGBDs em memória chamada Granular Partitioning é proposta. Essa técnica extende a visão tradicional de partitionamento em banco de dados, particionando por intervalo todas as dimensões do conjunto de dados e formando pequenos blocos que armazenam dados de forma não coordenada e esparsa. Desta forma, é possível atingir altas taxas de ingestão de dados sem manter estrutura auxiliar alguma de indexação. Este trabalho também descreve como um SGBD OLAP capaz de suportar um modelo de dados composto por cubos, dimensões e métricas, além de operações como roll-ups, drill-downs e slice and dice (filtros) eficientes pode ser construído com base nessa nova técnica de organização de dados. Com objetivo de validar experimentalmente a técnica apresentada, este trabalho apresenta o Cubrick, um novo SGBD OLAP em memória distribuída e otimizada para a execução de consultas analíticas baseado em Granular Partitioning, escritas desde a primeira linha de código para este trabalho. Finalmente, os resultados de uma avaliação experimental extensiva contendo conjuntos de dados e consultas coletadas de projetos pilotos que utilizam Cubrick é apresentada; em seguida, é mostrado que a escala desejada pode ser alcançada caso os dados sejam organizados de acordo com o Granular Partitioning e o projeto seja focado em simplicidade, ingerindo milhões de registros por segundo continuamente de uxos de dados em tempo real, e concorrentemente executando consultas com latência inferior a 1 segundo.Abstrct: Indexing multidimensional data has been an active focus of research in the last few decades. In this work, we present a new type of OLAP workload found at Facebook and characterized by (a) high dynamicity and dimensionality, (b) scale and (c) interactivity and simplicity of queries, that is unsuited for most current OLAP DBMSs and multidimensional indexing techniques. To address this use case, we propose a novel multidimensional data organization and indexing strategy for in-memory DBMSs called Granular Partitioning. This technique extends the traditional view of database partitioning by range partitioning every dimension of the dataset and organizing the data within small containers in an unordered and sparse fashion, in such a way to provide high ingestion rates and indexed access through every dimension without maintaining any auxiliary data structures. We also describe how an OLAP DBMS able to support a multidimensional data model composed of cubes, dimensions and metrics and operations such as roll-up, drill-down as well as efficient slice and dice filtering) can be built on top of this new data organization technique. In order to experimentally validate the described technique we present Cubrick, a new in-memory distributed OLAP DBMS for interactive analytics based on Granular Partitioning we have written from the ground up at Facebook. Finally, we present results from a thorough experimental evaluation that leveraged datasets and queries collected from a few pilot Cubrick deployments. We show that by properly organizing the dataset according to Granular Partitioning and focusing the design on simplicity, we are able to achieve the target scale and store tens of terabytes of in-memory data, continuously ingest millions of records per second from realtime data streams and still execute sub-second queries

    New Efficient Spatial Index Structures, PML-Tree and SMR-Tree, for Spatial Databases

    Get PDF
    Computer Scienc
    corecore