
IMPLEMENTATION AND APPLICATIONS OF

QUERY INTERFACES TO CONSTRAINT

DATABASES IN A DISTRIBUTED

COMPUTING ENVIRONMENT

By

CHIN-CHIH CHANG

Bachelor of Engineering
Tamkang ·University

Taiwan, R.0.C.
1986

Master of Science
National Cheng Kung University

Taiwan, R.O.C.
1990

Submitted to the Faculty of the ·
Graduate College of the

Oklahoma State University
in partial requirements for

the Degree of
DOCTOR OF PHILOSOPHY

December, 2000

IMPLEMENTATION AND APPLICATIONS OF

QUERY INTERFACES TO CONSTRAINT

DATABASES IN A DISTRIBUTED

COMPUTING ENVIRONMENT

Thesis Approved:

;p £.
Thesis Adviser

~

11

ACKNOWLEDGEMENTS

I would like to express my sincere appreciation to my advisor, Dr. G. E. Hedrick,

for being a continual source of guidance, inspiration, and encouragement. Without

his critical reviews and insightful comments this dissertation would not have been

possible. I want to express my sincere gratitude to Dr. Jayne M. Salisbury for

offering me a research assistantship at Spatial Environmental Clearing House (SEIC)

and serving as my advisory committee member. My thanks also go to Dr. John

P. Chandler and Dr. K. M. George for having made their time available to serve

on my dissertation committee and giving me their thoughtful suggestions on my

dissertation.

I want to thank my family for always believing in me. Their support, constant

encouragement, and love made me continue my study throughout these years. My

sisters and their children always give me a big welcome during my break in Taiwan.

I would not forget to thank my late mother, Show Chen, for her blessing in heaven.

lll

TABLE OF CONTENTS

Chapter Page

I. INTRODUCTION 1

1.1 Thesis 2
1.2 Organization 3

IL FUNDAMENTAL CONCEPTS 4

2.1 Multidimensional Data and and Geographical Information Systems
(GIS) 4
2.1.1 Properties of Spatial Data 4
2.1.2 Definitions and Queries . . 6
2.1.3 Spatial Access Methods 8
2.1.4 Geographical Information Systems (GIS) 11

2.2 Constraint Database 12
2.2.1 Basic Definitions and Data Modeling 12
2.2.2 The Algebra for Constraint Databases 16
2.2.3 Constraint Solving 18
2.2.4 I/0 Efficiency and Query Optimization . 19
2.2.5 Systems and Applications 20

2.3 Web Applications on CORBA/IIOP using Java 23
2.3.1 An Introduction to the Web 23
2.3.2 CORBA/IIOP . . 24
2.3.3 The Object Web . . 26

III. WEB-BASED APPLICATIONS 28

3.1 A Web-Based Tax Calculator 28
3.1.1 Creating the Constraint Database . . 28
3.1.2 Developing the CORBA Application 31
3.1.3 Running the Application 35

3.2 An Interactive Stock Analysis Tool 37
3.2.1 Creating the Constraint Database . . 38
3.2.2 Developing the CORBA Application 40
3.2.3 Running the Application 42

3.3 Summary 44

IV

Chapter Page

IV. IMPLEMENTATION OF A QUERY INTERFACE 45

4.1 Constraints in a Relational Database 45
4.2 Algorithms . 48

4.2.1 Convert Points and Line Segments into Linear Constraints 49
4.2.2 Triangulation Algorithm 50
4.2.3 From 2-Spaghetti Data Model to Constraints . 52
4.2.4 Compute Convex Hull from Constraints 53
4.2.5 Constraint Solving . . 55
4.2.6 Area 55
4.2. 7 Intersection Algorithm 56

4.3 Algebraic Operations 57
4.3.1 The Join Operation tx1 57
4.3.2 The Intersection Operation n 58
4.3.3 The Selection Operation a . 59
4.3.4 The Union Operation U . . 59
4.3.5 The Difference Operation - 59
4.3.6 The Projection Operation 1r 60

4.4 Development Document 61
4.4.1 Environment and Software . 61
4.4.2
4.4.3
4.4.4

Architecture
Developing a CORBA Application
Classes

V. QUERY APPLICATIONS

5.1 Graphical User Interface
5.1.1 Data Input and Output
5.1.2 Query Operations .
5.1.3 User Guide .

5.2 A Land-use Example .
5. 3 Insecticide Example . .
5.4 Manufacture Example
5.5 Freightage Example .
5.6 Tracking Problem . .
5. 7 Position Prediction .
5.8 · Vegetation Example

VI. CONCLUSION

6.1 Contributions
6.2 Open Questions and Future Work
6.3 Concluding Comment

V

62
63
65

68

68
68
70
71
76
78
79
82
84
85
87

89

89
90
92

Chapter

BIBLIOGRAPHY

APPENDICES

A. GLOSSARY

B. LIST OF ACRONYMS

C. SETUP AND RUNNING OF THE APPLICATION

C.1 System Requirements
C.2 Setting Environment Variables .
C.3 Creating the Database .
C.4 Compiling the Programs
C.5 Creating a Web Page . .
C.6 Running the Programs .

D. INPUT FILE FORMAT FOR THE QUERY INTERFACE

Vl

Page

93

110

110

114

116

116
116
117
118
119
123

124

Table

3.1 Taxpayer Table

3.2 Deduction Table

3.3 Tax Rate Schedule

3.4 Taxtable Table .

3.5 Company Table .

3.6 Finance Table .

4.1 database-table .

4.2 database-field

4.3 tuple-data . .

4.4 graph-specification

4.5 constraint

LIST OF TABLES

4.6 Database Table to Data Structure .

4. 7 Triangular Representation

4.8 Graph A.

4.9 Graph B .

4.10 Graph C = A t><l B

4.11 Graph D

4.12 Graph E

4.13 Graph F = D n E .

4.14 Graph G = D u E .

4.15 Graph -E

4.16 Graph H = D - E

4.17 Graph I

vii

Page

29

29

29

30

39

39

45

46

46

46

46

47

52

57

57

57

58

58

59

59

59

60

60

Table

4.18 Graph J = nx(I)

4.19 Graph K = 1rv(I)

5.1 Alphanumeric Data .

5.2 Spatial Data

5.3 The Cost Schedule of the Insecticides .

5.4 Order Table

5.5 Manufacturing Process Table

5.6 Freightage .

5. 7 Packages . .

viii

Page

60

61

69

70

79

80

80

82

82

LIST OF FIGURES

Figure

2.1 Example of Spatial Data

2.2 An Object Web Model Based on Java and CORBA ORBs

3.1 Dependency between Income and Tax .

3.2 ORB Interface

3.3 Create a CORBA application

3.4 Running the Tax application .

3.5 The Running Example of the Tax Calculation

3.6 Running the Stock Application

3.7 The Running Example of the Ticker Finder

3.8 The Running Example of the Volatility Analysis .

4.1 Entity-Relationship Diagram of the Database

4.2 Polygon Triangulation

4.3 Join Operation

4.4 Intersection and Union Operation .

4.5 Difference Operation .

4.6 Projection Operation .

4. 7 System Architecture .

5.1 Graph Interface of the System .

5.2 Update a Relation Entry .

5.3 Define a Relation

5.4 Update a Tuple .

5.5 Query Database .

ix

Page

15

27

28

32

33

36

37

42

43

44

47

52

57

58

60

61

63

71

72

73

73

74

Figure

5.6 Query by Constraints .

5.7 Import/Export Database .

5.8 Query Area

5.9 Minimum/Maximum Query

5.10 Land-use Database

5.11 Land-use Query ..

5.12 The Result of Land-use Query

5.13 Insecticide Database

5.14 The Result of Intersection

5.15 Manufacturing Pattern Database .

5.16 Query Maximum Production

5.17 Freightage Database .

5.18 Query Freightage

5.19 Map Database

5.20 Locate Point .

5.21 Field Location

5.22 Target Region

5.23 Set Time Stamp

5.24 12 PM Location

5.25 Vegetation Map of 1980 .

5.26 Vegetation Map of 1998 .

5.27 Vegetation Map of 1989 .

5.28 Vegetation Map of Mixed-Grass Prairie

X

Page

75

75

76

76

77

77

78

78

79

81

82

83

83

84

84

85

85

86

86

87

87

88

88

CHAPTER I

INTRODUCTION

Many database applications require more general data models and more efficient

query handling than databases currently support. Some examples are geographic

information systems (GIS), Computer-Aided Design (CAD), Very Large Scale Inte

gration (VLSI) design, On-Line Analytic Processing (OLAP), robotics, and image

repositories. Conventional relational database management systems (RDBMSs) are

not well-suited for the storage and management of mµltidimensional data. This is

due to the structural complexity of multidimensional data. This complexity requires

both new querying facilities and specific indexing techniques. Considerable research

has been devoted to database systems which can store and manage multidimensional

data. One recent survey is done by Gaede and Gunther [GG98].

Multidimensional data range over different domains where there can be infinitely

many data points; they are spatial data in the space domain and temporal data in

the time domain. These sets of potentially infinite numbers of data points make

implementation of relational database systems even more difficult. To illustrate the

implications of multidimensional data, specifically, spatial data are analyzed in this

research. Spatial database models and prototypes proposed in the literature typically

focus on one specific type of multidimensional information or a finite set of specific

types. This narrow focus is justified, since it is sufficient for many applications,

and it permits tuned efficient implementations [PdBG94]. However, most of these

models and prototypes lack the integration between multidimensional data processing

and standard data management [GW97]. Frequently, there is no high-level query

facility [GRSS97]. Furthermore, these models only can be used in a fixed number

of dimensions [BBC97]. The challenge is the design of data models that are both

1

2

general enough and powerful enough to handle conventional data as well as spatial

data in an unified framework [Par95].

The constraint database model introduced by Kanellakis, Kuper and Revesz

[KKR90] is a promising paradigm for the representation of multidimensional data

in an unified framework. The basic idea extends a tuple to contain a conjunction

of constraints on a predefined number of variables. For example, in two dimensions

there are two variables which could correspond to two coordinates or two attributes.
'

These two variables can be combined using different mathematical operations to form

different algebraic equations. Such a tuple termed as a generalized tuple can actually

represent infinite data. A generalized relation is a finite set of generalized tuples and

a generalized database is a finite set of generalized relations. The constraint data

model appears to have more expressivity than the relational data model. While infi

nite multidimensional data cannot be represented in the relational data model, it can

be represented by equations or inequalities. Some may argue that the object-oriented

data model could also describe multidimensional data, but one must remember that

the object-oriented data model only can represent finite amounts of data. The oper

ations for multidimensional data also can be defined in the constraint data model.

1.1 Thesis

There are still many problems under investigation. Until recently, very few con

straint database systems have been built. Most constraint database systems are

still in a very primitive stage. A prototype implementation of a constraint database

system is the focus of this dissertation. Many choices must be made to build a con

straint database system. In our implementation, an add-on system is built on top

of a RDBMS. The graphic query interface extends the Structured Query Language

(SQL) to incorporate constraints. The Java language is chosen mainly because of its

portability and simplicity. Running the application on Common Object Request Bro

ker Architecture (COREA) allows distributed processing across different platforms.

Internet Inter-ORB Protocol (IIOP) is essentially a Transmission Control Proto-

3

col/Internet Protocol (TCP /IP) with some CORBA-defined message exchanges that

serve as a common backbone protocol to ensure the interoperability. Hypermedia is a

multimedia system that is enriched with links to other documents. The World Wide

Web (known as WWW, Web or W3) is_ a hypermedia information delivery system

on networks [Com95, Kro94, KF95, Wig95]. This reflects a vision "The Network

is the Computer" by Sun Microsystems, Inc. [Eco95]. The integration of dis

tributed objects and the Web is called the Object Web. The Object Web is the latest

paradigm for the distributed computing and the Web [OH98, OHE97b, OHE97a].

This description demonstrates that building a CORBA-based application on the

Web is practical. Several applications are presented in this research. Tax calculation

and stock database query are two Web-based applications. GIS applications, linear

programming applications, and spatio-temporal applications are examples running

on a general query interface to constraint databases.

1.2 Organization

This dissertation is organized as follows. Chapter I is an introduction. Chapter II

explains the fundamental concepts of multidimensional data, constraint databases,

and Object Web. This chapter lays the foundation for the later discussion. Chapter

III presents the implementation of two Web-based applications which store con

straint data into a relational database management system (RDMS) directly. The

implementation of distributed computing applications is illustrated here. Chapter

IV gives a detailed description of the implementation of a general query interface

to constraint databases. The simple implementation from the chapter III is limited

to one-dimensional data and insufficient in general and more complex cases. The

implementation of constraint database systems for general applications is presented

here. Chapter V focuses on the applications on this query interface. Chapter VI

summarizes the study and the prospects for future work.

CHAPTER II

FUNDAMENTAL CONCEPTS

2.1 Multidimensional Data and and Geographical
Information Systems (GIS)

We discuss issues of multidimensional data in this section. Spatial data are used

as an example to illustrate the implications of multidimensional data in database

design and implementation. Some current solutions are presented, and then it is

shown that most of them work only on one specific type of spatial data; thereby

lacking integration between multidimensional data processing and standard data

management. The thought of looking for a more general and effective solution comes

into our mind. The next section presents constraint databases, which are a promising

solution to this issue.

2.1.1 Properties of Spatial Data

To understand the complication of the spatial database design, we must know the

properties of spatial data. Gaede and Gunther summarized the properties of spatial

data in [GG98]:

• Spatial data have complex structures.

• Spatial data are often dynamic.

• Spatial databases tend to be large.

• It is difficult to define a standard algebra for a wide variety of spatial data.

• Many spatial operators are not closed in the domain of operands.

4

5

• The computation costs of spatial operators are generally more expensive than

standard relational operators.

A spatial database query involves both alphanumeric attributes and spatial lo

cation of a data object. Retrieval and update in a spatial database require a fast

spatial search operation such as point and region query. Both operations demand

fast access to those spatial objects in the database.

Specific multidimensional access methods are required for such search operations.

The primary issue for the design of such methods, nonetheless, is that there is no

total ordering among spatial objects that preserves spatial proximity [GG98]. This

makes the design of efficient access methods in spatial databases much harder than

in traditional databases. Generally, multidimensional access methods should meet

the criteria as described in [Rob81, LS89, NHS84, GG98]:

1. Dynamics. Access methods should keep track of the database changes

continuously.

2. Secondary/tertiary storage management. Access methods must con

sider secondary and tertiary storage management.

3. Broad range of supported operations. Access methods should sup

port various operations.

4. Independence of the input data and insertion sequence. Access meth

ods should be efficient, irrespective of the input data and insertion

sequence.

5. Simplicity. Access methods should be simple.

6. Scalability. Access methods should adjust well to database growth.

7. Time efficiency. Spatial searches should be fast.

8. Space efficiency. An index should occupy small space.

9. Concurrency and recovery. Access methods can operate concur

rently and perform recovery in case of database crash.

10. Minimum impact. An access method should be incorporated into a

database system with minimum impact on the existing system.

2.1.2 Definitions and Queries

6

Multidimensional access methods indicate any access method that support searches in

spatial databases. Further, they can be categorized into point access methods (PAMs)

and spatial access methods (SAMs) [GG98). While the point access methods mainly

manage spatial searches on point databases, spatial access methods process extended

objects, such as lines, polygons, or even higher-dimensional polyhedra. Spatial access

methods are also denoted as spatial index or spatial index structure.

Since spatial data have complex structures, it is inefficient to index them directly.

Usually, the minimum bounding box (MBB) or decomposition is used to approximate

the original data. An MBB is formed by the bounding interval in each dimension

of the data object. Decompositions are formed by dividing the data object into

simple components such as triangles, trapezoids, or convex polygons. Then the

search becomes a multi-step process [BKSS94]. First, based on the approximation,

candidate solutions are found. This is the filter step. Then the exact solutions are

searched according to the exact shape information. This is the refinement step.

Space and time efficiency are the main concerns for an efficient spatial access

method. In the case of space efficiency, the goal is to minimize the number of bytes

occupied by the index. For time efficiency the number of disk accesses is used as the

measure since most spatial searches are I/0-bound rather than CPU-bound.

As noted above, it is difficult to define a standard spatial algebra or a standard

spatial query language. The set of operators strongly depends on the specific appli

cation domain. The previous work [RL84, Giit89, SV89, AS91, HSH92, GS93, Ege94)

usually extends the standard SQL to express the spatial query. OpenGIS Simple Fea

tures Specification For SQL [Ope99] from Open GIS Consortium, Inc. and SQL3/MM

Spatial Standard [Int99] of International Standard Organization (ISO) are two cur

rent standards. They represent two different approaches. Open GIS Consortium's

7

approach conceptually stores geospatial feature collections as tables while ISO's de

fines abstract data types to represent spatial objects and their associated operations.

These operations fall into three categories:

1. Update operations: insert, delete or modify.

2. Spatial selections are fundamental spatial queries.

• Point Query yields all objects overlapping a given point.

• Region Query yields all objects sharing points with a query polygon. A

special case of the region query is the window query where the query

polygon is given by a rectilinear rectangle.

• Nearest Neighbor Query yields all objects having a minimum distance

from a given query object.

3. Spatial Join computes all pairs of objects that satisfy the specified spatial

predicate. Different predicates [Ore86, Bec92, Ind91, Giin93, BKS93, GR94,

Bri94, LR94, AS94, PTSE95] indicate different spatial joins. We list some

common ones:

• Intersection Query, Overlap Query (intersection join) yields all ob

jects having at least one point in common with a given object.

• Containment Query (containment join) yields all objects that are en

closed by a given object.

• Enclosure Query (enclosure join) yields all objects enclosing a given

object.

• Adjacency Query (adjacency join) yields all objects adjacent to a given

object.

Usually, spatial joins are difficult to do rapidly since they combine two spatial

relations. They are the most time-consuming operations in spatial databases. In

8

order to make spatial queries efficient, spatial join must be efficient as well [BKS93].

Efficient spatial join methods continue to be a major topic. The recent research can

be found in [APRSOO].

As mentioned above spatial join is the most expensive spatial operation. A closer

look at these spatial predicates indicates that the intersection join plays an essential

part in different spatial joins [GR94, GG98]. For example, in the case of Containment

Query, Enclosure Query, or Adjacency Query, Intersection Query is an efficient filter

that produces a set of candidate solutions typically much smaller than the Cartesian

product of two spatial relations. The intersection query is the main implementation

in this research. We use the following example to illustrate intersection query.

Example: Find all intersections of roads and rivers.

select all
from land-use 1, land-use k

where intersect(l.location, k.location)
and l.usage = "road" and k.usage = "river"

The spatial predicate intersect qualifies all roads which intersect the rivers. The

result of this operation is a join relation which contains all the attributes of the

two participating relations. A tuple in the resulting join relation corresponds to two

spatial objects that intersect each other. The intersections in this query are bridges.

2.1.3 Spatial Access Methods

The relevant literature and contributions in spatial databases are too large to at

tempt a complete survey in a limited section. Gaede and Gunther have a recent

comprehensive survey [GG98]. Most of these methods originally were designed to

manage large sets of multidimensional points and to support exact match or partial

match queries. Usually, the points in the database are organized in a number of

buckets. Each bucket is a collection of records stored on a disk page and corresponds

to some part of the entire data. The buckets are then built into a search tree or a

hash table.

9

Early proposals such as the k-d-tree [Ben75, Ben79] and the binary space parti

tioning (BSP) tree [FKN80, FAG83] did not account for paged secondary memory

and are therefore unsuited for very large spatial databases. These trees are binary

search trees built by recursively partitioning the data space into subspaces. Point

and range searches can be performed by means of simple tree traversals. The prob

lem is they typically are not balanced and may have very deep subtrees causing a

negative impact on the performance of tree operations.

Other access methods take secondary storage management into consideration.

The grid file [NHS84] uses a directory and a grid-like partition of the data space to

answer an exact match query with exactly two disk accesses. Though the grid file

needs only two disk accesses, the grid file directory could expand exponentially. The

problem is addressed in [CHLF89]. The directory expansion has only a quadratic

or cubic rate in their method. Furthermore, there are multidimensional hashing

schemes [Tam82, KS86, KS88], and hash trees where the directory is organized as a

tree structure [Ouk85, Oto86, Fre87]. Tree-based access methods are also popular.

They usually generalize the B-tree into higher dimensions, such as the k-d-B-tree

[Rob81], the hB-tree [1890], or the buddy tree [SK90].

The point access methods mentioned above cannot apply to databases containing

extended spatial obje_cts such as polygons. To manage such extended objects, point

access methods have been modified using one of the following three techniques, as

discussed in [SK88, Giit94, Sam95, GG98]: transformation, where extended spatial

objects are mapped into higher-dimensional points; overlapping regions, where differ

ent buckets for each object may overlap; and clipping, where objects are decomposed

into disjoint cells, which are mapped into buckets.

The transformation technique is based on parameterizing extended spatial ob

jects, then representing them as points in a higher dimensional space [Hin85]. Search

operations can be expressed as point and range queries in this higher dimensional

space; they can be computed by means of a point index. The transformation ap

proach is not always adequate for handling the wide variety of spatial queries. There

10

are four main drawbacks [Sam95, GG97]:

1. The transformation approach ignores the extent of data [Sam95]. Two nearby

intervals in the original space may be far apart in point space [FSR87].

2. Formulation of range queries in point space may be much more complicated

than it is in the original space.

3. Transformation works only for relatively simple objects such as rectangles.

4. Transformation of objects in very high dimensions is inefficient.

In the case of overlapping region schemes, objects are grouped into hierarchies,

and then stored in another structure such as a B-tree. A well-known example is

the R-tree [Gut84]. Each internal node in an R-tree corresponds to a bounding box

which covers all bounding boxes containing the children nodes. Sibling nodes, which

are nodes with an identical parent node, may correspond to overlapping intervals.

The problem of this approach is that an object is associated with only one bound

ing box and that box could overlap other boxes. The situation becomes even worse

when there are objects of varying size in one bounding box, typical for geographic

applications where one must represent objects of widely varying size such as buildings

and states in the same spatial database. Moreover, each insertion of a new data ob

ject may increase the overlap. In the worst case, one must search the entire database

to find a specific object. Many studies show it is very important to minimize the

overlap [RL85]. This led the development of deferred-splitting techniques as in the

R * -tree structure [BKSS90].

In the case of clipping schemes, during insertion, each new data object is decom

posed into disjoint nodes in the index structure. Several leaf node entries may be

created for the same object. The price paid for the disjointness is not only an increase

in the average search time but also an increase in the frequency of node overflow,

which makes updates much more complicated. Examples for clipping-based schemes

where these problems can occur include the R+ -tree [SSH86, SRF87], an R-tree

11

variant where no overlaps are allowed except at the leaf level. The result is a very ef

ficient point query but range query, insertion and deletion operations become rather

complicated [GB91].

Gaede and Gunther [GG98] attempted a summary for all experimental compar

isons of different multidimensional access methods and made the following recom

mendation for the best performing ones: buddy (hash) tree [SK90], cell tree with

oversize shelves [GG97], Hilbert R-tree [KF94], KD2B-tree [v090], PMR-quadtree

[NS87], R+-tree [SRF87], and R*-tree [BKSS90]. The multidimensional data models

and access methods described above are not general enough and often allow only the

representation and operations of specific spatial objects in fixed dimensions.

2.1.4 Geographical Information Systems (GIS)

GIS stands for Geographic Information Systems. A geographic information system

is a computer system capable of assembling, storing, manipulating, and displaying

geographically referenced information. Most existing GIS depend on a strict dis

tinction between alphanumerical data and spatial data. For example, Arc Spatial

Data Engine (ArcSDE) by the Environmental Systems Research Institute (ESRI) is

integrated with and supports the major functions and capabilities of a commer

cial DBMS which has a separate module devoted to spatial data. Examples of

such separate modules are Oracle Spatial, IBM's DB2 Spatial Extender, and In

formix's Spatial DataBlade. The common shortcoming of these systems is the lack

of uniformity for the representation of data. Many research models and prototypes

also favor specific algebras and spatial extensions of conventional database models

[RFS88, OM88, SV89, Giit89, GS93]. Furthermore, the operations based on sim

ple data structures are inept for the costly operations involved in geospatial object

management. Another weakness of traditional GIS is the lack of support for time

domain. Therefore, the better solution is to introduce a flexible and extensible data

model, a general query algebra, and efficient indexing methods.

12

2.2 Constraint Database

Constraint database systems, on the other hand, have the potential to overcome

some problems mentioned above. Constraints were introduced into databases during

the past few years. In general, constraints are incorporated into a database in three

different ways [GG95]. First, integrity constraints on data define valid database

states. For example, a person cannot have negative height. The database system

must ensure the validity of these constraints during updates, insertions, and deletions.

Second, queries can be interpreted as a kind of constraint: Each query predicate

represents a constraint that the objects in the result must satisfy. Third, constraints

can represent database objects or sets of objects such as all people of height 6 feet

or less. This technique generalizes the traditional notion of a database tuple, which

corresponds to a point constraint in this model. The database with constraints at a

data level is then specified as a constraint database.

Although integrity constraints in databases have been studied for several years

[KSS87, Wal91], they still have not integrated seamlessly into database systems other

than constraint databases. The work proposed in [HHLvEB89] is an early study of

integrating constraints into the database at the language level using queries. The

potential of the constraint database was then presented by Kanellakis, Kuper and

Revesz in their work [KKR90, KKR95] where they introduced the constraint as a

basic data type and described the Constraint Query Language design principles. The

constraint database model is at the intersection of databases, constraint program

ming, computational geometry and operations research [Bro96b, GW97]. Several is

sues about constraint databases are still under investigation [Bro96a, Bro96b, GW97].

For the recent survey of constraint databases, please refer to [KLPOO].

2.2.1 Basic Definitions and Data Modeling

The basic idea in constraint databases is to generalize the relational model [Cod70] in

order to have infinite databases that are finitely representable by constraint formulae

13

as a basic data type. A constraint (formula) identifies a formula of a decidable logical

theory. Constraints have been used in areas such as programming languages, artificial

intelligence, and operations research. Several classes of constraints with specificed

domains have been proposed. The domain could be real numbers, rational numbers,

integer numbers, or any other finite or infinite set. The universe of real numbers,

rational numbers, and integer numbers can be denoted as JR, Q, and][respectively.

Some of constraint classes are presented here [KKR90, KKR95].

1. Equality constraints are all formulae of the form xOy and xOc, where x, y are

variables, c is a constant, and() is= or=/. For example, x = y, y =/ 4.

2. Dense-order constraints are all formulae of the form xOy and xOc, where x, y

are variables, c is a constant, and () E { =, ::;, <, #, >, ~}. For example, x >

3,y::; 4,y > x.

3. Linear constraints are all formulae of the form a1x1 + · · · + akxk0a0 , where

a0 , • · ·, ak are constants, and () E { =, ::;, <, =/, >, ~}. For example, 2x - 3y <

6, y + 2x > 4.

4. Polynomial constraints all formulae of the form p(x1 , • · ·, xk)OO, where p is a

polynomial with coefficients, variables x1 , · · ·, Xk, and () E { =, ::;, <, =/, >, ~}.

For example, x2 + y2 = 9, y - 4x2 > 16.

Before we discuss the definitions of constraint databases, we need some terminol

ogy from mathematical logic. A literal is a propositional letter or its negation. For

example, P, Q, ,P, and ,Qare literals. A fundamental conjunction is a literal or the

conjunction of two or more literals. For example, P and ,p I\ Q are fundamental

conjunctions. A disjunctive normal form (DNF) is either a fundamental conjunction

or a disjunction of two or more fundamental conjunctions. A fundamental disjunction

is a literal or the disjunction of two or more literals. For example, P and ,p V Qare

fundamental disjunctions. A conjunctive normal form (CNF) is either a fundamental

disjunction or a conjunction of two or more fundamental disjunctions.

14

The following definitions of constraint databases are from [KKR90, KG94b, GST94,

KKR95, Kan95].

• A generalized (or finitely representable in [GST94]) k-tuple ti over variables

x1 · • · Xk is a finite conJ·unction r.p· 1 I\··· I\ <p· 0 • where <p. · 1 · · · r.p· "· are con-
' ' i, i,.c.i' i, ' ' i,-ti

strants. This can be denoted as:

ii

ti= I\ 1./Ji,j
j=l

• A generalized (finitely representable) relation R of arity k is a finite set of

{t1 , · • ·, tn}, where each t1 , · · ·, tn are over the same variables x 1 , · · ·, Xk· The

formula r.p corresponding to the generalized relation R is a first-order formula

in DNF of constraints, which uses at most k variables. This can be denoted as:

or
n ii

<p = V I\ 1./Ji,j
i=l j=l

• A generalized (finitely representable) database is a finite set of generalized

relations.

As an example consider a tuple t(2, 3) of arity 2 in the relational database model.

It can represent a single point in a two dimensional space. We can also denote it

as t(x, y) with x = 2 and y = 3, where x, y range over some finite set. t(x, y) with

(1 ~ x ~ 3, 2 ~ y ~ 4) is a generalized tuple of arity 2, where x, y range over the

real numbers. In this case it is a rectangle in two dimensional space, and it contains

infinite number of points. This is' an example that a generalized tuple of arity k

could represent a infinite set of tuples (or points ink-dimensional space).

As mentioned in Section 2.1, multidimensional data appear in many applications.

Currently multidimensional data must often be stored in a dedicated system because

most database systems are not designed for multidimensional data. It is clear such a

15

separation makes applications harder to build and prevents high level query facility

and various query optimizations. Generalized tuples have the potential to put all

these various kinds of data within a single framework in a very natural way. Typ

ically, alphanumeric data is captured as equality constraints, spatial and temporal

data as linear constraints.

Example: The instance in Figure 2.1 is represented by the following three general

ized relations:

R1 = {[5 S X S 8 /\ -1 S y S 3] V [5 S X S 7 /\ 3 S y S 4]}

R2 = { [-1 S x S 3 /\ 1 S y S 5] V [-2 S x S -1 /\ 2 S y /\ y - x S 6]}

R3 = {[x - y = OJ V [x = 4] /\ [-2 Sy S 6]}

R 3

Figure 2.1 Example of Spatial Data

In this example, different spatial data (e.g. either a region or a line) are represented

in a generalized tuples framework . When we consider the intersection query of either

two regions or regions and lines, it becomes a very simple constraint intersection.

If we use the multidimensional access methods in Section 2.1.3, the task seems less

efficient: first search the objects based on MBB and then evaluate the query through

the precise spatial information of the objects.

When we consider a general framework for spatial data, we could model spatial

data as infinite sets in the relational space as shown in the above examples. A

polygon in the plane is a 2-tuple which contains the infinite set of points in Q2 inside

its frontier defined by the inequalities. A 3-dimensional pyramid is a 3-tuple which

16

contains the infinite set of points in Q3 inside its facets defined by the inequalities.

An n-dimensional polyhedron is an n-tuple which contains the infinite set of points

in (Qt defined by the inequalities of n variables.

2.2.2 The Algebra for Constraint Databases

It is important to define an algebra for constraint databases in order to make con

straint databases as a practical technology. The algebraic approach represents the

correct formal framework and a suitable basis for implementation. Since the intro

duction of constraint databases, a lot of work has been done to define an algebra

for linear constraint databases. Linear constraint databases have been studied ex

tensively because of their applicability and potential for efficient implementation.

In [Bro95, HK95], linear constraints are incorporated into an object-oriented frame

work. In [PdBG94, VGG95, BBBC95, BBC97, AAK97, VGG98, GdROO], constraints

are used in modeling spatial data and spatial queries. In [GST94, AAK95, AAK97,

GVGOO], the expressive power and complexity of linear constraint query languages

are investigated.

Our main focus here is to find an algebra which can be used as the logical frame

work for the current implementation. CALG (a linear constraint algebra) proposed

in [GST94, GL95] and EGRA (an extended algebra for constraint databases) intro

duced in [BBBC95, BBC97, BBC98] present the algebra for our main references.

The linear constraint algebra introduced in CALG is equivalent to the first-order

logic over the class of linear constraint databases [GST94]. The basic concept is

to apply the algebraic operators introduced by Codd for finite relations [Cod70] to

either finite or infinite relations. A symbolic algebra is defined as an extension of

the relation algebra, with operators applying to the finite representations of the

possibly infinite relations. Similarly, EGRA is a direct extension of the relation

algebra and is derived from algebra presented in the algebra of Kanellakis and Goldin

[KG94a, PdBG94, Gol96]:

The operations and mathematical symbols defined in these two algebras follow the

17

convention of relation algebra. They include Cartesian product, x, join, IXl, selection,

a, union, U, set difference, -, projection, 1r, and rename, p. The algebraic operations

are performed on sets of generalized tuples, i.e., on quantifier-free formulae in DNF.

From the definition of a generalized relation, consider an n-ary relation R repre

sented by a quantifier-free formula, rp, of the form:

n ei
rp =VA l.{)i,j

i=l j=l

or

rp = { ti 11 ::; i ::; n, ti = A l.{)i,j}

J=l

where ti,···, tn are generalized tuples and the l.{)i,j are linear constraints of the form

p

Laixl)ao
i=l

where() E { =, ::;, <, ::J., >, 2:} and the xi's denote variables and the a/s are constants.

Here, we can see that the linear constraint model generalizes the relational data

model in a very natural, simple and efficient way. It is not quite as simple to rep

resent geographical data in the relational model because geographical data mixes

alphanumeric data and spatial data.

Next, we consider the algebraic operations. In [BBC98), the operations are further

categorized into tuple operators, which handle generalized relations as an infinite set

of points, and set operators, which handle each generalized relation as a finite set

of spatial objects. We follow the notions in [GST94, GL95). Let R1 and R2 be two

relations, and respectively e1 and e2 be sets of generalized tuples defining them.

A

18

defines a polyhedron P(x, y) ~ Qn+l described by the inequalities (once the

coefficients of y have been normalized):

where x ranges over Qn, and y over Q.

for f = 1, · · ·, L
for k = 1, · · ·,K
for i = 1, ···,I

5. R 1 - R2 = {t1 I\ t 2 lt1 E e1 , t 2 E ,e2}, where ,e is the set of tuples or disjuncts

of a DNF formula corresponding to ,e.

Similarly to the relational calculus, there is an equivalent constraint calculus

for a constraint algebra [KKR90]. When we write a constraint-algebra expression,

we provide a sequence of procedures that generates the answer to our query. By

contrast, the constraint calculus is a nonprocedural query language. It describes the

information without giving a specific procedure for obtaining that information. The

recent discussion about the constraint calculus can be found in [GW97, RevOOa].

2.2.3 Constraint Solving

A class of constraints together with their semantics is often termed a constraint do

main, for example, linear constraints over the rational numbers. A generalized tuple

is a set of constraints over a given constraint domain. In order to ensure correctness

and completeness for a constraint domain, an algorithm is required to decide what

ever constraints over the given domain are satisfiable. Such an algorithm is termed

a constraint solver. A generalized tuple is a set of constraints over a given constraint

domain. In the worst case, a relational database should answer unquantified queries

in polynomial time. For this result to apply to constraint databases, it is necessary

that constraint solving itself has only polynomial complexity. Obviously each access

to a generalized tuple needs the constraint solver, so very fast constraint solving is

crucial.

19

Constraint solving was first investigated in Constraint Logic Programming (CLP)

systems. Most CLP systems which manipulate constraints over JR or over]Rn for some

n incorporate constraint solvers based on either the Simplex algorithm (linear con

straints) [Dan63, Sch86, NT93] or on Buchberger's algorithm (non-linear constraints)

[Buc85]. Constraint database systems need the the same kind of solver which evalu

ates all constraints at run-time.

Any particular CLP language typicaHy will include several constraint domains.

Then there will be several solvers for different constraint domains. Some of these

solvers will be replaced by a set of constraint checker and constraint agents. A

constraint checker is able to check the consistency of the constraints once all vari

ables are instantiated. Constraint agents are those programs that ask the constraint

solving from the constraint solvers. Constraint agents can handle constraints with

uninstantiated variables, but do not guarantee detection of all inconsistencies.

Usually, the constraint solvers designed for CLP systems are more general and

might not be efficient for the various applications on constraint database systems.

In the actual implementation some specific modifications is necessary.

2.2.4 1/0 Efficiency and Query Optimization

To access large sets of constraints efficiently, constraint database systems must be

I/0 efficient. I/0 efficiency is accomplished by index structures such as B-trees

and their variants (B+ [BM72], B* [Knu73]) in relational database systems. B-tree

variants [Ram97, ZSI99, RamOOJ and multidimensional access methods [KRVV93,

Fre95, KRVV96] are proposed to index constraint databases. Multidimensional ac

cess methods that index a spatial object can be used to index sets of constraints

which define or delimit this spatial object. Spatial indices are often only suited for

indexing data in two or three dimension, but constraints often tend to be in four

or more dimensions [GW97]. Moreover, indexing nested constraints in the presence

of disjunctions of conjunctions should be scrutinized. These problems should be

addressed in the future research.

20

Query optimization is another important issue in constraint database systems.

Whether conventional optimization strategies such as cost-based plan selection, push

down selections, join ordering, algebraic transformation, and simplification can be

used in constraint database systems requires further study. Traditional query pro

cessing strategies need to be investigated with respect to their applicability in con

straint database systems. The recent research on optimization techniques can be

found in [GLRSOO].

2.2.5 Systems and Applications

The preceding discussion reflects the theoretical advance in constraint databases.

Practical results are mainly in the constraint programming area [GW97]. There is

a strong demand to implement constraint database systems. We can have a bet

ter understanding of constraint databases through implementation. Such systems

are also a testbed for various promising application areas. The study on practical

applications also introduce further research on theoretical issues.

We follow the work by Gaede and Wallace in [GW97] to introduce the implemen

tation of constraint database systems. They illustrate three different approaches for

building constraint database systems.

1. Constraint programming centered view. This approach extends current con

straint programming systems with constructs to handle persistent data and

other database features. The programming language enhanced by constructs

to handle persistent data is a persistent programming language. This same

approach has been employed to build object-oriented databases.

The ECLi Pse Constraint Logic Programming System [WNS97, WS99] devel

oped at the European Computer-Industry Research Centre (ECRC) is an ex

ample in this category. ECVPse provides various constraint solving libraries

which can be used in different applications. ECVPSe can store constraint

variables and support multidimensional indexing, but it lacks an integrated

constraint query language.

21

2. Database centered view. This approach extends the current database system

(e.g., relational, object-oriented, deductive) by the notion of constraints. Such

extensions attempt to preserve the current database system and provide an

add-on constraint system [HCLM90, SK91]. It requires careful investigation of

whether various database. components could benefit from constraints, study on

the impact of such an augmentation on other components, and introduction of

new components capable of dealing with constraints efficiently. This approach

finds its counterpart in object-relational database systems.

The CCU BE system [BS97, BSCE97, BSCE99] is built on the object-oriented

database system ObjectStore [LLOW91] and the CPLEX linear constraint

solver [HJ88] to form a new system. It is designed to function as a generic

platform for building systems such as Lyric [Bro95] or a constraint extension

of an object-oriented query language. The CCUBE system relies on the Con

straint Comprehensive Calculus instead of an algebra and an object-oriented

database framework which has no uniform development standard [Edw98].

The DeCoR system (DEductive database system with COnstraints over Reals)

is a prototype of a constraint database system which is an extension of the

deductive database system ProQuel [GM94]. It incorporates the constraint fa

cilities on top of a commercial relational DBMS (Oracle). The DeCoR is aimed

at solving diverse problems, particularly, temporal databases. The DeCoR sys

tem relies on a constraint calculus based on Datalog plus constraints. Datalog is

a nonprocedural database query language derived from the logic-programming

language Prolog. Though the DeCoR system, similar to the CCUBE system,

uses a constraint calculus, it is a good reference for the system implementation.

Dedale [GRSS97, GRS98, GRSSOO] is a constraint database for spatial infor

mation. It is built upon an object-oriented database system, 0 2 . Data are

stored in an object-oriented framework, with spatial data represented using

linear constraints over Qn (rational numbers) for some n. Dedale uses the

22

standard Object Query Language (OQL), with enhancement of special func

tions for constraint solving and geometric operations. Dedale is now used to

run a geographical application from the French Institute for Geography. It

depends on a linear constraint algebra. Dedale is another good reference for

the system implementation though it builds on an object-oriented database

system.

3. Mixed view. This approach builds a constraint database system from scratch.

This approach avoids the risk of underestimating the complexity of the other

corresponding part since each of the above two approaches depends on either

database or constraint programming system. However, this approach certainly

requires more effort. This approach also allows low-level query optimization

techniques proposed in [BJM93].

The DISCO (Datalog with Integer and Set order COnstraints) system [BR95,

Rev97, RevOOb] is an example following this approach. DISCO provides a non

procedural, logic-based query language and allows uers to express the database

inputs. DISCO also works by a translation to a procedural, algebraic language

and a bottom-up evaluation that is guaranteed to terminate with some con

straint database output. These features make DISCO applicable in various

problems such as computer-aided design, scientific databases, and other areas

where set-type data are used. However, DISCO relies on a constraint calculus

and the type of constraints implemented in DISCO are integer gap-order and

set-order constraints. These are not well-suited for the geographic application

or other applications which rely on linear constraint algebra.

MLPQ/GIS [RL97, KRW98, Pra98, RCKLOO] is a constraint database sys

tem with a special emphases on spatio-temporal data. Features include data

entry tools, icon-based queries, and Datalog queries. These query interfaces

facilitate the database access; however, there is no direct integration with the

conventional database system. It is a good reference for the implementation.

23

In addition, some connectivities which allow constraint programming platforms

to access database systems have been built. For example, ECVPSe has connectivity

to Oracle and the Exodus storage manager [CDV88, Gra95]. The commercial CHIP

(Constraint Handling in Prolog) system [DHSA88] can connect to Oracle. More

constraint database systems and applications will be available.

2.3 Web Applications on CORBA/IIOP using Java

2.3.1 An Introduction to the Web

The Web is a distributed hypermedia information system proposed by Tim Berners

Lee at the European Laboratory for Particle Physics (CERN) near Geneva, Switzer

land in 1989. The first Web server and browser then was created on a NeXT computer

in 1990 [Gil97, NV96]. The main purpose of the Web is to provide an easy sharing

of the information through the Internet or intranets where the Internet is the col

lection of global networks and an intranet is a network that is contained within an

enterprise. The Web gained popularity since the appearance of the Web browser,

Mosaic, which was created at the National Center for Supercomputer Applications

(NCSA) in 1993. Since then various new Web applications are appearing. The Web

is becoming a universal platform for running applications on the Internet and on

intranets [Kha96].

HyperText Markup Language (HTML) is widely used as a document formatting

language on the Web. HTML documents contain text, font specifications, and other

formatting instructions. Links to other documents are specified by the Universal

Resource Locators (URLs). Most documents are accessed using HyperText Transfer

Protocol (HTTP), which is a protocol for transferring Web documents [Com95, Ber96,

Dew97, Gil97, OHE96, OH98, SKS97]. HTML is a specific application of Standard

Generalized Markup Language (SGML), which is an international standard for the

format of text and documents [Wig95, SKS97]. HTML can define only a single,

inflexible document type. SGML is too complex for the Web. Common Gateway

Interface (CG!) is designed to retrieve data on the Web server dynamically and

24

interactively [Ber96, NV96, Dew97]. It allows Web servers to execute a CGI program

to respond the request from the client.

The Extensible Markup Language (XML) is designed to deliver SGML information

over the Web while overcoming the limitations of HTML [Kha97, MFDG98, GQ99].

XML is a metalanguage to let Web users design their own markup language. XML is

a simplified form of SGML which embraces the Web ethic [GPOOJ. XML has almost

all of the capabilities of SGML but those that primarily affect document creation

[Kha97]. The effort to develop effective techniques for database access through XML

is presented in [ABSOOJ.

Style sheet languages are used to describe how documents are presented on screens

or in print. Style sheet languages separate structure and content from presentation

[MFDG98, MFDG98]. Cascading Style Sheets (CSS) and Extensible Stylesheet Lan

guage (XSL) are two style sheet languages endorsed by World Wide Web Consortium

(W3C) [MeyOO]. While the combination of XML and style sheet languages increases

flexipility, it also increases complexity and loses simplicity of original HTML propos

als [Kor98].

JavaScript is a script language capable of defining functions in a Web document

[Fla97]. JavaScript is standardized under the name EcmaScript [Dob98, Rul99]. Doc

ument Object Model (DOM) defines how HTML objects are exposed to the scripting

language [Rul99J. Dynamic HTML (DHTML) is a term used to describe HTML

pages with dynamic content [Dob97, MFDG98], which contains CSS, HTML, and a

scripting language under the umbrella of DOM [Del99].

2.3.2 CORBA/IIOP

CORBA (Common Object Request Broker Architecture) is an industry-wide stan

dard for creating distributed object systems [PWGB98, BalOOJ. It is a middleware

project undertaken by Object Management Group (OMG) which is a consortium

of computer industry companies [Ber96, OHE97b, OH98]. CORBA is the heart of

the OMG's architectural framework, the Object Management Architecture (OMA).

25

CORBA is the OM G's answer to the need of interoperability between software writ

ten in different languages or on heterogeneous hardware platforms [PWGB98].

The central component of CORBA is the Object Request Broker (ORB). It en

compasses all of the communication infrastructure necessary to identify and locate

objects, handle connection management, and deliver data. In general, the ORB is

not required to be a single component; it is simply defined by its interfaces. The

ORB Core is the most crucial part of the Object Request Broker; it is responsible for

communication of requests. Internet Inter-ORB Protocol (IIOP) is to specify ORB

interoperability [PWGB98, OHE97b, OH98, VD98]. IIOP is basically TCP /IP with

some CORBA-defined message exchanges that serve as a common backbone protocol

[BalOO]. ORB Interface Definition Language (IDL) is the language used to specify

interfaces of objects independent of particular programming language representa

tions. To assist object implementation CORBAservices for fundamental services and

CORBAfacilities for application-level services are published.

Generally speaking, CORBA has the following benefits [Ber96, Bak97, PWGB98,

SieOO]:

• Interoperability on heterogeneous computing environments.

• Scalability.

• Rapid application development.

• Code reuse.

• Separation of interface and implementation.

Java's inherent platform independence conveniently facilitates software reuse and

portability in heterogeneous environments. CORBA's language-neutral approach to

object interface specification allows objects to interoperate without respect to any

specific implementation language. Java and CORBA, taken together, provide an

architecture for developing highly resuable and portable distributed software systems

[PWGB98].

26

2.3.3 The Object Web

The progression of Web technologies from simple document fetching to more complex,

interactive applications followed several stages [OHE97b, OHE97a, VD98]:

• Fetching electronic documents published on the Web sites.

• Building interactive systems using CGI.

• Using Java applets to provide client-side functionality.

• Distributed computing through the association of Java and CORBA.

The HTTP /CGI paradigm has several drawbacks [OH98, OHE97b, OHE97a,

VD98]. The various CGI extensions from different vendors simply lead to a totally

incompatible server Web. The real solution is the association of distributed objects

on the Web. One example is augmenting the Web infrastructure with CORBA/ Java.

This provides several benefits as described in [OH98, OHE97b, OHE97a, VD98,

ZLOO]:

• CORBA extends Java with a distributed object infrastructure.

• CORBA provides a scalable server-to-server infrastructure.

c

• CORBA avoids the CGI bottleneck and preserves state.

This trend oflnternet innovation is called the Object Web [OH98, OHE97b, OHE97a]

as shown in Figure 2.2.

HTML&

Forms

HTML&

Java

Web Client
I I

Tier 1

HTTP HTTP

Internet

TCP/IP

CORBA
HOP

CORBA
HOP

HTML

Lotus Notes

Business Objects
TPMonitor

Web Server Application

Tier2 Tier3

Figure 2.2 An Object Web Model Based on Java and CORBA ORBs

[OHE97b].

27

The Web has been evolving in a fast pace. Emerging technologies are changing the

face of the computing environment.

CHAPTER III

WEB-BASED APPLICATIONS

3.1 A Web-Based Tax Calculator

To motivate the implementation of a constraint database system in a distributed

computing environment, we consider the design of an online income tax estimator.

The purpose of this application is threefold. First, it shows how to build an ap

plication in a distributed computing environment. Second, it presents the ability

of constraint databases to handle the data involving arithmetical computation. Fi

nally, it reflects the necessity to integrate data represented by constraints with data

represented using typical relations.

Generally speaking, the tax is a piecewise linear function of the income as shown

in Figure 3.1.

Income

Figure 3.1 Dependency between Income and Tax

3.1.1 Creating the Constraint Database

The relation between the income and the corresponding tax can be modeled in dif

ferent ways. To build up a constraint database we need to separate the data rep

resentable by the relational model from data represented by constraints. In this

28

29

example, we create a Tax database which contains a taxpayer table for holding the

basic information of a taxpayer and a deduction table for the standard deduction and

exemption. Table 3.1 and Table 3.2 are typical tables in a relational database:

Tax ID First Name Last Name Income
123456789 Jane Sebring 51720.51
102347852 Al Goodwin 42081.23
151678001 Dan Talley 31507.75
142693100 Mike Johnson 33720.69

Table 3.1 Taxpayer Table

Type Exemption deduction
s 4400 2800
H 6450 2800
M 7350 2800
p 3675 2800

Table 3.2 Deduction Table

In Table 3.2 the type attribute indicates the filing status of the taxpayer where S,

H, M, and P stand for single, head of household, married filing jointly, and married

filing separately, respectively. The other table in this application is the tax rate

schedule. Table 3.3 is the 2000 tax rate schedule for the single taxpayer from the

Internal Revenue Service:

Over But not Over +% on amount over .
0 26,250 15 0

26,250 63,550 3,937.50 28 26,250
63,550 132,600 14,381.50 31 63,550

132,600 288,350 35,787.00 36 132,600
288,350 91;857.00 39.6 288,350

Table 3.3 Tax Rate Schedule

The tax rate schedule can be represented using the following linear constraints:

[r = 0.15 I\ 0 S X < 26250]V

[r = 0.28 I\ 26250 S X < 63550]V

[r = 0.31 I\ 63550 S x < 132600]V

[r = 0.36 I\ 132600 :S x < 288350]V

[r = 0.396 I\ 288350 :S x]

30

where r is the tax rate and x is the income. We can simplify it and form the tax

table as shown in Table 3.4.

X () Income Base Tax Rate Type
1 > 0.00 0.00 0.15 s
1 > 26250.00 3937.50 0.28 s
1 > 63550.00 14381.50 0.31 s
1 > 132600.00 35787.00 0.36 s
1 > 288350.00 91857.00 0.396 s

Table 3.4 Tax Table

x attribute contains the coefficient of the constraint. () is used to store the operations

in constraints. Income is the right hand side (RHS) of the equation. In this way we

can store constraints in a relational database. In general, there are four comparison

operations: >, ?:, <,and::;. When we do the query in the database,() can be used as

an indication of the data range. The symbol > indicates that the tax rate occurs when

the income is more than the specified value. In this application storing constraints

in a relational database is straightforward. We can do it without any mechanic

operation. We can omit x attribute from our table in the actual implementation

because the coefficients is same. One-dimensional linear constraints can store into

a relational database in this straightforward way. For more complex applications

manual transformation is not sufficient. Then we need a conversion program which

will be illustrated in the later applications.

To calculate the tax, we first query the matching rate. This procedure is called

constraint satisfaction. This function is used frequently for constraint solving. It

simply scans the tuples of the relation and returns the true as soon as it finds a

satisfiable tuple. Then we calculate the taxable income by subtracting the deduction

and exemption from the gross income. Finally, we multiply the rate with the taxable

income over the base earnings (RHS) plus the base tax to get the tax. Here is the

equation to calculate the tax: tax = base tax+ rate x (taxable income - RH S). We

31

use the sequential search to find the satisfiable tax rate. When the sequential search

is not sufficiently fast in a large table, we need some other efficient search or index

methods.

3.1.2 Developing the CORBA Application

Four components are required to build up the application:

• a Web server - Apache HTTP server.

• a Java programming environment - SUN Java 2 SDK.

• a CORBA compliant Object Request Broker - Object Oriented Concept Orbacus

[ObjOO].

• a relational database system - Hughes Technologies mSQL.

The choice of the software in our implementation is based on their usability and

availability. It is only a reference. Any similar products should suffice the application.

The Web browser is used to access the Java applets which are client parts of the

application. CORBA classes are used by those Java applets to communicate across

client and server. To access the application from the Web browser we need to put

Java applets and CORBA classes in a place accessible by the Web server.

A CORBA object is an object with an interface defined in CORBA IDL. CORBA

objects have different representations in clients and servers [ObjOO].

• A server implements a CORBA object in a concrete programming language,

for example in Java or C++. An implementation class based on the skeletons

produced by IDL compiler should be written and then instantiated. This object

implementation is called a servant.

• A client that utilizes a servant implemented by a server creates an object that

invokes all operations to the servant via the ORB. Such an object is called a

proxy or stub.

32

When a client invokes a method on the local proxy object, the ORB packs the

input parameters and sends them to the server, which in turn unpacks these pa

rameters and invokes the actual method on the servant. Any output parameter and

return value follow the reverse path back to the client. From the client's perspec

tive, access to the remote objects is like access to the local objects because all the

communication details are hidden within the proxy object.

To allow the ORB to invoke a method on the servant when a request is received

from a client, a servant must connect (bind) to the ORB. This connection is handled

by the Portable Object Adapter (POA), as shown in Figure 3.2 [BalOO, ZLOO].

Client
Object Implementation

(Servant)

Client Dynamic

IDL Dynamic Skeleton Skeleton

Proxy Invocation Interface

(Stubs) Portable Object Adapter

Object Request Broker Core

Figure 3.2 ORB Interface

The Portable Object Adapter was approved by the OMG to replace the deprecated

Basic Object Adapter (BOA). The POA is a far more powerful and flexible object

adapter than the BOA. The POA was defined to support a portable implementation

among different vendors. A server can use many POAs to support different policies.

It includes a number of features that are essential for building scalable and high

performance servers [BalOO, ZLOO].

To develop a CORBA application we follow the steps as shown in Figure 3.3

[OH98, PWGB98, VD98, DCR99]:

1. Identify the objects used in an application: object analysis and design.

33

2. Specify the objects and their interfaces in an IDL file.

3. Compile the IDL file. The IDL compiler will generate client stub code and

server skeleton code in the specified language. The IDL-to-Java compiler is

used in our application.

4. Code the servers. Implement server objects whose interfaces are defined in the

IDL file.

1. Object Analysis and Design

2. Interface specification in IDL

5. Client Coding

Client Stub
(Object Proxy)

Client

Compile

Client Process

3. IDL

Compiler

IIOP

4. Server Coding

Skeletons

Object
Implementation

Server

Compile

------------ Server Process

Figure 3.3 Create a CORBA application

5. Code the clients. Integrate stub codes to complete client design.

The object-oriented design is a basic concept in CORBA program development.

An IDL file defines all required objects. A good design starts from a good object

design in an IDL file. The IDL file of our tax application is shown as follows:

module Tax {

II Define a taxpayer.
struct Taxpayer {

string tax_id;
string first_name;
string last_name;
double income;

};

II Define the tax rate.
struct Taxrate {

char theta;
float income;
float base_tax;
float rate;
char type;

};

II Define the tax deduction.
struct Taxdeduction {

};

char type;
float deduction;
float exemption;

II Define the tax table.
typedef sequence<Taxrate> TaxrateSeq;

II Declare TaxManager interface.
interface TaxManager {

};
};

II Open/Get the information of the taxpayer.
Taxpayer open(in Taxpayer tax_payer);
II Update the income.
Taxpayer updateincome(in Taxpayer tax_payer, in double amount);
II Return the tax table.
TaxrateSeq taxtable(in char type);
II Return the tax deduction.
Taxdeduction deduction(in char type);

34

Taxpayer defines the data structure of a taxpayer which includes the tax ID, the

first name, the last name, and the income. Taxpayer corresponds to the taxpayer

table in our database. Taxrate defines an entry in our tax table. It contains theta

35

which is a mathematical operation, the income, the base tax, the tax rate, and the

filing type. TaxrateSeq defines a sequence of Taxrate. This sequence corresponds

to the taxtable table in the database. Taxdeduction is composed of the filing type,

the deduction, and the exemption. Taxdeduction corresponds to the taxdeduction

table in the database. TaxManager interface is defined in the IDL file. It contains

four functions: open an account, update income, return the tax table, and show

tax return. With these three data structures and one interface we can build up our

application.

3.1.3 Running the Application

The application is built in three tiers: client, server, and middleware. In this example

the client is a Java applet, the server is a database system, and the middleware is a

HTTP /CORBA combination. The Java applet is an interface for users to initiate the

requests to the CORBA objects. The CORBA objects then address the requests to

the database system. The response from the database system goes back to the Java

applet through requesting CORBA objects. The HTTP server is used to transfer

Web contents.

Figure 3.4 shows the interaction between a Web-based client and its server on

Object Web [OH98]:

1. Web browser loads HTML page.

2. Web browser retrieves Java applet from the HTTP server.

3. Web browser loads applet.

4. Applet invokes CORBA server objects.

5. Server objects respond to the requests or generate the next page.

/,,,.-·-- ,.,

1. <;J~t HTML'~age
I I

2./Get Applet \
3. Load Applet

TaxApplet

I I

i i
i Internet i
i i
i TCP/IP !

HTML
Document

Applet

ORB
\ 4. CORBA no~ OA Server

>---+-~~i~~~~-,~. ~• ORB
~~~ \ i 

._ ; rver 
\ i 
\ ; 
' / 

TaxTable 
'·, _____ .,.·"' TaxManager 

Web Client Web Server 

Tier 1 Tier2 

Figure 3.4 Running the Tax application 

5. Generate the 
next page 

TaxMsql 

mSQL 
DBMS 

Application 

Tier 3 

36 

In the tax application, two Java applets are used to access the database system. 

TaxApplet is an interactive interface for users to access the account information. 

TaxTable retrieves the tax table from the database and displays it. TaxServer initi

ates a TaxManager CORBA object awaiting the incoming requests. TaxManager 

sends the requests to TaxMsql which finally sends the requests to the database. The 

reply from the database system goes through TaxMsql and TaxManager object 

and reaches the client applets. To separate TaxMsql and TaxManager has the 

following benefits: 

• Each program is a functional module. TaxManager is a CORBA object. 

TaxMsql is dealing with the database system. 

• The application code does not depend on the choice of a database system. We 

can connect the database through the APis of the database system, JDBC, or 

ODBC without changing CORBA function calls. 

Figure 3.5 shows the running example of the tax application. 



37 

hip:/ /w##.Hi~.edui chang/c:orb8jorbaeua(re.x.hfmf -- ---- ------

US Income Tax Estimator 

Income Tax Return 
ArstName 

t•nd)I 
fling status 

Gross tnc:orne 

Tax Table 
Taxable 
income over Plus 
Is oYer 

0.0 26250,.0 0.0 15.al 0.0 

28250.0 63550.0 3937.t 28.ft 26250..0 

6355D.O 132$00.0 1'391..5 31.(N G35S0.0 

132GOO.O 28835D.O 35187.0 3f,.(III 13ZGOO.O 

288350.0 91857.0 39..A 288l5D.O 
..!.I 

/.~ 

Figure 3.5 The Running Example of the Tax Calculation 

3.2 An Interactive Stock Analysis Tool 

With the proliferation of the electronic commerce various applications are targeted 

to facilitate the usage of the electronic business on the Internet. In this section, we 

device a stock analysis tool which is accessible through the Internet. We provide users 

with an interactive tool in CORBA distributed computing environment . It retrieves 

main financial data from COMPUSTAT stock and business database [Com97] and 

does useful analysis. In addition, we show how to store more complex constraint data 

into a relational database system in CORBA distributed computing environment . 

Our data set is from COMPUSTAT Database. It is the most complete and 



38 

current database of U.S. and Canadian public companies and indexes available today 

[Com97]. In particular, we focus on S&P 500 companies. We build this application 

for two purposes. Firstly, it shows how a more complex application can be built in 

a distributed computing environment. Secondly, it presents possibility to store more 

complex constraint data into a relational database system. 

The portion of the data set we are concerned with is the year number, the earnings 

per share, the stock low, the stock high, and the stock value at year close for the last 

ten years. We also include the basic information such as the company name, the 

ticker, ~he address, the phone number, the industry classification, and the employee 

numbers. The company basic information and the financial data set form two tables 

in the database we use. 

To do a stock analysis we focus on two queries. One query retrieves the companies 

which have a price-earnings (P /E) ratio less or more than some constant. The P /E 

ratio is an important factor to consider a stock. A high P /E ratio indicates less profit 

or high investment [BM98]. On the contrary a low P /E ratio indicates high profit 

or less investment. A negative P /E ratio means the company is in debt. Investors 

choose stocks based on their preferences. Another measure is a stock's volatility which 

considers a stock whose value didn't vary by more than some percent of the price 

at year's end [BM98, GRSY96]. Volatility is a measure of riskiness about the future 

changes in the prices of assets and other economic variables. It is a fundamental 

parameter used to quantify risk in modern finance theory, and it is crucial input for 

virtually all decisions relating to risk management and strategic financial planning 

[BM98, CM88, Hot97, TB98, HW98]. 

3.2.1 Creating the Constraint Database 

The database for the stock application is described in this section. The company 

and finance table are created in this database. The company table contains the basic 

information of a company. 

An example of the company table is shown in Table 3.5. 



39 

Name CISCO SYSTEMS INC 
Ticker csco 
Address 170 W TASMAN DR 
City SAN JOSE 
State CA 
Zip Code 95134-1706 
Phone 408-526-4000 
Industry COMPUTER COMMUNICATION EQUIP 
Exchange NASDAQ 
Employees 15000 
Group S&P 500, S&P Industrials, Fortune 500 

Table 3.5 Company Table 

The company table is a table which can be represented in a relational model. The 

other table in this application is the finance table which contains important financial 

parameters of a company. We define a constraint between the low price and the high 

price to indicate the share price is floating in that range. An example of the table is 

shown in Table 3.6: 

Ticker Year EPS Low Price () High Price Close Price P/E Ratio 
MSFT 98 0.835 31.094 < 72.000 69.343 59.222 
MSFT 97 0.658 20.188 < 37.688 32.313 48.052 
csco 98 0.420 17.167 < 48.875 46.406 72.539 
csco 97 0.336 10.056 < 20.194 18.583 52.342 

Table 3.6 Finance Table 

The () attribute is used to store the constraint operation. The symbol < indicates 

that the share price is .between the low price and the high price. In this application 

storing constraints in a relational database is straightforward as shown in the tax 

application. So no conversion program is needed. In this application () is more 

symbolic than practical. This is a degenerated case of linear constraints. For more 

complex applications we need a conversion program. 

For this data set, we explore four queries. The first query is: Retrieve the company 

which has the specified ticker. The second query is: Find the ticker of a company. 

The third one is: Retrieve all tuples which have a price-earnings (P /E) ratio less 

or more than some constant. The fourth query is a measure of a stock's volatility 



40 

which contains the third query and Retrieve all tuples that correspond to stocks whose 

value didn't vary by more than some percentage of the price at year's end. In terms 

of linear constraints it is pricehigh - price10 w - p X priceyear-end .:::; 0 where p is 

the percentage mentioned above. The sequential search used in the tax application 

applies to find the stock which meets this condition ( constraint satisfying). When 

the table becomes large, the sequential search is not sufficiently fast, and efficient 

search or index methods is required. 

3.2.2, Developing the CORBA Application 

The system requirements and the procedure to develop this application are similar 

to the tax application. The Java applets access the remote database through the 

CORBA objects which reside on the Web. To develop a CORBA application we 

follow the steps as shown in Figure 3.2. The IDL file defines all required objects. A 

good IDL design is necessary for a good program design. The IDL file of our stock 

application is shown as follows: 

module Invest { 

II Define a company. 
struct Company { 

}; 

string name; 
string ticker; 
string address; 
string city; 
string state; 
string zipcode; 
string phone; 
string industry; 
string exchange; 
unsigned long employees; 
string group; 

II Define the finance information. 
struct Finance { 

string ticker; 
unsigned short year; 



}; 

float eps; 
float 
char 
float 
float 
float 

low_price; 
theta; 
high_price; 
close_price; 
pe_ratio; 

II Define the Company and Finance sequence. 
typedef sequence<Company> CompanySeq; 
typedef sequence<Finance> FinanceSeq; 

II Declare the Portfolio interface. 
interface Portfolio { 

}; 

}; 

II Get the company information. 
CompanySeq company(in string ticker); 
II Get the finance information. 
FinanceSeq finance(in string ticker, in unsigned short year); 
II Get the ticker by company name. 
string getTicker(in string company_name); 
II Get stocks by PIE. 
FinanceSeq pickStock(in unsigned short year, in char op, 

in float pe_ratio); 

41 

Invest is a module defining all objects and interfaces we use in this applica

tion. We create the Invest database for holding two data structures defined in 

the Invest module. Company is a data structure describing a company. It cor

responds to the company table in the database. Finance defines main financial 

parameters of a company. It corresponds to the finance table in the database. 

CompanySeq and FinanceSeq define the sequence for Company and Finance respec

tively. Portfolio interface contains four functions. company returns the company 

information. finance shows the finance information of a company. getTicker 

searches the ticker of a company. pickStock picks the stocks which meet the speci

fied criteria. 



42 

3.2.3 Running the Application 

The application comprises three tiers: client, server, and middleware. Java applets, 

the database system, and the HTTP /CORBA combination play the same role as in 

the tax application. 

Figure 3.6 shows the interaction between a Web~based client and its server on 

the Object Web [OH98]. 

.,.,.---- ..... ,., 
, . 

HTML 1. <.Jet HTML P.age 

2./Get Applet 
\ 

\ 
3. Load Applet ; I 

; Internet 
i Applet 

i i 

Profile ! TCP/IP j 
! I 
I ' 

ORB 
\ 4. CORBA IIOJ> 

ORB I i \ i \ i \ i 
StockList \ / \ 

' 
, , 

Portfolio '· .... ___ ., 

Web Client Web Server 

Tier 1 Tier2 

Figure 3.6 Running the Stock Application 

5. Generate the 
next page 

InvestMsql 

mSQL 
DBMS 

Application 

Tier3 

In this application, Invest is the main page which includes Quote, Profile, and 

PickStock. Quote is the upper part of the main page. It is an interface to user's 

requests. According to different requests either Profile or PickStock page is loaded. 

Four actions are available on the Quote page: Find Ticker, Company Profile, 

P /E Ratio, and Volatility. For Find Ticker and Company Profile the Profile 

page is selected. For P /E Ratio and Volatility PickStock is chosen. We use 

functions in JavaScript to designate the requested page. Profile contains the Profile 

applet. PickStock includes the Stocklist applet. The Profile applet retrieves the 

company's profile from the database and displays it. Stocklist retrieves the finance 

information of companies which meet the criteria. Portfolio is a CORBA object 

awaiting the incoming requests. Portfolio sends the requests to lnvestMsql which 



43 

finally sends the requests to the database. The reply from the database system 

goes through InvestMsql and Portfolio object and back to the client applets. 

InvestMsql and Portfolio are two separate modules which has the same benefits 

as in the tax application. 

Company.: LUCfNT TECHNOLOGIES INC 

Ticker. LU 
Address: 600 MOUNT AJN AVE 
City: MURRAY HILL 

Sb!iteJCounby. NJ 
2ip Code: 07974J-2008 

Phone: 90~582-,8500 

lnduslry. TELE & TELEGRAPH APPARATUS 
Exchange: NYSE 

Number of Emp1oyees: 1411600 

Member-ships'. S&P SDO. S&P lndus1rinls. Fortune SOD 

Vear: 98 
Eamrng,s per Slime: O.J&S 
Low Price: 18.~9 
High Price: SB.938 
Close Price: S4.968 

Price/caming,-s Aaiio: 93.S81 

Figure 3.7 The Running Example of the Ticker Finder 

Figure 3. 7 shows the running example of the application in case of the company 

profile. Figure 3.8 shows the running example of the application in case of the 

volatility analysis. 



44 

Companies which meet a:tetrla 

Tllc;k.er Yr EPS t..ow Hgh YrEnd P/E Ticker Yr EPS Low High YrEDd P/E 
AEE 98 2.82 35.562 +1 313 4.2.688 15.138 AEP 98 2.8:1 42.063 53.:313 47.1163 16.748 
BN 98 243 26.875 35 708 34.25 1198 CPL 98 2.75 39.188 49.625 47.063 17.114 
CSR 98 207 24.875 30.75 2'7.438 13.255 CG 98 3'21 47.333 60.75 S7.75 17.879 
CEG 98 206 29.25 ~ .25 30.875 14988 0 98 2.75 37.813 48.938 46.75 17.0 
DOW 98 5.76 74.688 101.437 '90 938 15.598 OUK 98 lA2 53,125 71.0 64.063 Hl.677 
EFU 98 2.24 37.62'5 45.625 4375 H,1.358 erx 98 Ul4 26125 31 ,0 27.875 14.987 
ETR 98 30 23.25 32 438 3U25 10.375 FE 98 HJS 27.()63 34.063 32.563 16.699 
FPC 98 2'9 37.687 47.125 +1.813 15.-453 FPL 98 3.85 56.062 72.563 61.625 16.006 
OPC 98 1 98 28.25 33 25 33438 16-888 GPU 98 303 35.188 47188 44188 14.583 
MAY 98 2 013 29.083 ~ 003 3S.125 16,074 Na:: 98 305 41625 5225 48.75 15.931 
GAS 98 242 37.125 +14'38 4.2.25 17.387 NSP 98 184 25.688 36.813 27.75 15.082 
?Gt 98 225 32,125 4.0125 39875 160 PCG 98 1.(18 29.()62 35,063 '31 .5 16,755 
PPL 90 2 29 20 875 :28 938 27.875 12172 TXU 98 2 79 30.375 48 063 46.680 16.734~ 

I • 
.4 

Figure 3.8 The Running E xample of the Volatility Analysis 

3.3 Summary 

In this chapter, we present Web-based applications on CORBA and illustrate the 

method to create constraint databases for these applications. We simply store con

straints into a relational database system and use the query commands available for 

the relational database system. This method fits well in one-dimensional constraints 

but for more complex data the conversion program is required. This will be presented 

in the next chapter. 



CHAPTER IV 

IMPLEMENTATION OF A QUERY INTERFACE 

4.1 Constraints in a Relational Database 

When we design a constraint. database system, the index structure for the relational 

database is no longer sufficient. Some data structures have been developed for storing 

constraints [KRVV93, KRVV96, Fre95, Ram97, RamOO]. Most of them lack the 

integration with the index structure for the relational data model. In the previous 

chapter we propose a method to store constraints into a relational database system 

without extra index structure. When we extend this idea to two or more dimensions, 

we need certain conversion program which is the main focus of this chapter. 

We use an example to illustrate how to build such a constraint database system. 

The application of this database is a geographic information system. The database

table table contains the feature information of a list of tuples. These tuples have 

the same geospatial features. The database-field table defines the data attributes 

for the tuple. The database-data table contains the alphanumeric data of the tu

ple. The graph-specification table specifies the required information for drawing a 

spatial object in the system. The constraint table comprises the constraints which 

define a spatial object. An example of the tables is shown from Table 4.1 to Table 4.5. 

Table-ID Description Color Tu pl-Link 
0 Roads -8355712 1 
1 Rivers -16776961 2 
2 Lakes -16732162 3 

Table 4.1 database-table 

45 



46 

Field-ID Name Type 
0 Spatial-ID 0 
1 Owner 0 

Table 4.2 database-field 

Tuple-ID Spatial-ID Owner 
0 Main Street Stillwater 
1 Duck Street Stillwater 
2 Stillwater Creek Stillwater 
3 Boomer Lake Stillwater 

Table 4.3 tuple-data 

Graph-ID Tuple-ID Fill Color 
0 0 y -8355712 
1 1 N -16732162 
2 2 N -16776961 
3 3 N -16732162 

Table 4.4 graph-specification 

Graph-ID X y () RHS 
0 0 1 - 97 -

0 1 0 > 9 -
0 1 0 < 246 -

Table 4.5 constraint 

The logical structure of the database among these tables is depicted in Figure 4.1. 

The Entity-Relationship diagram in Figure 4.1 consists of three entity sets, database

table, tuple-data, and constraint, related through two binary relationship sets table

tuple and graph-specification respectively. The attributes associated with database

table are Table-ID, Description, Color, and Tuple-Link. The attributes associated 

with tuple-data are Tuple-ID, Spatial-ID, and Owner which are specified in database

field. database-field has three attributes Field-ID, Name, and Type. This facilitates 

different database designs for different applications. graph-specification adds two 

attributes Fill and Color to relate tuple-data and constraint. The constraint table 



47 

has five attributes including Graph-ID, x, y, (), and RHS which define a constraint. 

From the diagram we see that the relationship set table-tuple and graph-specification 

are one to many. 

database-table 

tuple-data 

RHS 

Constraint 

Figure 4.1 Entity-Relationship Diagram of the Database 

Database Table Data Structure Class IDL Object 
database-table Geo Table Geo Table 
database-field DB Field DBField 
tuple-data String[] Tuple 
graph-specification GeoObject GraphSpec 
constraint Constraint Constraint 

Table 4.6 Database Table to Data Structure 

These tables have their corresponding data structures in the program as shown 

in Table 4.6. Basically, the data structure class contains the same data fields as its 

corresponding table in the database and its implementation method. For example, 

the Geo Table class is defined as follows: 

public class GeoTable { 
String description; 



} 

Color color; 
int tuplelink; 

public GeoTable(String description, Color color, int tuplelink) { 
this.description= description; 
this.color= color; 
this.tuplelink = tuplelink; 

} 

public void setDescription(String description) { 
this.description= description; 

} 

public void setColor (Color color) { 
this.color= color; 

} 

public void setLink(int tuplelink) { 
this.tuplelink = tuplelink; 

} 

4.2 Algorithms 

48 

The use of constraints to model spatial data does not come for free. In fact, the vector . 
format is often used to represent spatial data. It is identified by the vertices of the 

spatial object. For example, when we draw a polygon using the Java graphic library, 

the parameters we give are the vertices of the polygon. Same situation happens in 

ARC/INFO. The conversion from the vector format to linear constraints or from 

linear constraints to the vector format has time complexity of O(n log n), where n 

is the number of points used to represent a given spatial object. This cost comes 

from decomposing the spatial object into convex hulls [PS85]. The main algorithms 

required in the system design are presented in this section. 



4.2.1 Convert Points and Line Segments into Linear 
Constraints 

The translation of points and line segments is straightforward. 

Given a point (x0 , y0), we can get the following linear constraints directly: x 

Xo, Y = Yo· 

49 

Given the two end points of a line segment: (x0 , y0), (x1, y1), the following algorithm 

can get the linear constraints representation of the line. 

Input: Two end points of a line segment (x0 , y0), (x1, Y1). 

Output: The linear constraint representation of the line. 

I Algorithm 4.1 Line to Constraints 

LinetoConstraint ( L) 
I I Lis the line with 2 different end points: Lo = (xo, Yo), L1 = (x1, Y1). I I 

if (xo -/- x1) . 

{ 
(Y1 - Yo)x - (x1 - xo)Y = (Y1 - Yo)xo - (x1 - xo)Yo, } 

then return x 2:: min(x0 , x 1), 

x :::; max(xo, x1). 

{ 
(Y1 - Yo)x - (x1 - xo)Y = (Y1 - Yo)xo - (x1 - xo)Yo, } 

else return y 2:: min(yo, Y1), 
y:::; max(yo, Y1). 

end 

For example, we can use two end points (100, 100) and (200, 300) to represent a 

street. Using the above algorithm, we get the linear constraints representation of the 

street as follows: 

{ 
2x - y = 100, } 
X 2:: 100, 
X:::; 200. 

The above technique can expand to the spatio-temporal case shown in following: 

Input: Two end points of a line segment (x0 , y0), (x1, y1). The departure time of the 

first point is t0 . The arriving time of the second point is t1. The specified time is t 

where t 0 :::; t:::; t1. 

Output: The linear constraint representation of the location at time t. 



I Algorithm 4.2 Location of a Moving Object to Constraints 

LocationtoConstraint (L, T) 
I I Lis the line with 2 different end points: L 0 = (xo, y0 ), L1 = (x1 , y1). I I 
I I T contains the initial time t0 and final time t 1 . Specified time is t. I I 

_ + (xi -xo) (t t ) 
X - Xo (ti -to) X --,- 0 ' 

- + (yi-yo) (t t ) return Y - Yo (ti -to) x - o , 
t 2:: to, 
t :'.S t1. 

50 

For example, we drive a car from (100, 100) at 10 minutes after 5 and arrive (200, 

300) at 20 minutes after 5. Using the above algorithm, we get the linear constraints 

representation of the location at t minutes after 5: l : ~~:: ) 
t 2:: 10, 
t :S 20. 

4.2.2 Triangulation Algorithm 

Most spatial objects are depicted as polygons. Converting a polygon to its constraint 

format needs extra effort. Because each polygon may not be a convex hull polygon, 

it is not efficient to represent the polygon directly using linear constraints. But it 

is feasible to decompose each polygon into a set of triangles where each triangle is 

represented by its three corners. After triangulation, it is effective to represent each 

triangle using linear constraint model (See the Algorithm 4.4 in the next section). 

In this way each polygon can be represented by linear constraints. 

Polygon triangulation is a fundamental algorithm in computational geometry. 

'Iriangulations form a huge subject in mathematics because of its wide applications. 

Classical applications of triangulation include computer graphics and finite element 

analysis. Methods of triangulation include greedy algorithms [O'R98, PS85], convex 

hull differences [TM84], and horizontal decompositions [Sei91]. 

The triangulation algorithm (Algorithm 4.3) used in the system implementation is 

adapted from the O(n2 ) algorithm by Joseph O'Rourke [O'R98]. It is sufficiently fast 

in our application. But to triangulate a polygon with a large number of vertices please 



51 

refer to Atul Narkhede's implementation [Nar94]. It is based on the Raimund Seidel's 

incremental randomized algorithm and extended to handle holes. The algorithm's 

expected complexity is O(n log* n). In practice, it is almost linear time for a simple 

polygon having n vertices. The triangulation introduces no additional vertex and 

divides the polygon into n - 2 triangles. 

Input: The corner points of a polygon. 

Output: A set of triangles represented by their corner points. 

I Algorithm 4.3 Triangulation 

Triangulate (P) I I P contains vertices of a polygon. I I 
n +- number of vertices of P 
T +- Triangle [n - 2] 
i +- 0 
while n > 3 do 

k +- -1 
for each Vy and k < 0 do I I V is the set of vertices of P. I I 
I I Diagonal return true iff (Yi, Vy) is a proper internal diagonal of P I I 
if Diagonal (1:'.i-1, YJ+1) 
then 

Ti +- Triangle (1:'.i-i, Vy, YJ+1) 
i +- i + 1; k +- j 

end 
end 
if k < 0 then k = 0 
remove Vi from P 
n+-n-l 
if n = 3 then~+- Triangle (Vo, Vi, V2) 

end 
if i = 0 then return null 
else return T 

For example, given the Pi polygon shown in Figure 4.2. The polygon has 5 corner 

points. The set of 5 corner points is the input into the triangulation algorithm; The 

output is a set of 3 triangles where each triangle is represented by its three corners 

in a single relational database table. This type of representation is called 2-spaghetti 

data model. The 2-spaghetti data model is a pervasive model for representing spatial 

objects in GIS. 



52 

(3, 4) (3, 4) 

Triangulate 

(1, 0) (4, 0) (1, 0) (4, 0) 

Figure 4.2 Polygon Triangulation 

After triangulation, P 1 can be represented by the following table: 

ID X y x' y' x" y" 

Pi 0 2 3 4 5 2 

Pi 0 2 5 2 4 0 

Pi 0 2 4 0 1 0 

Table 4. 7 Triangular Representation 

4.2.3 From 2-Spaghetti Data Model to Constraints 

After triangulation, a polygon is decomposed into several triangles which can be rep

resented by the 2-spaghetti data model. It is straightforward to translate a triangle 

from the 2-spaghetti data model into the linear constraint model. In this way the 

polygon can be represented by the combination of a set of triangles represented in 

linear constraint model. 

The following is a simple algorithm that translates the 3-corner representation of 

a triangle into the linear constraint representation. 

Algorithm: Get linear constraints from a triangle. 

Input: Three corners of a triangle: (x0 , Yo), (x1, Yi), (x2, Y2). 

Output: The linear constraint representation of the triangle. 



I Algorithm 4.4 Translate a Triangle into Linear Constraints 

TriangletoConstraint (T) I I T contains 3 corners of the triangle where I I 
I I To= (xo, Yo), Ti = (xi, Yi), T2 = (x2, Y2). I I 

L +- Constraint[3]; l +- 0 
for each pair of~' TJ of T do I I Tk i~ the another corner point. I I 

53 

I I The line passing (xi, Yi), (xJ, YJ) is (y - Yi)(xJ - xi)= (YJ - Yi)(x - xi). I I 
if (YJ - Yi)Xk - (xj - Xi)Yk ~ (YJ - Yi)xi - (xj - xi)Yi 
then L1 f-- (YJ - Yi)x - (xJ - Xi)Y ~ (YJ - Yi)Xi - (xj - Xi)Yi 
else L1 +- (YJ - Yi)x - (xj - Xi)Y ~ (YJ - Yi)xi - (xj - Xi)Yi 
l+-l+l 

end 
return L 

Using this algorithm we get 3 constraints that describe the same triangle. 

For example, let us consider a triangle delimited by three corner points: (1,2), (3, 

4), (4, 1). The algorithm can produce the constraint representation of the triangle: 

{ 
X -y < -1, } 
3x + y ~ 13, 
X + 3y ~ 7. . 

4.2.4 Compute Convex Hull from Constraints· 

To draw a spatial object from constraints requires two steps: first find the boundary 

points and then compute the convex hull from those points. Solving constraints gives 

us the boundary points. The convex hull algorithm suffices the second step [PS85]. 

The computation of the convex hull has been studied extensively and has various 

applications. The convex hull algorithm is described in detail in [O'R94, PS85]. The 

algorithm to compute the boundary points from constraints comprises the constraint 

solving and the convex hull algorithm. The following conversion algorithm is adapted 

from the algorithm presented in [Pra98, Wan99]. When we compute the boundary 

points from constraints we calculate the intersection points of lines which are formed 

by replacing the inequality operator with an equality sign of constraints. This tech

nique is shown in the algorithm. 

Input: Given a set of constraints. 



Output: Ordered Boundary points of the convex hull. 

J Algorithm 4.5 Compute Convex Hull from Constraints 

getConvexPoints (L) I IL is a set of n constraints. I I 
N +- {} I I N is an empty node list. I I 
P +- {} I I P is an empty point list. I I 
M +- Integer [IILII] I I Mis an integer array storing the line count in N. I I 
for i +- 0 to IILII - 1 do I I Find the intersection points. I I 

for j +- i + 1 to 11 L 11 - 1 do 
if not Parallel (li, lj) I I l0 , li, · · ·, ln-l are lines derived from L. I I 
then 
p +- Intersection (li, lj) I Ip is the intersection point of li and lj. I I 
if Satisfiable (p, L) 
then add (N, (p, li, lj)); Mi+- Mi+ 1; Mj +- Mj + 1 

end 
for i +- 0 to IILII - 1 do I I Remove the internal node. I I 

if Mi :S 1 and IINII > 1 and IILII > 3 
then 

for j +- 0 to IINII - 1 do 
V +-Nj 

if li = Vlinel or li = Vtine2 then remove ( Nj) 

I I li is not a edge of the convex hull. I I 
end 

end 
if IINII :S 2 I I The convex hull is a point or a line segment. I I 
then P +- N 
else I I Sort the boundary points. I I 

v +- N 0 I I N 0 is the first point list. I I 
e +- Vlinel 

while vp t/. P do 
add (P, vp); found+- false 
for each r E N and not found do 

if (e = Tlinel ore= Tzine2) and Vp -::/=- Tp 

then 
v +- r; found+- true 
if e = Vlinel then e +- Vline2 else e +- Vtinel 

end 
end 

end 
return P 

54 



For example, given the input constraints: 

X > 1, 
X - 2y > -5, 
3x + y < 20, 
X -y < 4, 
X + 3y 2: 4. 

55 

The output of this algorithm will be the point list: (1, 1), (1, 3), (5, 5), (6, 2), (4, 0). 

4.2.5 Constraint Solving 

Constraint solving has wide applications in mathematics, scientific, engineering, and 

industrial computations. In general comitraint solving serves three purposes: 1) 

finding out constraints inconsistent with each other, 2) obtaining new constraints, 3) 

calculating numerical solutions. There are a vast number of different approaches to 

constraint solving, owing to the importance of the problem. The Simplex algorithm 

[Dan63, Sch86, NT93] is widely used to solve linear constraints. In our implementa

tion we integrate a Java port of a Simplex solver called lp_solve by Michel Berkelaar 

[Ber97, Gro97]. This non-commercial linear programming code is able to solve prob

lems as large as 30,000 variables and 50,000 constraints. Lp_solve can also handle 

smaller integer and mixed-integer problems. 

4.2.6 Area 

The computation of the area is essential in the spatial application. The algorithm 

of calculating the area can be found in any geometry book. To compute the area of 

a polygon we first compute the area of the triangles which constitute the polygon. 

Our algorithm is based on that in [O'R94]. The algorithm is listed below: 

Input: A polygon. 

Output: The area of the polygon. 



56 

\ Algorithm 4.6 Compute the Area of a Polygon 

PolygonArea (P) I IP is a polygon. I I 
A~ 0 for i ~ 1 to JJPJJ - 2 do I I JJPJJ is number of vertices of the polygon. 
I I Pi is a vertex of P where O :Si< JJPJJ. I I 
A ~ A+ TriangleArea (Po, Pi, Pi+ 1) 

return A 

TriangleArea (a, b, c) I I a, b, care three corner points of the triangle. I I 
return J((cx - bx)(ay - by) - (ax - bx)(cy - by))l2J 

4.2. 7 Intersection Algorithm 

Intersection is a fundamental part of the more complex algebraic operations. We 

develop two types of intersections: graph intersection and relation intersection. Re

lation intersection is based on graph intersection. Graph intersection takes a set of 

graphs and finds the intersection. Relation Intersection takes two relations, r 1 and 

r2 , as input and performs a nested loop over both collections of tuples, taking the 

conjunction of each pair of tuples. The algorithm is shown as follows: 

Input: Two relations r 1 and r 2 . 

Output: The intersection relation of r 1 and r 2 . 

I Algorithm 4. 7 Relation Intersection 

Tablelntersection (r1 , r 2 ) I I r 1 and r 2 are two relations. I I 
r ~ {} 

for each ti E r 1 do 
for each tj E r 2 do 

t ~tin tj 
if t =I- <p then add (r, t) 

end 
return r 



57 

4.3 Algebraic Operations 

4.3.1 The Join Operation (X'.] 

The join r = r 1 txl r 2 is obtained by computing the conjunction of each tuple of r 1 

with each tuple of r 2 . The conjunction of two tuples is the concatenation of their 

constraints. The join can be implemented by a direct call to the Tablelntersection 

function. Consider two objects, Graph A and Graph B. Figure 4.3 shows the join 

operation. 

Graph ID X y () RHS 
A 1 0 > 2 -
A 1 0 < 5 -

Table 4.8 Graph A 

Graph ID X y () RHS 
B 0 1 > 1 
B 0 1 < 3 -

Table 4.9 Graph B 

Graph ID X y () RHS 
C 1 0 > 2 -
C 1 0 < 5 -

C 0 1 > 1 -

C 0 1 < 3 -

Table 4.10 Graph C = A txJ B 

(x,3) (2,3) (5,3) 

A D 
(x,1) (2,y) B (5,y) (2,1) (5,1) 

C=At><lB 

Figure 4.3 Join Operation 



58 

4.3.2 The Intersection Operation n 

r = r 1 n r2 is a special case of join. Here r 1 and r 2 are defined on the same at

tributes. This operator is implemented by a direct call to the Tablelntersection 

function. Consider the following two objects, G,raph D and Graph E. Figure 4.4 

depicts the intersection and union operation. 

Graph ID X y () RHS 
D 1 0 > 1 -
D 1 0 < 4 -
D 0 1 > 1 
D 0 1 < 3 -

Table 4.11 Graph D 

Graph ID X y () RHS 
E 4 -3 > 5 
E 5 1 < 30 -
E 1 4 > 6 -

Table 4.12 Graph E 

n LJ 
F=DnE 

u 

G=DUE 

Figure 4.4 Intersection and Union Operation 

The result of D n E is F as shown in Figure 4.4. 



59 

Graph ID X y () RHS 
F 1 0 > 1 -
F 1 0 < 4 -
F 0 1 > 1 -
F 0 1 < 3 -
F 4 -3 > 5 -
F 5 1 < 30 -
F 1 4 > 6 -

Table 4.13 Graph F = D n E 

4.3.3 The Selection Operation a 

The implementation of r = crp(r1 ) is straightforward. pis a set of constraints has to 

be added to r1. The operator is implemented by Tablelntersection. The result is the 

intersection of r1 and p. 

4.3.4 The Union Operation U 

r = r 1 U r2 is defined as the set of tuples which belong either to r 1 and r2 . In this 

case we need to add two new tuples into the graph-specification table which point to 

the same tuple. The result of D U E is G as shown in Figure 4.4. 

Graph ID Tuple ID Fill Color 
D 0 y -8355712 
E 0 y -16732162 

Table 4.14 Graph G = D U E 

4.3.5 The Difference Operation -

r = r 1 - r2 gives the set of spatial objects that are in r 1 but not in r2 . To do the 

difference D - E, first negate E and then intersect it with D. The result is shown in 

Figure 4.5. 

Graph ID X y () RHS 
E 4 -3 < 5 -
E 5 1 > 30 -
E 1 4 < 6 -

Table 4.15 Graph -E 



60 

Graph ID X y (} RHS 
H 1 0 > 1 -
H 1 0 < 4 -
H 0 1 > 1 -
H 0 1 < 3 -
H 4 -3 < 5 
H 5 1 > 30 -
H 1 4 < 6 -

Table 4.16 Graph H = D - E 

[7 
H=D-E 

Figure 4.5 Difference Operation 

4.3.6 The Projection Operation 1r 

r = nx(r1) is defined as the relation whose tuples are the projection of each tuple of 

r 1 on the x axis. The Fourier elimination suffices in the implementation. Figure 4.6 

shows the projection of Graph I on x-axis and y-axis. 

Graph ID X y (} RHS 
I 1 -2 > -5 -
I 1 2 < 15 -
I 3 -2 > 13 -
I 1 0 > 0 -
I 1 1 > 4 -

Table 4.17 Graph I 

Graph ID X y (} RHS 
J 0 1 - 0 -

J 1 0 > 1 -
J 1 0 < 7 -

Table 4.18 J = nx(I) 



61 

Graph ID X y () RHS 
K 1 0 - 0 -

K 0 1 > 1 -
K 0 1 < 5 -

Table 4.19 K = 1rg(I) 

(5,5) (0,5) 

(7,4) 
TCy 

I -,-------
(3,1) (5,1) (0,1) 

(1,0) (7,0) 

Figure 4.6 Projection Operation 

4.4 Development Document 

4.4.1 Environment and Software 

The environment and software requirements are similar to the Web-based application 

as listed below: 

• a Java programming environment - SUN Java 2 SDK. 

• a CORBA compliant Object Request Broker - Object Oriented Concept Orba-

cus. 

• a database system - Hughes Technologies mSQL. 

• a linear programming solver - Mixed Integer Linear Program Solver by Michel 

Berkelaar [Ber97]. 



62 

Java is used to build up the system. To access databases in a distributed comput

ing environment CORBA classes are required. The mSQL database management 

system stores databases created in the system. One extra component is the linear 

programming solver which supports constraint queries. 

4.4.2 Architecture 

Figure 4.7 illustrates the architecture of the prototype. It consists of the following 

components: 

1. A Graphical User Interface (GUI) which facilitates the easy access to the 

database. 

2. A query processor to distinguish between standard SQL commands and con

straint operations and to deliver the standard commands to the DBMS and con

straint commands to the constraint function library and the constraint solver. 

3. A linear constraint solver which resolves the linear constraints. 

4. A constraint algebraic function library to respond constraint algebraic 

operations. 

5. A data portal which allows the plain text input and output, and various file 

format conversion. 

6. A database portal which contains the CORBA code and allows to access 

databases locally or remotely. 

7. The DBMS which provides SQL processing and data storage management. 



Data 
14-----1~ 

Portal 

Function 
Library 

14-----1~ 

RDBMS 

Query 
Interface 

Query 
Processor 14-----t~ LP Solver 

Database 
Portal 

RDBMS 

Figure 4. 7 System Architecture 

63 

Our design of the system tends to flexible and extendible. Components can be 

replaced or added for later improvement. 

4.4.3 Developing a CORBA Application 

To develop a CORBA application we follow the steps as shown in Figure 3.2. The 

IDL file defines the objects of our constraint database system as shown below: 

module QueryCDB { 

typedef sequence<string> StringSeq; 

II Define a geospatial entry. 
struct GeoTable { 

string description; 
long color; 
long tuplelink; 

}; 

II Define a database field. 
struct DBField { 

string name; 



short type; 
}; 

II Define a tuple. 
struct Tuple { 

StringSeq value; 
}; 

II Define a graph specification. 
struct GraphSpec { 

long tupleID; 
boolean fill; 
long color; 

}; 

II Define a constraint. 
struct Constraint { 

long graphID; 
long x; 
long y; 
string theta; 
long rhs; 

}; 

II Define the sequences. 
typedef sequence<GeoTable> GeoTableSeq; 
typedef sequence<DBField> DBFieldSeq; 
typedef sequence<Tuple> TupleSeq; 
typedef sequence<GraphSpec> GraphSpecSeq; 
typedef sequence<Constraint> ConstraintSeq; 

II Declare the database interface. 
interface ExecDatabase { 

II Select database. 
void setDatabase(in string databasename); 
II Clear database. 
void initDatabase(in DBFieldSeq dbfields); 
II Get tables. 
GeoTableSeq getGeoTable(); 
II Store tables. 
void storeGeoTable(in long tableID, in GeoTable spatialTable); 
II Get database fields. 
DBFieldSeq getDBField(); 
II Store database fields. 

64 



}; 

void storeDBField(in long fieldID, in DBField cdbField); 
II Get the tuple. 
TupleSeq getTuple(in string query); 
II store the tuple. 
void storeTuple(in long tupleID, in Tuple cdbtuple); 
II Get the graph specification. 
GraphSpecSeq getGraphSpec(); 
II Store the graph specification. 
void storeGraphSpec(in long graphID, in GraphSpec graphs); 
II Get constraints. 
ConstraintSeq getConstraint(in long graphID); 
II Store constraints. 
void storeConstraint(in ConstraintSeq constraints); 

}; 

65 

QueryCDB is a module defining objects and methods required for database ac

cess. Five data objects are specified in the module corresponding five data struc

ture classes in the system as shown in Table 4.6. ExecDatabase interface contains 

12 functions. setDatabase sets the database name. ini tDatabase initializes the 

database. getGeoTable and storeGeoTable get and store tables. getDBField and, 

storeDBField get and store database fields. getTuple and storeTuple get and store 

data tuples. getGraphSpec and storeGraphSpec get and store graph specifications. 

getConstraint and storeConstraint get and store constraints. 

4.4.4 Classes 

• Main classes: 

- QueryCDBApp The main program to initiate the application. 

- QueryFrame The main window frame to hold the toolbox, the feature 

window, and the graph window. 

- QueryServer The server program to initiate the ORB objects which wait 

for the call from clients. 

- ToolPanel The toolbox listing the icons which indicate system functions. 



66 

- TableList A graphical view for the relations (feature window). 

• Drawing classes: 

- ColorPad An interface to adjust the color. 

· - GraphPad A drawing pad for points, lines, rectangles, and polygons 

(graph window). It contains the control for mouse and keyboard inputs. 

Swatch A color swatch showing the customized color. 

• File classes: 

- DataPortal A class to read or save the database in the plain text format. 

- FileTool A dialog for the file access. 

• Query classes: 

- AreaDialog A dialog for the area query. 

- MinMaxDialog A dialog for the minimum and maximum query which 

calls linear programming library classes through the LPSolver class. 

- Query Dialog A dialog which sends SQL commands to the database man-

agement system. 

- RecordDialog A dialog for the tuple update. 

- TableDialog A dialog for the relation definition. 

- TableListDialog A dialog for the relation update. 

• Data structure classes: 

- DBField A class defining database attributes. 

- DBList A class defining a database which includes the database name, 

relations, attributes, and tuples. 

- GeoObject A base class for drawing objects. 



67 

- GeoTable A base class for relations. 

- Constraint A class defining constraints. 

- Triangle A class defining a triangle by three points. 

• Database classes: 

- AccessDatabase A class invoked by TeleDatabase to access the local 

and remote database. 

- ExecDatabaselmpl The implementation class for the CORBA POA 

class generated by IDL. 

- TeleDatabase A dialog for importing and exporting the database. It 

accesses the remote database by the ORB call. 

- QueryMsql A class accessing the mSQL database system. 

• Computing geometry classes: 

- CompConstraint A class including subroutines for constraint computa

tion. 

- CompGeom A class including subroutines for geometry computation. 

- GeoConstraint A class including subroutines for geometry operations in 

the vector format. 

• Supporting classes: 

- Close Window A class which activates the event for closing of frames or 

dialogs. 

- ImageButton A basic structure defining the icon button with its event 

controls. 

- LPSolver An interface for MinMaxDialog to access linear programming 

library classes. 

- MessageBox A dialog box for some helpful messages. 



CHAPTER V 

QUERY APPLICATIONS 

5.1 Graphical User Interface 

A graphical user interface (GUI) facilitates friendly and efficient access to the system. 

It is the portal for data input/output, database query, and database import/export. 

A simple and graphic representation is essential for any geospatial application. The 

constraint representation is hard for the end user of the system to comprehend. The 

graphical interface provides a mechanism to convert the constraint representation 

into a graph type representation that is evident to the end user of the system. This 

conversion involves locating the boundary points of the geospatial objects that are 

represented by constraints. Once the boundary coordinates are found, the data 

can be visualized. In this section we describe the graphical user interface and also 

introduce the different features that we provide in the implementation of this general 

query system. 

5.1.1 Data Input and Output 

The data is stored in a constraint database format [KKR90, KKR95J for efficient data 

manipulation using linear constraint solving. But the constraint format is usually 

not so comprehensible as the vector format. So the user should have some simple 

method to input the data without worrying about the constraint data storage. Some 

of these options are suggested as follows [KRW98]: 

Drawing : This is the primary way for the user to enter the data. The end user 

draws geospatial objects in the form of points, lines, rectangles, or polygons 

and stores them into the database. The user can use the icons in the drawing 

68 



69 

toolbox to specify the filled type, the color, and the geometric shape of the 

objects. 

Plain Text : A plain text format is designed for the constraint database (See Ap

pendix D) which can be read by the system. This can be an electronic exchange 

format for the constraint database. 

Constraint Database : The user is able to input the data into the database man

agement system directly. 

Translation : The translation allows the user to use the data in other data formats, 

such as a TIGER file, or an ARC/INFO GIS database. 

Image Scanning : The user can convert the image directly into the constraint 

database. 

Purchasing : The data can be acquired from data providers. For example, the 

data provider could provide data about land use in the required format which 

an be read by the system. 

Drawing, plain text, and database input are implemented in this system. The 

rest of them is for the further development. In the previous chapter we show how to 

store the constraints into the relational database. Here, we give an example. 

For example, Tweety Bird has land at 100 Perkins Road in Stillwater for sale. 

The price is $1000/ Acre. The coordinates are (10, 10), (10, 20), (20, 20), and (30, 

10). We can store the information in the relational database as shown in Table 5.1 

and Table 5.2. 

Owner Address City Price 
Tweety Bird 100 Perkins Road Stillwater $1000/Acre 

Table 5.1 Alphanumeric Data 



70 

X y () RHS 
1 0 > 10 -
0 1 > 10 -
0 1 < 20 -
1 1 < 40 -

Table 5.2 Spatial Data 

5.1.2 Query Operations 

Querying the database is made easy through various icons and di~log boxes in the 

GUI. Most queries provide a dialog box for data input or update. The GUI contains 

the following icons for querying purposes as shown in Figure 5.1: 

Tables A, dialog box for creating, deleting, and updating a re.lation. The Design 

button prompts a dialog box for defining the tuple attributes in the table. 

Query A dialog box for issuing SQL-like commands to query the database. Both 

novel and experience users benefit from this interface. A novel user can use the 

button to select the condition for the query. An experienced can just issue the 

SQL command to query the 9'atabase. 

Import/Export A dialog box for accessing local or remote databases. The user 

c·an specify more than one database at a time. This allows the user to access 

and store data distributedly. 

Area A dialog box for the area calculation. 

Min/Max A dialog box for specifying the objective function to be maximized and 

minimized on those constraints selected by the user. 

Intersection A dialog box for displaying the new tuple which is the result of the 

intersection for those tuples selected by the user. 

Union A dialog box for displaying the new tuple which is the result of the union 

for those tuples selected by the user. 



71 

5.1.3 User Guide 

1. To start the system, run java QueryCDBApp. You can see the GUI 1s 

composed of three parts as shown in Figure 5.1: 

(a) Toolbox All available functions are shown in this part. All functions 

can be accessed through pull-down menus. Important functions are also 

represented in icons. 

(b) Feature window This is the window which lists all relations (tables) 

created. It is called the feature window because each relation contains 

one spatial feature in most cases. 

(c) Graph window The constraints are drawn in this window. 

Select Draw Toolbox Tables Import/Export 

Open File Menus Toolbox 

Draw iew Operations 

r-, 
I I .. __. [] m .I' , o ,llJ @. e 1 ~ ~ ~ 1 £!:I_M~~ n LJ __ 100% • 

. F'u.=ic • I -• 
• Fire Station M 
• Church 

.Lake 

Feature 
Window 

Right click to show 
the table feature 

Graph 
Window 

I 
• 

II 
--L-T---~ . 

Right click to display the 
tuple and constraints 

Figure 5.1 Graph Interface of the System 



72 

2. Now you can open a text file that contains the linear constraints description. 

Use Open on the File pull-down menu to choose a file. Or click the Open File 

icon to choose a file. 

3. After a file has been read in, the relation names and their description will be 

displayed in the feature window. The graphs are drawn in the graph window. 

4. Use the zoom out icon to make the graphs smaller. Use the zoom in to enlarge 

the graphs. 

5. To input a polygon, first click the polygon icon to enable polygon drawing. To 

draw a polygon in the graph window, move the mouse to the start point. Left 

click the mouse to set the first point. Release the mouse, move to the next 

point, and left click the mouse to set this point. Follow this way to set the 

consecutive points. Left double click the mouse to set the final point of the 

polygon. Then the polygon is drawn. To input a point , a line, and a rectangle, 

follow the similar steps. 

6. To update a relation (table) entry, click the tables icon or right click on the 

feature window. A dialog box will prompt the user to create, delete, and update 

a relation entry as shown in Figure 5.2. 

Table Description 

Table Color Gray 

F igure 5.2 Update a R elation E ntry 

7. To define a relation (table) , click the design button in the table dialog box. 

A dialog box will prompt the user to specify attributes of a tuple that are 

composed of the field name and data type as shown in Figure 5.3. 



73 

Name String 

Addre ss String 
- ·-- --

Zip_Code String 
----

Usage String 

String 

String 

String 

String 

String 

Figure 5.3 Define a Relation 

8. To update a tuple (record), right click on the graph window. A dialog box will 

prompt the user to create, delete, and update the tuple as shown in Figure 

5.4. This dialog box provides the user to access both the alphanumeric and 

constraint data in the tuple. 

Tuple Index 

. Name 

Address 

Zip_Code 

Usage 

94 From 94 0 96 Set Time 

Orange ~ 1 x+Oy<=342 
----------·----~----------------- ----

Ox+1 y>=319 
77 

--- 1 x+Oy>=287 I Student Un ion Ox+1 y<=360 

Student Un ion 
11 x+41 y<=1 8071 

-------
74078 

Activity Center 

Delete Clear Update 

Figure 5.4 Update a Tuple 



74 

9. The graph index in the tuple dialog box contains three parts to indicate the 

graph currently pointed by the right mouse click, the first graph, and last graph 

in t his tuple. T he constraints of the graph are listed in the right side of the 

tuple dialog box. To view t he constraints of another graph in this tuple, change 

the graph index value. To set the time stamp of the graph, assign the value 

in the t ime stamp field and click the set time button to mark it . T he locate 

button allows the user to project the graph in a certain t ime. 

10. To use the SQL-like command to query the database, click the query icon. 

A query dialog box as shown in Figure 5.5 appears for the user to input the 

query command. To do a window query, select a window and then query the 

database. 

Done 

Figure 5.5 Query Database 

11. To query the database by constraints, input constraints of concern in the com

mand field of t he query dialog box and click the select button as shown in 

Figure 5.6. T he select button stands out for the constraint query purpose. 

It facilitates access to the constraint property of the database. The result is 

highlighted in the graph window and a result tuple will appear for the further 

specification. To query the location of a certain point, input the coordinate of 

the point in t he command field and click the select button. The point will be 

drawn in the graph window. 



75 

X + 2y <= 240, X >= 170, X <= 190 

Select 1 x+2y<=240, 1 x+Oy>=170, 1 x+Oy<=190 

Figure 5.6 Query by Constraints 

12. To import or export the database , click the import/export button in the database 

dialog box. Specify the host and the database name to import and export as 

shown in Figure 5. 7. The user can import databases from more than one host. 

This facilitates access to distributed data. 

localhost, www.seic .ok Database Name 

Import Export 

Figure 5.7 Import/Export Database 

13. To query the area of a table, left click the mouse to set the selected relation in 

the feature window and then click the area icon. A dialog box will prompt the 

user to input the value for addition, subtraction, multiplication, and division 

as shown in Figure 5.8. After input the value and select the operator, click the 

calculate button to compute the result. This function could be useful when the 

area needs to be calculated with other factor. To query the area of a tuple, 

click the area button on the tuple dialog box. To query the area of a graph, 

select the graph and click the area icon. 



76 

12}~15.0 

Calculate J Clear Done 

Figure 5.8 Query Area 

14. To calculate the objective function, select the graph in the graph window and 

click the min/max icon. A dialog box will prompt the user to specify the 

objective function as shown in Figure 5.9. Click t he query button to get the 

result. 

Objective Function 

. Max= 

Min= 

Query 

, X + l-2 
at x = { 2 2 9. o __ : y = 

I 207 .0 ' 

;1 

' 
y 

1381.0 

Figure 5.9 Minimum/Maximum Query 

X 

, 
I 

15. To take the intersection or union of the relations, select relations on the feature 

window and click the intersection or union icon. A tuple dialog box with the 

result will appear. To take the intersection or union of the graphs, select the 

graphs. Follow the same steps for the relations. 

5.2 A Land-use Example 

This example is adopted from the one in [AS91]. The authors extended a DBMS with 

spatial operations in t hat paper. Most spatial operations proposed in that paper and 

in Section 2.1.2 can be performed in our system in a simple way. For example, to use 

the object_at query, we need only to right click on the object in our system. Here, 

we create an OSU campus map in which each tuple consists of 4 attributes: Name, 

Address, Zip Code, and Usage as shown in Figure 5. 10. 



File Edit Draw View Operations Help 

[:] [] II ·" ' D 8 @ e jgil ~ ~ a!] Mb~ n u I 100%_ 3 . -.,._ . •c· 
-i - I•:•-• Fire Station 

. Church 

.Lake 1 I 1H 
• 

le :c:-. 
- ------ ----~ 

Figure 5.10 Land-use Database 

77 

As mentioned above we can know the information of each spatial object by right 

clicking on each spatial object. If we want to look for a specific target, just give 

the specification in the query dialog box. We can also query a region delimited by a 

select box. To do this window query, select the region first and then give the query 

command in the query dialog box as shown in Figure 5.11. For example, we want to 

know which building is used for the office and classroom. The result is highlighted 

as shown in Figure 5.10. The result table is shown in Figure 5.12. 

r U-sage ..:.JI= ::JI Office & Classrc 

I usage= 'Office & Classroom' 

select* from dbdata 
where Usage= 'Office & Classroom' 

~ 
Query Select Clear Done I 

Figure 5.11 Land-use Query 



78 

-lol~ ~ ,:.. .. ). - -
Name Address Zip_Code Usage ·I 
Scott Hall Scott Hall 74077 Office & Classroom =::J 
Hes West Hes West 74078 Office & Classroom 
Human Env Sci Human Env Sci 74078 Office & Classroom 
Tele-Comm Center Tele-Comm Center 74078 Office & Classroom 
North Murray North Murray 74078 Office & Classroom 
South Murray South Murray 74078 Office & Classroom ... , 
~ I I .. I 

-

Figure 5.12 The Result of Land-use Query 

5.3 Insecticide Example 

A farmer has his field sprayed with three types of insecticides, namely Lorsban, 

Parathion, and Carbaryl. The region sprayed by each insecticide is represented by a 

relation in the database. The database is depicted in Figure 5.13. The cost schedule 

is shown in Table 5.3. 

File Edit Draw View Operations Help 

D i;a; ~~I i ~ ~ -;; -n, 

[:] c m ·" " o 8 e. e t-:' lilil=-i -=(i§il=--, ~.-:.:,,,~ , ll-=--:-;M-;--~~-=n~ u~15;.....;0;__% -3--. ... 
T -

,__ 

,_ -

Figure 5.13 Insecticide Database 



79 

Insecticide Cost/ Acre Application Cost/ Acre 
Lorsban $2.50 $12.0 
Parathion $4.35 $12.0 
Carbaryl $3.25 $12.0 

Table 5.3 The Cost Schedule of the Insecticides 

The farmer can do several interesting queries: 

1. The cost of each insecticide. 

2. The region sprayed by any insecticide. 

3. The region both two insecticides or all three were sprayed. 

To answer the first query, just select each relation and click the area button. Then 

apply the cost schedule to get the cost . To answer the second query, we have to 

make a union of the three regions, i.e., highlight two or three relat ions on the feature 

window and click the union button. The union is computed and stored in a new 

tuple. To answer the intersection, click t he intersection button. The intersection is 

drawn as a gray region in Figure 5.13 and the result t uple is shown in Figure 5.14. 

Graph Color 

Tuple Index 

Spatial_Feature 

Back I Next 

---ll'f™ l From 144 To 44 Set Time Locate 

Customize .. . 1 x+Oy>=70 
Ox+1 y<=159 

_ ___ --"~ 13x+6y<=2995 

IAII Insecti cide . ...... .... . Ox+1 y>=120 

15 

I . Insert] Delete l Clear ] Update I List · 1, 

Figure 5 .14 The Result of Intersection 

5.4 Manufacture Example 

' i 
%§i i 

~ 
Area J 

This example is adopted from the one in [BJM93]. Consider a company manufactures 

two products from three resources. Two relations are defined in this database. The 

order relation contains the attributes: Order No , Customer, Production ID, and 

Product Quantity. An example is shown in Table 5.4. 



80 

Order No Customer Production ID Product Quantity 
1 Jane Sebring 1 100 
2 Al Goodwin 2 120 
3 Dan Talley 1 120 
4 Mike Johnson 2 150 

Table 5.4 Order Table 

The process relation specifies a relationship between production and resources. 

Pi and P2 represent quantities of the first and second products respectively. R1 , R2 , 

and R3 represent amounts of the first, second, and third resources available. The 

possible manufacturing process can be specified by a conjunction of the following 

constraints: 

2Pi + 3P2 :'.S R1, 
2Pi + P2 :'.S R2, 
P1 +4P2 :'.S R3, 
Pi, P2, R1, R2, R3 2: 0. 

This defines how the production of Pi and P2 depends on the amount of available 

resources of R1 , R2 , and R3 . The constraints for another manufacturing process are: 

P1 + 5P2 :'.S R1, 
-Pi+ 4P2 :'.S R2, 
5P1 :'.S R3, 
Pi, P2, R1, R2, R3 2: 0. 

Suppose there are 500, 300, and 600 units of the first, second, and third resources. 

The profit for one unit of the first product and the second is $20 and $15 respectively. 

From the above information the process table can be created as shown in Table 5.5. 

Process ID P1 P2 () R 
1 2 3 < 500 -
1 2 1 < 300 -
1 1 4 < 600 -
1 1 0 > 0 -
1 0 1 > 0 -

Table 5.5 Manufacturing Process Table 

We are interested in the queries: 



81 

1. What is the maximum profit the company can make with each manufacturing 

pattern and hov.r many units for each production? 

2. Which manufacturing process can produce more first product regardless of the 

second product? 

The database contains two feature tables: Process 1 and Process 2, as shown in Figure 

5.15. To answer the first query, just select each relation and click the min/max icon. 

In the maximum/minimum dialog box, assign 20 to the x coefficient and 15 to they 

coefficient respectively. Then click the query button to get the maximum/minimum 

value. We get the maximum profit for the first manufacturing process is $3500 at 

100 units of the first product and 100 units of the second. The second manufacturing 

process produces the $3540 profit at 120 units of the first product and 76 units of 

the second as shown in Figure 5.16. 

File Edit Draw View Operations Help 

• Process 2 

~......_ .. , __ ____. ~ : 

Figure 5.15 Manufacturing Pattern Database 

For the second query, select each relation and in the maximum/minimum dialog box 

assign 20 to the x coefficient and O to the y coefficient respectively. There is $3000 

profit at 150 units of the first product in the first manufacturing process and $2400 



82 

profit at 120 units of the first product in the second manufacturing process. So, the 

first manufacturing process produce more. 

x+ y 

3540 .0 at X = 

Figure 5.16 Query Max imum Production 

5.5 Freightage Example 

This problem is adopted from the postage example presented by Revesz and Li in 

[RL97]. Here we create a different scenario and use a freight company as an example. 

In our example, the freightage fee charged for packages is computed based on the 

weight of the package and the freightage rate. The freightage rate increases piecewise 

linearly with the weight of the package as shown in the Table 5.6. The packages that 

we want to dispatch are shown in the Table 5.7. The freightage database can be 

presented as shown in Figure 5.17. We want to query the freightage fee for each 

package. 

Weight in pound (w) Freightage in Dollars ( f) 
0-40 f = 0.5w 

40-80 f=20+0.4(w-40) 
80-120 f = 36 + 0.3(w - 80) 
120-160 f = 48 + 0.25(w - 120) 

Table 5.6 Freightage 

Package ID Weight in pound ( w) 
501 60 
502 90 
503 140 

Table 5.7 Packages 



83 

File Edit Draw View Operations Help 

D ~ ~ ~ : J'o ~ ~ ' "' n. ' 

[:] o 11 i' " o "8 '© e. 1 ~ ~ ~ I c!l Mb~ n u b 00% ..:.J 
• Rate 0-40 

• Rate 40-80 

.Rate 120-16~ · 
.. .. .. ,__,__ ____ ___. 

Figure 5.17 Freightage database 

To query the freightage, input the weight in the command field in the query dialog 

box and click the select button as shown in Figure 5.18. A result tuple dialog box 

will be displayed as shown in Figure 5.18. In our case, we query the freightage fee 

of the 140 pound package and the result is $53. 

~ 
lweight_Range _:_11< _:J 
Ix= 140 

Elect ~ ~+Oy=140 

~ 
Query Select Clear Done I 

~ 
Graph Index 

Graph Color 

Tuple Index 

~ From r To r SetTime 1 Locate 1 
I Customize .. . _.:.] 1 x+Oy=140 
1.-4--------- Ox+1y=53 

Weight_Range I 140 

Back Next Insert Delete Clear Update List Area 

Figure 5.18 Query Freightage 



84 

5.6 Tracking Problem 

Pete is doing a field trip. He gets his latitude and longitude from a Global Position 

System (GPS). He wants to know his current location and the target region delimited 

by x + 2y S 240, x 2 170, and x S 190. A map database is drawn in Figure 5.19. 

To find his current position, he needs to input his coordinate in the command field 

of the query dialog box as shown in Figure 5.20. The result tuple is shown in Figure 

5.21 and indicated by a black point in the gray trapezoid as shown in Figure 5.19. 

FHe Edi Draw View Operations Help 
...- -
D ~~~ i ~~ llr") n. 

[:] [] II .P' ' D 8 @ e ~ ~ ~ r:!] M~~ n u I 100% 3 
• New Mexico • 

.Oklahoma 

.Louisiana 

• Mississippi • 
~.__. ·-----

Figure 5.19 Map database 

I Name ~I~ ~ 
11 so, 30 

elect (180,30) 

Query Select Clear 

Figure 5.20 Locate Point 

J 

~ 

_] 

f 
Done I 



85 

Graph Color Black ::1] 1 x+Oy>=179 
;=.==========~• Ox+1 y>=29 

' Tuple Index 1 O 1x+Oy<=181 

Name Field Location Ox+1 y<=31 

Back Next Area 

Figure 5.21 Field Location 

To find the target region, he needs to input constraints into the command field of 

the query dialog box and click the select button as shown in Figure 5.6. The result 

tuple is shown in Figure 5.22 and drawn as a gray trapezoidal region in Oklahoma 

as shown in Figure 5.19. 

Graph Index 

Graph Color 

Tuple Index 1 2 
~=========--11 

Name 

Back 

Figure 5.22 Target Region 

5. 7 Position Prediction 

J ane plans to drive from Albuquerque, New Mexico to Oklahoma City, Oklahoma in 

8 hours. She starts to drive at 8 AM. She would like to know: 

1. Where should she be at 12 PM? 

2. In this speed, can she arrive in Litt le Rock, Arkansas before 9 PM? 

A south-central US map database is created as shown in Figure 5.19. Four cities 

including Albuquerque, Amarillo, Oklahoma City, and Little Rock are marked as 

gray points in the graph. 



86 

To answer these two queries, she selects the tuple of Albuquerque and Oklahoma 

City, inputs the time in the time field, and clicks the set time button to set the time 

stamp as shown in Figure 5.23. Then she gives the time of concern - 12 and click the 

locate button. The result tuple is depicted in Figure 5.24 and drawn as a black point 

nearby Amarillo in Figure 5.19. From the graph she knows she should be nearby 

Amarillo at 12 PM. To answer the second query, she sets different t ime - 21. The 

result is drawn as a black point in the east side of Little Rock as shown in Figure 

5.19. This indicates that she can arrive in Little Rock by 9 PM in this speed . 

, Graph Color 

Tuple Index 

Name 

Back 

Graph Index 

Graph Color 

Tuple Index 

· Name 

Back 

Graph Index 

. Graph Color 

Tuple Index 

, Name 

Back 

26 

Next 

..- 1x+Oy>=59 
F-;;;;;;;==-======!!~I Ox+1 y>=38 

-===========;;;;;;;;;11 x+Oy<=61 
Albuquerque Ox+1 y<=40 

List 

1x+Oy>=164 
Ox+1y>=40 
1x+Oy<=166 

Oklahoma City Ox+1 y<=42 

Insert Update List 

Figure 5.23 Set Time Stamp 

@=] From 29 To 29 __ I SetTime Locate 

Black 1x+Oy>=112 

11 
Ox+1 y;:,=39 
1 x+Oy<=114 
Ox+1 y<=41 

Next 

Figure 5.24 12 PM Location 



87 

5.8 Vegetation Example 

Al is doing a vegetation research. He gets the vegetation map in 1980 and 1998 as 

shown in Figure 5.25 and Figure 5.26 respectively. He would like to know: 

1. What is the possible vegetation in 1989? 

2. Which area was once shortgrass prairie and later becomes tallgrass prairie? 

-=-1QI~ ------~-----~ 
File Edit Dr8W View Operations Help 

·• Tall grass Prair ·· 

Figure 5.25 Vegetation Map of 1980 

~ 
File Edit Draw View Operations Help 

• Tallgrass Prair 

Figure 5.26 Vegetation Map of 1998 

To answer the first query, he sets the time stamp of the tallgrass prairie in two 

different years. In the example, he sets 80 and 98. Then he sets 89 for the time 

stamp and clicks the locate button. The result tuple is identified as a gray region as 

shown in Figure 5.27. 



88 

File Edit Draw View Operations Help 
I --.- ,. 

D ~~~ M, ~~ &"") n, 
~ -----, - - ----
1 [:] ,a • .I' ' DB @ e. lilll llffiTI ~ ll Mb~ n u 1100% 3 

.... 

• Tallgrass Prair 

~----•......__ __ 
Figure 5.27 Vegetation Map of 1989 

To answer the second query, he selects the shortgrass and tallgrass prairie in the 

feat ure window and then clicks the intersection icon. The resul t t uple is d rawn as a 

gray region as shown in Figure 5.28. 

Fie Edit Draw View Operations Help 

D ~ r;n ~ i ~ ~ &"") ()I 
- ~ - - --- -:=-7:7---:=-::-:-~- -=-- ..::. 

[;] ,a 11.~ , _o JB @ e. lilll ~ ~ ll Mb~ n u 1100% ..:J 

Graph Index 

Graph Color 

14 - From r To .~ Set Time Locate 

Tuple Index 

Vegetation 

Year 

Back I Next I 

I ... G-r-ay- - - -----3--, 1 x+Oy>=112 

I Ox+1 y>=13 
3 1x-1y<=130 

!Mixed-Grass Prairie 1x+1y<=230 
.... 11_9_8_0_-1_9_9_8 ______ Ox+1y<=lO 

Insert I Delete I Clear I Update I List 

Figure 5.28 Vegetation Map of Mixed-Grass Prairie 

Area 

~ 

I 



CHAPTER VI 

CONCLUSION 

6.1 Contributions 

This dissertation presents a Web-based tax calculator and a stock analysis tool which 

directly store constraint data into a conventional DBMS (e.g. RDBMS). We also 

develop the prototype of a constraint database system on CORBA using Java. Built 

upon top of a RDBMS, the system supports queries to process both constraint data 

and alphanumeric data. The applications and system have the following features: 

• A graphic interface to build up a constraint database. 

• A query interface to access the constraint database. 

• Constraint data is stored in a RDBMS. 

• Applications run on the system are inherently distributed. 

Building such a system has the following benefits: 

• Constraint data can be incorporated into the existing RDBMS. 

• The SQL-like query interface can be used to query constraint data. 

• A very simple interface facilitates access to constraint database systems. 

• It can be a testbed for the constraint database methodology and further devel

opment. 

• New constraint applications can be explored in this system. 

89 



90 

• Applications can run through Web or CORBA on different platforms seam

lessly. 

• An implementation guide is introduced. 

The graphical interface provides a layer of abstraction for end users. Most users 

need not to know the underlying linear constraint database used for storing the infor

mation and its implementation details. The linear constraint database can represent 

spatiotemporal data in a uniform framework. It enables the queries which were not 

possible to evaluate in a relational database. The system can extend the ability of 

traditional GIS systems such as ARC/INFO. The system can act as an intermediate 

tier which executes some queries which could not be handled by ARC/INFO. The 

combination of Java and CORBA facilitates distributed computing applications. 

6.2 Open Questions and Future Work 

The implementation of the systems is only a starting point for further development. 

Many issues remain open or under investigation. To allow the system to solve more 

complex and larger problems efficiently many improvements need to be made. There 

are numerous practical problems and possible enhancement: 

• Indexing techniques: In current implementation there is no indexing struc

ture for the constraint data. Though it is convenient to store the constraint 

data directly into a RDBMS, the indexing structure is necessary to improve 

performance of database operations in the case of large volume of data or 

high-dimensional data. Several index structures have been proposed for the 

constraint database [BCC99a, BCC99b, Fre95, KRVV93, KRVV96, Ram97, 

ZS199]. Most of them are based on multidimensional access methods or B-Tree 

variants and still in theoretical study. Very few attempt has been made to inte

grate these indexing techniques into the database system because most of them 

are not general and simple enough to integrate both relational and constraint 

data. 



91 

• Algebraic operations and normalization: Not a few algebraic operations 

are proposed for the constraint data model [BBBC95, BBC98, Gol96, GolOOa, 

GolOOb, KKR90, KKR95, GRS98]. Many of them are theoretically possible but 

practically infeasible. We need to refine these algebraic operations to fit the 

implementation. In current implementation we follow the algebra in [GRS98]. 

Rectifying a feasible algebra for the further development is important. Con

straints are said to be optimal (normal) if there is no redundant or duplicate 

information. In current implementation we first load constraints into vector 

format and then store them in the normalized form. This might work well in 

the small data set. For the large data set the normalized algorithm in [GRSS97] 

can be used. 

• Efficient constraint satisfying operation: Constraint satisfaction is a basic 

operation in a constraint database. Almost every operations involve constraint 

satisfaction. Our implementation is based on Fourier elimination [Chv83]. To 

employ the other efficient constraint satisfying algorithms [Cha93, Imb94] is 

for further development. 

• Optimization of queries: In current implementation the ability to query 

constraint data is limited. For complex queries over large numbers of stored 

constraints a query optimizer is necessary. 

• Comparative performance studies: Currently, no study on performance 

comparison between constraint database paradigm and other methods is avail

able. This information is valuable. 

• Temporal application: Temporal and spatial information can be represented 

by constraints in a uniform framework. In the current implementation, no 

temporal animation is available. This ability is for the further enhancement. 

• Query enhancement for other GIS: It is possible to use the linear constraint 

database to enchance the querying power of other GIS [Wan99]. The spatial 



92 

data in these systems can be coverted into the linear constraint data mode or 

constraint data can be translated into other GIS. In this way linear constraint 

database systems act as an intermediate layer which could implement some 

queries which is not possible in other GIS. 

• Multi-user and concurrency support: Though our implementation allows 

multiple access at the same time, the current implementation has no concur

rency control mechanism. The problems such as data sharing and transaction 

processing should be considered. 

6.3 Concluding Comment 

In this dissertation, we develop the systems and applications based on constraint 

databases and CORBA. Built upon top of a RDBMS, these systems support queries 

to process both constraint data and alphanumeric data which reside distributedly. 

The Web-based tax calculator and the stock analysis tool show the direct incor

poration of one-dimensional constraint data into a RDBMS. They can be a basis 

for a more complete financial tool which is accessible through the combination of 

the Web, CORBA, and Java. A general query interface to constraint databases has 

been successfully implemented and tested with GIS applications, linear programming 

applications, and spatio-temporal applications. These problems are difficult to be 

solved in the traditional DBMS or GIS. Most spatial queries presented in Section 

2.1.2 can be performed through this query interface in a simple way. This research 

shows that constraint database systems have the ability to handle several types of 

data uniformly and CORBA provides a platform for distributed computing. 

It is still too early to discuss the performance because no query optimization and 

specific index structure have been built. Theoretically, high-dimensional data can be 

nicely integrated into the constraint framework, but in practice, it is a challenge to 

present them for efficient queries. These are the future research as indicated in the 

previous section. 



[AAK95] 

[AAK97] 

[ABSOO] 

[APRSOO] 

[AS91] 

[AS94] 

[Bak97] 

[BalOO] 

[BBBC95] 

BIBLIOGRAPHY 

Foto N. Afrati, Theodoros Andronikos, and Theodoros G. Kavalieros. 
On the expressiveness of first-order constraint languages. In Con
straint Databases and Applications, volume 1034 of Lecture Notes in 
Computer Science, pages 22-39, Friedrichshafen, Germany, September 
1995. Springer. 

Foto N. Afrati, Theodore Andronikos, and Theodore G. Kavalieros. 
On the expressiveness of query languages with linear constraints; cap
turing desirable spatial properties. In Constraint Databases and Their 
Applications, Second International Workshop on Constraint Database 
Systems, CDE'97, volume 1191 of Lecture Notes in Computer Science, 
pages 105-115. Springer-Verlag, 1997. 

Serge Abiteboul, Peter Buneman, and Dan Suciu. Data on the Web : 
From Relations to Semistructured Data and XML. Morgan Kaufmann, 
San Francisco, CA, 2000. 

Lars Arge, Octavian Procopiuc, Sridhar Ramaswamy, Torsten Suel, 
Jan Vahrenhold, and Jeffrey Scott Vitter. A unified approach for in
dexed and non-indexed spatial joins. In Advances in Database Technol
ogy - EDET 2000, 6th International Conference on Extending Database 
Technology, volume 1777 of Lecture Notes in Computer Science, pages 
413-429, Konstanz, Germany, March 2000. Springer. 

Walid G. Aref and Hanan Samet. Extending a DBMS with spatial 
operations. In Advances in Spatial Databases, Second International 
Symposium, SSD'91, pages 322-331, Zurich, Switzerland, August 1991. 

Walid G. Aref and Hanan Samet. The spatial filter revisited. In 6th 
International Symposium on Spatial Data Handling, pages 190-208, 
Zurich, Switzerland, 1994. 

Sean Baker. COREA distributed objects using Orbix. Addison-Wesley, 
Reading, MA, 1997. 

Henry Balen. Distributed Object Architectures with COREA. SIGS 
Books/Cambridge, New York, NY, 2000. 

Alberto Belussi, Elisa Bertino, Michela Bertolotto, and Barbara 
Catania. Generalized relational algebra: Modeling spatial queries 

93 



[BBC97] 

[BBC98] 

[BCC99a] 

[BCC99b] 

[Bec92] 

[Ben75] 

[Ben79] 

[Ber96] 

[Ber97] 

[BJM93] 

94 

in constraint databases. In Constraint Databases and Applications, 
volume 1034 of Lecture Notes in Computer Science, pages 40-67, 
Friedrichshafen, Germany, September 1995. Springer. 

Alberto Belussi, Elisa Bertino, and Barbara Catania. Manipulating 
spatial data in constraint databases. In Advances in Spatial Databases, 
5th International Symposium, SSD'97, volume 1262 of Lecture Notes 
in Computer Science, pages 115-141, Berlin, Germany, July 1997. 
Springer. 

Alberto Belussi, Elisa Bertino, and Barbara Catania. An extended 
algebra for constraint databases. IEEE Transactions on Knowledge 
and Data Engineering (TKDE), 10(5):686-705, September 1998. 

Elisa Bertino, Barbara Catania, and Boris Chidlovskii. Approxima
tion techniques for indexing two-dimensional constraint databases. In 
Database Systems for Advanced Applications, Proceedings of the Sixth 
International Conference on Database Systems for Advanced Applica
tions {DASFAA), pages 213-220, Hsinchu, Taiwan, April 1999. IEEE 
Computer Society. 

Elisa Bertino, Barbara Catania, and Boris Chidlovskii. Indexing con
straint databases by using a dual representation. In Proceedings of the 
15th International Conference on Data Engineering, pages 618-627, 
Sydney, Austrialia, March 1999. IEEE Computer Society Press. 

Ludger Becker. A New Algorithm and a Cost Model for Join Processing 
with the Grid File. PhD thesis, Universitat-Gesamthochschule Siegen, 
Siegen, Germany, 1992. 

Jon Louis Bentley. Multidimensional binary search trees used for as
sociative searching. Communications of the ACM (CACM), 18(10), 
October 1975. 

Jon Louis Bentley. Multidimensional binary search trees in database 
applications. IEEE Transactions on Software Engineering (TSE), 5(4), 
July 1979. 

Alex Berson. Client/Server Architecture. McGraw-Hill Companies, 
Inc., New York, second edition, 1996. 

Michel Berkelaar. The mixed integer linear program solver package -
lp...solve. ftp://ftp.es.ele.tue.nl/pub/lp...solve/, 1997. 

Alexander Brodsky, Joxan Jaffar, and Michael J. Maher. Toward prac
tical constraint databases. In 19th International Conference on Very 
Large Data Base VLDB 1993, pages 567-580, Dublin, Ireland, August 
1993. Morgan Kaufmann. 



[BKS93] 

[BKSS90] 

[BKSS94] 

[BM72] 

[BM98] 

[BR95] 

[Bri94] 

[Bro95] 

[Bro96a] 

[Bro96b] 

[BS97] 

95 

Thomas Brinkhoff, Hans-Peter Kriegel, and Bernhard Seeger. Efficient 
processing of spatial joins using R-trees. In Proceedings of the 1993 
ACM SIGMOD International Conference on Management of Data, 
pages 237-246, Washington, D.C., May 1993. 

Norbert Beckmann, Hans-Peter Kriegel, Ralf Schneider, and Bernhard 
Seeger. The R*-tree: An efficient and robust access method for points 
and rectangles. In Proceedings of the 1990 ACM SIGMOD Interna
tional Conference on Management of Data, pages 322-331, Atlantic 
City, NJ, May 1990. 

Thomas Brinkhoff, Hans-Peter Kriegel, Ralf Schneider, and Bern
hard Seeger. Multi-step processing of spatial joins. In Proceedings 
of the 1994 ACM SIGMOD International Conference on Management 
of Data, pages 197-208, Minneapolis, MN, May 1994. 

Rudolf Bayer and Edward M. McCreight. Organization and mainte
nance of large ordered indices. Acta Informatica, 1(3):173-189, 1972. 

Zvi Bodie and Robert C. Merton. Finance. Prentice Hall, Upper Saddle 
River, NJ, preliminary edition, 1998. 

Jo-Hag Byon and Peter Z. Revesz. DISCO: A constraint database 
system with sets. In Proceedings of the 1st International Database 
Workshop on Constraint Database Systems (CDB'95}, volume 1034 
of Lecture Notes in Computer Science, pages 68-83, Friedrichshafen, 
Germany, 1995. Springer-Verlag. 

Thomas Brinkhoff. Der Spatial Join in Geo-Datenbanksystemen. PhD 
thesis, Ludwig-Maximilians-Universitat Miinchen, Miinchen, Ger
many, 1994. 

Alexander Brodsky. The LyriC language: Querying constraint objects. 
In Proceedings of the 1995 ACM SIG MOD International Conference on 
Management of Data, pages 35-46, San Jose, California, June 1995. 

Alexander Brodsky. Constraint database technology for electronic 
trade with complex objectives. ACM Computing Surveys, 28(4es):64-
77, December 1996. 

Alexander Brodsky. Constraint databases: Promising technology or 
just intellectual exercise. In ACM Workshop on Strategic Directions 
in Computing Research, Cambridge, Massachusetts, June 1996. MIT 
Laboratory for Computer Science. 

Alexander Brodsky and Victor E. Segal. The C3 constraint object
oriented database system: An overview. In Constraint Databases 



[BSCE97] 

[BSCE99] 

[Buc85] 

[CDV88] 

[Cha93] 

[CHLF89] 

[Chv83] 

[CM88] 

[Cod70] 

[Com95] 

[Com97] 

96 

and Their Applications, Second International Workshop on Constraint 
Database Systems, CDB '97, volume 1191 of Lecture Notes in Com
puter Science, pages 134-159, Delphi, Greece, 1997. Springer-Verlag. 

Alexander Brodsky, Victor E. Segal, Jia Chen, and Pavel A. 
Exarkhopoulo. The ccube constraint object-oriented database system. 
Constaints - An International Journal, 2(3/4), 1997. 

Alexander Brodsky, Victor E. Segal, Jia Chen, and Pavel A. 
Exarkhopoulo. The ccube constraint object-oriented database system. 
In SIGMOD 1999, Proceedings ACM SIGMOD International Confer
ence on Management of Data, pages 577-579, Philadephia, Pennsylva
nia, June 1999. ACM Press. 

Bruno Buchberger. Grabner bases: An algorithm method in polyno
mial ideal theory. In Multidimensional Systems Theory, pages 184-232, 
Dordrecht - Boston - Lancaster, 1985. D. Reidel Publishing Company. 

Michael J. Carey, David J. DeWitt, and Scott L. Vandenberg. A data 
model and query language for exodus. In Proceedings of the 1988 A CM 
SIGMOD International Conference on Management of Data, pages 
413-423, Chicago, Illinois, September 1988. 

Vijay Chandru. Variable elimination in linear constraints. The Com
puter Journal, 36(5):463-472, 1993. 

Sei H. Chun, G. E. Hedrick, Huizhu Lu, and D. D. Fisher. A partition
ing method for grid file directories. In Proceedings of the Thirteenth 
Annual International Computer Software and Applications Conference, 
COMPSAC 89, pages 271-277, Orlando, Florida, September 1989. The 
IEEE Computer Society. 

Vasek Chvatal. Linear Programming. W. H. Freeman, New York, NY, 
1983. 

Robert W. Colby and Thomas A. Meyers. The Encyclopedia of Tech
nical Market Indicators. Dow Jones-Irwin, Homewood, Ill., 1988. 

E. F. Codd. A relational model of data for large shared data banks. 
Communications of the ACM (CACM), 13(6):377-387, June 1970. 

Douglas Comer. The Internet book : Everything you need to know 
about computer networking and how the Internet works. Prentice Hall, 
Englewood Cliffs, N.J., 1995. 

Standard & Poor's Compustat. PC Plus Basics. Standard & Poor's 
Compustat, Englewood, CO, 1997. 



[Dan63] 

[DCR99] 

[Del99] 

[Dew97) 

[DHSA88) 

[Dob97) 

[Dob98) 

[Eco95) 

[Edw98) 

[Ege94] 

[FAG83] 

[FKN80] 

[Fla97] 

[Fre87] 

97 

George B. Dantzig. Linear programming and extensions. Technical 
report, Princeton University, Princeton, New Jersey, 1963. 

Cynthia Della, Torre Cicalese, and Shmuel Rotenstreich. Behavioral 
specification of distributed software component interfaces. IEEE Com
puter, pages 46-53, July 1999. 

Tom Dell. Dynamic HTML for Webmasters. AP Professional, San 
Diego, CA, 1999. 

D. Travis Dewire. Second-Generation Client/Server Computing. 
McGraw-Hill, New York, 1997. 

Mehmet Dincbas, Pascal Van Hentenryck, Helmut Simonis, Abderrah
mane Aggoun, T. Graf, and F. Berthier. The. constraint logic program
ming language CHIP. In Proceedings of the International Conference 
on Fifth Generation Computer Systems 1988, pages 693-702, Tokyo, 
Japan, 1988. 

Rick Dobson. Dynamic HTML explained, Part I. Byte, 22(11):53-54, 
Nov 1997. 

Rick Dobson. Ecmscript : The holy standard. Byte, 23(7):47-48, July 
1998. 

The Economist. Will your next computer be a tin can and a wire? 
The Economist, pages 75 - 76, October 1995. 

John Edwards. Changing database market hurts major vendors. IEEE 
Computer, pages 10-11, March 1998. 

Max J. Egenhofer. Spatial SQL: A query and presentation language. 
IEEE Transactions on Knowledge and Data Engineering, 6(1):86-95, 
February 1994. 

Henry Fuchs, G. D. Abram, and E. D. Grant. Near real-time shaded 
display of rigid objects. Computer Graphics, 17(3):65-72, 1983. 

Henry Fuchs, Zvi Meir Kedem, and Bruce F. Naylor. On visible surface 
generation by a-priori tree structures. Computer Graphics, 14(3):124-
133, 1980. 

David Flanagan. JavaScript: The Difinition Guide. O'Reilly & Asso
ciates, Inc., Sebastopol, CA, second edition, 1997. 

Michael Freeston. The BANG file: A new kind of grid file. In Proceed
ings of the ACM SIGMOD 1987 Annual Conference, pages 260-269, 
San Francisco, California, May 1987. 



[Fre95) 

[FSR87) 

[GB91) 

[GdROO) 

[GG95) 

[GG97) 

[GG98) 

[Gil97) 

[GL95) 

[GLRSOO] 

98 

Michael Freeston. The application of multi-dimensional indexing meth
ods to constraints. In Proceedings of the 1st International Database 
Workshop on Constraint Database Systems (CDB'95), volume 1034 of 
Lecture Notes in Computer Science, pages 102-119, Friedrichshafen, 
Germany, 1995. 

Christos Faloutsos, Timos K. Sellis, and Nick Roussopoulos. Analysis 
of object oriented spatial access methods. In Proceedings of the ACM 
SIGMOD 1987 Annual Conference, pages 426-439, San Francisco, Cal
ifornia, May 1987. 

Oliver Gunther and Jeff Bilmes. Tree-based access methods for spa
tial databases: Implementation and performance evaluation. IEEE 
Transactions on Knowledge and Data Engineering, 3(3):342-356, Sep 
1991. 

David Gross and Michel de Rougemont. Uniform generation in spatial 
constraint databases and applications. In Proceedings of the Nine
teenth ACM SIGMOD-SIGACT-SIGART Symposium on Principles of 
Database Systems, pages 254-259, Dallas, Texas, May 2000. ACM. 

Volker Gaede and Oliver Gunther. Constraint-based query optimiza
tion and processing. In Proceedings of the 1st International Database 
Workshop on Constraint Database Systems (CDB'95), volume 1034 
of Lecture Notes in Computer Science, pages 84-101, Friedrichshafen, 
Germany, 1995. 

Oliver Gunther and Volker Gaede. Oversize shelves: A storage man
agement technique for large spatial data objects. International Journal 
of Geographic Information Systems, 11(1):5-32, Jan 1997. 

Volker Gaede and Oliver Gunther. Multidimensional access methods. 
ACM Computing Surveys, 30(2):170-321, June 1998. 

Paul Gilster. The Web Navigator. Wiley Computer Publishing, New 
York, 1,997. 

Stephane Grumbach and Zoe Lacroix. Computing queries on lin
ear constraint databases. In Proceedings of the Fifth International 
Workshop on Database Programming Languages, Database Program
ming Languages (DBPL-5), Gubbio, Umbria, Italy, September 1995. 
Springer. 

Stephane Grumbach, Zoe Lacroix, Philippe Rigaux, and Luc Segoufin. 
Optimization techniques. In Constraint Databases, pages 319-334. 
Springer Verlag, Berlin/Heidelberg/New York, 2000. 



[GM94] 

[Gol96] 

[GolOOa] 

[GolOOb] 

[GPOO] 

[GQ99] 

[GR94] 

[Gra95] 

[Gro97] 

[GRS98] 

[GRSS97] 

[GRSSOO] 

[GRSY96] 

99 

Roman Gross and Robert Marti. DeCoR a deductive constraint 
database system. In Proceedings of the Tenth Logic Programming 
Workshop, WLP 94, pages 65-68, Ziirich, Switzerland, October 1994. 
Institut fiir lnformatik der Universitat Ziirich. 

Dina Q. Goldin. Constraint query algebra. Constaints - An Interna
tional Journal, 1(1), 1996. 

Dina Goldin. Constraint algebras. In Constraint Databases, pages 
335-342. Springer Verlag, Berlin/Heidelberg/New York, 2000. 

Dina Goldin. Constraint algebras. In Constraint Databases, pages 
335-342. Springer Verlag, Berlin/Heidelberg/New York, 2000. 

Charles F. Goldfarb and Paul Prescod. The XML handbook. Prentice 
Hall PRT, Upper Saddle River, NJ, second edition, 2000. 

Ian S. Graham and Liam Quin. XML Specification Guide. Wiley, New 
York, 1999. 

Volker Gaede and Wolf-Fritz Riekert. Spatial access methods and query 
processing in the object-oriented GIS GODOT. In AGDM'94 Work
shop, pages 40-52, Delft, The Netherlands, 1994. 

B. Granveaud. Study and implementation of spatial indexing methods. 
Technical report, ECRC, Arabellastr. 17, Miinchen, Germany, 1995. 

Network Design Group. Java port of lp_solve 2.0. 
http://www.cs.wustl.edu/ "'javagrp /help /Linear Programming.html, 
1997. 

Stephane Grumbach, Philippe Rigaux, and Luc Segoufin. The 
DEDALE system for complex spatial queries. In Proceedings ACM 
SIGMOD International Conference on Management of Data SIGMOD 
1998, pages 213-224, Seattle, Washington, June 1998. ACM Press. 

Stephane Grumbach, Philippe Rigaux, Michel Scholl, and Luc 
Segoufin. DEDALE, a spatial constraint database. In International 
Workshop on Database Programming Languages DBPL-6, Estes Park, 
Colorado, USA, 1997. 

Stephane Grumbach, Philippe Rigaux, Michel Scholl, and Luc 
Segoufin. The dedale prototype. In Constraint Databases, pages 365-
382. Springer Verlag, Berlin/Heidelberg/New York, 2000. 

Jonathan Goldstein, Raghu Ramakrishnan, Uri Shaft, and Jie-Bing 
Yu. Using constraints to query R*-tree. Technical report, Computer 
Sciences Department, University of Wisconsin - Madison, Madison, 
Wisconsin, February 1996. 



[GS93] 

[GST94] 

[Gun93] 

[Gut84] 

[Gut89] 

[Gut94] 

[GVGOO] 

[GW97] 

100 

Ralf Hartmut Guting and Markus Schneide. Realms: A foundation 
for spatial data types in database systems. In Advances in Spatial 
Databases, Third International Symposium, SSD'93, Lecture Notes in 
Computer Science, pages 14-35, Singapore, 1993. Springer-Verlag. 

Stephane Grumbach, Jianwen Su, and Christophe Tollu. Linear con
straint query languages expressive power and complexity. In Workshop 
on Logic and Computational Complexity, Indianapolis, IN, USA, Oc
tober 1994. Springer. 

Oliver Gunther. Efficient computation of spatial joins. In Proceedings 
of the Ninth International Conference on Data Engineering, pages 50-
59, Vienna, Austria, April 1993. 

Antonin Guttman. R-trees: A dynamic index structure for spatial 
searching. In ACM SIGMOD Conference on Management of Data, 
pages 47-57, Boston, Massachusetts, June 1984. 

Ralf Hartmut Guting. Gral: An extensible relational database system 
for geometric applications. In Proceedings of the Fifteenth International 
Conference on Very Large Data Bases, pages 33-44, Amsterdam, The 
Netherlands, 1989. 

Ralf Hartmut Guting. An introduction to spatial database systems. 
The VLDB Journal, 3(4):357-399, Oct 1994. 

Marc Gyssens, Luc Vandeurzen, and Dirk Van Gucht. Linear
constraint databases. In Constraint Databases, pages 199----)29. Springer 
Verlag, Berlin/Heidelberg/New York, 2000. 

Volker Gaede and Mark Wallace. An informal introduction to con
straint database systems. In Constraint Databases and Applications, 
volume 1191 of Lectures Notes in Computer Science, pages 7-52, Del
phi, Greece, 1997. Springer. 

[HCLM90] Laura M. Haas, Walter Chang, Guy M. Lohman, John McPherson, 
Paul F. Wilms, George Lapis, Bruce G. Lindsay, Hamid Pirahesh, 
Michael J. Carey, and Eugene J. Shekita. Starburst mid-flight: As the 
dust clears. IEEE Transactions on Knowledge and Data Engineering, 
2(1):143-160, March 1990. 

[HHLvEB89] Michael R. Hansen, Bo S. Hansen, Peter Lucas, and Peter van 
Emde Boas. Integrating relational databases and constraint languages. 
Computer Languages, 14(2), 1989. 

[Hin85] K. H. Hinrichs. The Grid File System: Implementation and Case Stud
ies of Applications. PhD thesis, Swiss Federal Institute of Technology, 
Zurich, Switzerland, 1985. 



[HJ88] 

[HK95] 

[Hot97] 

[HSH92] 

[HW98] 

[Imb94] 

[Ind91] 

[Int99] 

[Kan95] 

101 

Michun Hsu and Thomas E. Cheatham Jr. Rule execution in CPLEX: 
A persistent objectbase. In Advances in Object-Oriented Database Sys
tems, 2nd International Workshop on Object-Oriented Database Sys
tems OODBS 1988, volume 334 of Lecture Notes in Computer Science, 
pages 150-155, Bad Munster am Stein-Ebernburg, Germany, Septem
ber 1988. Springer. 

Luis Hermosilla and Gabriel M. Kuper. Towards the definition of a 
spatial object-oriented data model with constraints. In Proceedings 
of the 1st International Database Workshop on Constraint Database 
Systems {CDB'95), volume 1034 of Lecture Notes in Computer Science, 
pages 120-131, Friedrichshafen, Germany, 1995. 

Steve Hotopp. Practical issues concerning volatility and its measure
ment, past and predicted. In Volatility in the Capital Markets : State
of-the-Art Techniques for Modeling, Managing, and Trading Volatility, 
pages 1-33. Glenlake Publishing· and Fitzroy Dearborn, Chicago and 
London, 1997. 

Zhexue Huang, Per Svensson, and H. Hauska. Solving spatial analysis 
problems with GeoSAL, a spatial query language. In Proceedings of 
the 6th International Working Conference on Scientific and Statisti
cal Database Management (SSDBM 1992), pages 1-17, Monte Verita, 
Switzerland, 1992. 

James C. Van Horne and John M. Wachowicz. Fundamentals of Fi
nancial Management. Prentice Hall, Upper Saddle River, N.J., 1998. 

Jean-Louis Imbert. Linear constraint solving in clp-languages. In Con
straint Programming: Basics and Trends, volume 910 of Lecture Notes 
in Computer Science, pages 108-127, Chatillon-sur-Seine, France, May 
1994. Springer Verlag. 

Spatial Join Indices. Spatial join indices. In Proceedings of the Seventh 
International Conference on Data Engineering, pages 500-509, Kobe, 
Japan, April 1991. 

International Organization for Standardization. ISO /!EC 13249-
3: 1999 Information technology - Database languages SQL Multimedia 
and Application Packages - Part 3: Spatial. International Organization 
for Standardization, Geneva, Switzerland, 1999. 

Paris. C. Kanellakis. Constraint programming and database languages: 
A tutorial. In 14th ACM Symposium on Principles of Database Systems 
(PODS), pages 46-53, San Jose, California, 1995. 



102 

[KF94] Ibrahim Kamel and Christos Faloutsos. Hilbert R-tree: An improved 
R-tree using fractals. In Proceedings of the 20th International Confer
ence on Very Large Data Bases, (VLDB'94), pages 500-509, Santiago 
de Chile, Chile, September 1994. Morgan Kaufmann. 

[KF95] Ed Krol and Paula Ferguson. The Whole Internet for Windows 95 : 
User's Guide f3 Catalog. O'Reilly & Associates, Sebastopol, CA, 1995. 

[KG94a] Paris. C. Kanellakis and D. Q. Goldin. Constraint programming and 
database query languages. Technical Report CS-94-31, Department of 
Computer Science, Brown University, Providence, Rhode Island, 1994. 

[KG94b] Paris. C. Kanellakis and Dina. Q. Goldin. Constraint programming 
and database query languages. In Symposium on Theoretical Aspects of 
Computer Software, volume 789 of Lecture Notes in Computer Science, 
pages 96-120, Sendai, Japan, April 1994. 

[Kha96] Rohit Khare. The next big thing on the Web. Byte, page 42, July 
1996. 

[Kha97] Rohit Khare. XML: A door to automated Web applications. IEEE 
Internet Computing, pages 78-87, Jul/ Aug 1997. 

[KKR90] Paris C. Kanellakis, Gabriel M. Kuper, and Peter Z. Revesz. Con
straint query languages. In 9th ACM Symposium on Principles of 
Database.Systems (PODS 1990), pages 299-313, Nashville, Tennessee, 
April 1990. ACM Press. 

[KKR95] Paris C. Kanellakis, Gabriel M. Kuper, and Peter Z. Revesz. Constraint 
query languages. Journal of Computer and System Sciences, 51(1):26-
52, 1995. 

[KLPOO] Gabriel M. Kuper, Leonid Libkin, and Jan Paredaens. Constraint 
Databases. Springer Verlag, Berlin/Heidelberg/New York, 2000. 

[Knu73] Donald E. Knuth. The Art of Computer Programming. Searching and 
Sorting, volume 3. Addison-Wesley, Reading, MA, 1973. 

[Kor98] Jukka Korpela. Lurching Toward Babel: HTML, CSS, and XML. 
Computer, 31(7), July 1998. 

[Kro94] Ed Krol. The Whole Internet User's Guide f3 Catalog. O'Reilly & 
Associates, Sebastopol, CA, second edition, 1994. 

[KRVV93] Paris C. Kanellakis, Sridhar Ramaswamy, Darren Erik Vengroff, and 
Jeffrey Scott Vitter. Indexing for data models with constraints and 
classes. In Proceedings of the Twelfth ACM SIGACT-SIGMOD
SIGART Symposium on Principles of Database Systems, PODS 1993, 
pages 223-243, Washington DC, May 1993. ACM Press. 



103 

[KRVV96] Paris C. Kanellakis, Sridhar Ramaswamy, Darren Erik Vengroff, and 
Jeffrey Scott Vitter. Indexing for data models with constraints and 
classes. Journal of Computer and System Sciences, 52(3):589-612, 
1996. 

[KRW98] Pradip Kanjamala, Peter Z. Revesz, and Yonghui Wang. Mlpq/gis: A 
gis using linear constraint databases. In 9th International Conference 
On Management Of Data (COMAD' 98), Hyderabad, India, December 
1998. Tata-McGraw-Hill. 

[KS86] Hans-Peter Kriegel and Bernhard Seeger. Multidimensional order pre
serving linear hashing with partial expansions. In International Con
ference on Database Theory ICDT'86, volume 243 of Lecture Notes 
in Computer Science, pages 203-220, Rome, Italy, September 1986. 
Springer-Verlag. 

[KS88] Hans-Peter Kriegel and Bernhard Seeger. Plop-hasing: A grid file 
without directory. In IEEE 4th International Conference on Data En
gineering, 1988. 

[KSS87] Robert A. Kowalski, Fariba Sadri, and Paul Soper. Integrity checking 
in deductive databases. In 13th International Conference on Very Large 
Data Bases, pages 61-69, Brighton, England, September 1987. Morgan 
Kaufmann. 

[LLOW91] Charles Lamb, Gordon Landis, Jack A. Orenstein, and Danel Wein
reb. The objectstore system. Communications of the ACM (CACM), 
34(10):50-63, October 1991. 

[LR94] Ming-Ling Lo and Chinya V. Ravishankar. Spatial joins using seeded 
trees. In Proceedings of the 1994 ACM SIG MOD International Confer
ence on Management of Data, pages 209-220, Minneapolis, Minnesota, 
May 1994. 

[LS89] David B. Lomet and Betty Salzberg. hB-tree : A robust multi-attribute 
search structure. In Proceedings of the Fifth International Conference 
on Data Engineering, pages 296-304, Los Angeles, California, February 
1989. 

[LS90] David B. Lomet and Betty Salzberg. The hB-tree: A multiattribute in
dexing method with good guaranteed performance. ACM Transactions 
on Database Systems (TODS), 15(1):625-658, March 1990. 

[MeyOO] Eric A. Meyer. Cascading Style Sheets: The Definitive Guide. O'Reilly, 
Sebastopol, CA, May 2000. 



104 

[MFDG98] Scott Mace, Udo Flohr, Rick Dobson, and Tony Graham. Weaving a 
better Web. Byte, 23(3):58-68, March 1998. 

[Nar94] Atul Narkhede. Fast polygon triangulation algorithm based on seidel's 
algorithm. Implementation Report, Department of Computer Science, 
The University of North Carolina at Chapel Hill, Chapel Hill, NC, 
1994. 

[NHS84] Jiirg Nievergelt, Hans Hinterberger, and Kenneth C. Sevcik. The Grid 
file: An adaptable, symmetric multikey file structure. A CM Transac
tions on Database Systems (TODS), 9(1):38-71, March 1984. 

[NS87] Randal C. Nelson and Hanan Samet. A population analysis for hierar
chical data structures. In Proceedings of the Association for Computing 
Machinery Special Interest Group on Management of Data 1981 An
nual Conference, pages 270-277, San Francisco, California, May 1987. 

[NT93] Evar D. Nering and Albert W. Tucker. Linear Programs and Related 
Problems. Academic Press, Inc., 1993. 

[NV96] Christian Neuss and Johan Vromans. The Webmaster's Handbook : 

[ObjOO] 

[OH98] 

[OHE96] 

[OHE97a] 

[OHE97b] 

[OM88] 

[Ope99] 

Perl Power for your Web Server. International Thomson Computer 
Press, London/Boston, 1996. 

Object-Oriented Concepts Inc. ORBacus for C++ and Java. Object
Oriented Concepts, Inc., 44 Manning Road, Billerica, MA 01821, 
September 2000. 

Robert Orfali and Dan Harkey. Client/Server Programming with Java 
and COREA. Wiley Computer Publishing, New York, NY, second 
edition, 1998. 

Robert Orfali, Dan Harkey, and Jeri Edwards. The Essential 
Client/Server Survival Guide. Wiley Computer Publishing, New York, 
NY, second edition, 1996. 

Robert Orfali, Dan Harkey, and Jeri Edwards. CORBA, Java, and 
object Web. Byte, 22(10):95-100, Oct 1997. 

Robert Orfali, Dan Harkey, and Jeri Edwards. Instant COREA. Wiley 
Computer Publishing, New York, NY, 1997. 

Jack A. Orenstein and Frank Manola. Probe: Spatial data modeling 
and query processing in an image database application. IEEE Trans
actions on Software Engineering, 14(5):611-628, May 1988. 

Open GIS Consortium Inc. OpenGIS Simple Features Sepcification for 
SQL Revision 1.1. Open GIS Consortium, Inc., May 1999. 



[O'R94] 

[O'R98] 

[Ore86] 

[Oto86] 

[Ouk85] 

[Par95] 

[PdBG94] 

[Pra98] 

[PS85] 

[PTSE95] 

105 

Joseph O'Rourke. Computational geometry in C. Cambridge Univer
sity Press, Cambridge/New York/Melbourne, 1994. 

Joseph O'Rourke. Computational Geometry in C. Cambridge Univer
sity Press, Cambridge/New York/Melbourne, 2nd edition, September 
1998. 

Jack A. Orenstein. Spatial query processing in an object-oriented 
database system. In Proceedings of the 1986 ACM SIGMOD Inter
national Conference on Management of Data, pages 326-333, Wash
ington, D.C., May 1986. 

Ekow J. Otoo. Balanced multidimensional extendible hash tree. In 
Proceedings of the Fifth ACM SIGACT-SIGMOD Symposium on Prin
ciples of Database Systems, pages 100-113, Cambridge, Massachusetts, 
March 1986. ACM Press. 

M. Aris Ouksel. The interpolation-based grid file. In Proceedings of the 
Fourth ACM SIGACT-SIGMOD Symposium on Principles of Database 
Systems, pages 20-27, Portland, Oregon, March 1985. ACM Press. 

Jan Paredaens. Spatial databases, the final frontier. In Database theory 
- ICDT'95: 5th International Conference, Lecture Notes in Computer 
Science, pages 14-32. Springer-Verlag, Berlin/Heidelberg/New York, 
1995. 

Jan Paredaens, Jan Van den Bussche, and Dirk Van Gucht. To
wards a theory of spatial database queries. In Proceedings of the 
13th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of 
Database Systems (PODS 1994), pages 279-288, Minneapolis, Min
nesota, May 1994. ACM Press. 

Kanjamala P. Pradip. Implementation a geographic information sys
tem using linear constraint databases. Master's thesis, University of 
Nebraska, Lincoln, Nebraska, July 1998. 

Franco P. Preparata and Michael Ian Shamos. Computational Geom
etry: An Introduction. Springer-Verlag, Berlin/Heidelberg/New York, 
1985. 

Dimitris Papadias, Yannis Theodoridis, Timos K. Sellis, and Max J. 
Egenhofer. Topological relations in the world of minimum bounding 
rectangles: A study with R-trees. In Proceedings of the 1995 ACM 
SIGMOD International Conference on Management of Data, pages 
92-103, San Jose, California, May 1995. 



106 

[PWGB98] Doug Pedrick, Jonathan Weedon, Jon Goldberg, and Erik Bleifield. 
Programming with VisiBroker : A Developer's Guide to VisiBroker 
for Java. Wiley Computer Publishing, New York, NY, 1998. 

[Ram97] Sridhar Ramaswamy. Efficient indexing for constraints and temporal 
databases. In Database Theory - !CDT '97, 6th International Confer
ence, volume 1186 of Lecture Notes in Computer Science, pages 419-
431, Delphi, Greece, January 1997. Srpinger. 

[RamOO] Sridhar Ramaswamy. Ijo-efficient algorithms for cdbs. In Constraint 
Databases, pages 343-360. Springer Verlag, Berlin/Heidelberg/New 
York, 2000. 

[RCKLOO] Peter Z. Revesz, Rui Chen, Pradip Kanjamala, Yiming Li, Yuguo Liu, 
and Yonghui Wang. The mlpq/gis constraint database system. In 
ACM SIGMOD Conference 2000, page 601, Dallas, Texas, May 2000. 

[Rev97] Peter Z. Revesz, Problem solving in the DISCO constraint database 
system. In Constraint Databases and Their Applications, Second Inter
national Workshop on Constraint Database Systems, CDB '97, volume 
1191 of Lecture Notes in Computer Science, pages 302-315, Delphi, 
Greece, 1997. Springer-Verlag. 

[RevOOa] Peter Z. Revesz. Datalog and constraints. In Constraint Databases, 
pages 155-170. Springer Verlag, Berlin/Heidelberg/New York, 2000. 

[RevOOb] Peter Z. Revesz. The disco system. In Constraint Databases, pages 
383-389. Springer Verlag, Berlin/Heidelberg/New York, 2000. 

[RFS88] Nick Roussopoulos, Christos Faloutsos, and Timos Sellis. An efficient 
pictorial database system for psql. IEEE Transactions on Software 
Engineering, 14(5):639-650, May 1988. 

[RL84] Nick Roussopoulos and Daniel Leifker. An introduction to PSQL: 
A pictoral structured query language. In IEEE Workshop on Visual 
Language, 1984. 

[RL85] Nick Roussopoulos and Daniel Leifker. Direct spatial search on picto
rial databases using packed R-trees. In Proceedings of the 1985 ACM 
SIGMOD International Conference on Management of Data, pages 17-
31, Austin, Texas, May 1985. 

[RL97] Peter Z. Revesz and Yiming Li. Mlpq: A linear constraint database 
system with aggregate operators. In Proceedings of the International 
Database Engineering and Applications Symposium, IDEAS 1997, 
pages 132-137, Montreal, Candada, August 1997. Concordia Univer
sity. 



[Rob81] 

[Rul99] 

[Sam95] 

[Sch86] 

[Sei91] 

[SieOO] 

[SK88] 

[SK90] 

[SK91] 

[SKS97] 

[SRF87] 

[SSH86] 

107 

John T. Robinson. A search structure for large multidimensional dy
namic indexes. In Proceedings of the 1981 ACM SIGMOD Interna
tional Conference on ,Management of Data, pages 10-18, Ann Arbor, 
Michigan, 1981. ACM Press. 

Jeff Rule. Dynamic HTML : The HTML Developer's Guide. Addison
Wesley, Reading, MA, 1999. 

Hanan Samet. Spatial data structures. In Modern Database Sys
tems: The Object Model, Interoperability, and Beyond, pages 338-360. 
Addison-Wesley/ACM Press, New York, N.Y., 1995. 

Alexander Schrijver. Theory of Linear and Integer Programming. John 
Wiley & Son, Inc., 1986. 

Raimund Seidel. A simple and fast incremental randomized algorithm 
for computing trapezoidal decompositions and for triangulating poly
gons. Computational Geometry: Theory and Applications, 1(1):51-64, 
1991. 

Jon Siegel. Corba 3 Fundamentals and Programming. John Wiley & 
Sons, New York, NY, 2000. 

Bernhard Seeger and Hans-Peter Kriegel. Techniques for design and 
implementation of efficient spatial access methods. In Fourteenth In
ternational Conference on Very Large Data Bases, pages 360-371, Los 
Angeles, California, 1988. Morgan Kaufmann. 

Bernhard Seeger and Hans-Peter Kriegel. The buddy-tree: An effi
cient and robust access method for spatial data base systems. In 16th 
International Conference on Very Large Data Bases, pages 590-601, 
Brisbane, Queensland, Australia, August 1990. Morgan Kaufmann. 

Michael Stonebraker and Greg Kemnitz. The Postgres next generation 
database management system. Communications of the ACM (CACM), 
34(10):78-92, October 1991. 

Abraham Silberschatz, Henry F. Korth, and S. Sudarshan. Database 
System Concepts. The McGraw-Hill Companies, Inc., New York, 1997. 

Timos Sellis, Nick Roussopoulos, and Christos Faloutsos. The R + -tree: 
A dynamic index for multi-dimensional objects. In 12th International 
Conj. on VLDB, pages 507-518, Brighton, England, Sep 1987. 

Michael Stonebraker, Timos K. Sellis, and Eric N. Hanson. An anal
ysis of rule indexing implementations in data base systems. In Expert 



[SV89] 

[Tam82] 

[TB98] 

[TM84] 

[VD98] 

[VGG95] 

[VGG98] 

[v090] 

[Wal91] 

[Wan99] 

[Wig95] 

108 

Database Systems, Proceedings From the First International Confer
ence, pages 465-476, Charleston, South Carolina, April 1986. Benjamin 
Cummings. 

Michel Scholl and Agnes Voisard. Thematic map modeling. In De
sign and Implementation of Large Spatial Databases, First Symposium 
SSD'89, volume 409 of Lecture Notes in Computer Science, pages 167-
192, Santa Barbara, California, July 1989. Sringer-Verlag. 

Markku Tamminen. The extendible cell method for closest point prob
lems. BIT, 22(1):27-41, 1982. 

Richard Jack Teweles and Edward S. Bradley. The Stock Market. John 
Wiley & Sons, Inc., New York, NY, 7th edition, 1998. 

S. B. Tor and Alan E. Middleditch. Convex decomposition of sim
ple polygons. ACM Transactions on Graphics (TOG), 3(4):244-265, 
October 1984. 

Andreas Vogel and Keith Duddy. Java Programming with COREA. 
Wiley Computer Publishing, New York, NY, second edition, 1998. 

Luc Vandeurzen, Marc Gyssens, and Dirk Van Gucht. On the desir
ability and limitations of linear spatial database model. In Advances in 
Spatial Databases, 4th International Symposium, SSD'95, volume 951 
of Lecture Notes in Computer Science, pages 14-28, Portland, Maine, 
USA, August 1995. Springer. 

Luc Vandeurzen, Marc Gyssens, and Dirk Van Gucht. An expressive 
language for linear spatial database queries. In Proceedings of the Sev
enteenth ACM SIGACT-SIGMOD-SIGART Symposium on Principles 
of Database System PODS 1998, pages 109-118, Seattle, Washington, 
June 1998. ACM Press. 

Peter van Oosterom. Reactive Data Structures for Geographic Infor
mation Systems. PhD thesis, University of Leiden, Leiden, The Nether
lands, 1990. 

Mark Wallace. Compiling integrity checking into update procedures. 
In IJCAI'91, Sydney, Australia, 1991. 

Yonghui Wang. A query enhancement method for the ARC/INFO GIS 
system. Master's thesis, University of Nebraska, Lincoln, Nebraska, 
January 1999. 

Richard W. Wiggins. The Internet for Everyone : A Guide for Users 
and Providers. McGraw-Hill, New York, 1995. 



[WNS97] 

[WS99] 

[ZLOO] 

[ZS199] 

109 

Mark Wallace, Stefano Novello, and Joachim Schimpf. ECLipse: A 
platform for constraint logic programming. Technical report, William 
Penney Laboratory, IC-Pare, Imperial College, London, August 1997. 

Mark Wallace and Joachim Schimpf. Eclipse: Declarative specification 
and scaleable implementation. In Practical Aspects of Declarative Lan
guages, First International Workshop, PADL '99, volume 1551 of Lec
ture Notes in Computer Science, pages 365-366, San Antonio, Texas, 
January 1999. Springer. 

Ron Zahavi and David S. Linthicum. Enterprise Application Integra
tion with COREA Component and Web-Based Solutions. Wiley, New 
York, NY, 2000. 

Hongjun Zhu, Jianwen Su, and Oscar H. Ibarra. An index structure . . 

for spatial joins in linear constraint databases. In Proceedings of the 
15th International Conference on Data Engineering, pages 636-643, 
Sydney, Austrialia, March 1999. IEEE Computer Society Press. 



APPENDIX A 

GLOSSARY 

Cascading Style Sheets (CSS) A style sheet mechanism that is developed to meet 

the needs of Web designers and users. 

Common Gateway Interface ( CG I) An interface for running external programs 

under a Web server. 

Common Object Request Broker Architecture ( CORBA) An architecture 

developed by Object Management Group (OMG) to provide portability and inter

operability of distributed computing objects over heterogeneous networks. 

Conjunctive Normal Form (CNF) A formula that is either a fundamental dis

junction or a conjunction of two or more fundamental disjunctions. 

Constraint Logic Programming (CLP) Programming that augments Prolog by 

adding constraints to the clauses. 

Database Management System (DBMS) A software system that consists of a 

collection of interrelated data and a set of programs to control and manage those 

data efficiently. The collection of data, usually referred to as the database, contains 

information about one particular enterprise. 

Disjunctive Normal Form (DNF) A formula that is either a fundamental con

junction or a disjunction of two or more fundamental conjunctions. 

Document Object Model (DOM) A specification defines how HTML objects are 

exposed to the scripting languages. 

Dynamic HyperText Markup Language (DHTML) Web pages with dynamic 

content that contains Cascading Style Sheets (CSS), HyperText Markup Language 

(HTML), and JavaScript. 

Extensible Markup Language (XML) A language designed to enable the use of 

110 



111 

SGML on the World Wide Web. 

Fundamental Conjunction A literal or the conjunction of two or more literals. 

Fundamental Disjunction A literal or the disjunction of two or more literals. 

Generalized Database Afinite set of generalized relations. 

Generalized Relation A finite set of generalized tuples. 

Generalized Tuple A tuple that contains a conjunction of constraints on a prede

fined number of variables. 

Geographic Information System (GIS) A computer-based technology that cap

tures, stores, analyzes, and displays geospatial information. 

Hypermedia A multimedia system that is enriched with links to other documents. 

Hypertext A system for storing pages of textual information that contain links to 

other documents. 

HyperText Markup Language (HTML) A document formatting language used 

to build Web pages. 

HyperText Transfer Protocol (HTTP) A protocol for transferring Web docu

ments. 

Interface Definition Language (IDL) A language used to specify interfaces of 

objects independent of particular programming language representations. 

International Standard Organization (ISO) An international organization that 

defines international standards. 

The Internet The collection of global networks. 

Internet I.nter-ORB Protocol (IIOP) A TCP /IP protocol with some CORBA

defined message exchanges. 

Intranet A network that is contained within an enterprise. 

Multidimensional Access Method The large class of access methods that sup

port searches in spatial databases. 

Object Management Architecture (OMA) The architectural framework of Ob

ject Management Group. 

Object Management Group ( OMG) A consortium of computer industry com-



112 

parries that establishes the middleware standard for distributed computing and pro

motes its usage. 

Object Query Language ( OQL) A query language used in object-oriented databases. 

Object Request Broker (ORB) A key component of Common Object Request 

Broker Architecture (CORBA) which encompasses all of the communication infras

tructure necessary to identify and locate objects, handle connection management 

and deliver data. 

Object Web Augmenting the Web infrastructure with CORBA/ Java. 

Point Access Methods (PAM) Methods that primarily focus on spatial searches 

on point databases. 

Portable Object Adapter (POA) An object adapter defined by OMG to support 

a portable connection between the servant and the ORB among different vendors. 

Relational Database Management System (RDBMS) A database manage

ment system that accesses data defined in the relation data model. 

Spatial Access Method (SAM) Methods used to index or access extended ob

jects, such as lines, polygons, or even higher-dimensional polyhedra. 

Spatial Join A spatial operation that computes all pairs of objects that satisfy the 

specified spatial predicate. 

Standard Generalized Markup Language (SGML) An international standard 

for the format of text and documents. 

Structured Query Language (SQL) A standard for the data access and defini

tion language in relational databases. 

SQL3 SQL standards that are currently in draft and expected for release in 1998. 

SQL3/MM SQL standard with Multimedia extension. 

Topologically Integrated Geographic Encoding and Referencing (TIGER) 

A geospatial file format used in U.S. Bureau of the Census. 

Transmission Control Protocol/Internet Protocol (TCP /IP) A set of com

munication protocols developed to allow cooperating computers to share resources 

across networks and the Internet. 



113 

Universal Resource Locator (URL) An indicator used to specify the location of 

the information. 

Web Infrastructure A service or facility that is fundamental to the Web. 

Web Object The integration of distributed objects and the Web. 

World Wide Web A distributed hypermedia information delivery system, also 

known as WWW, Web or W3. 



BSP 

CAD 

CERN 

CGI 

CHIP 

CLP 

CNF 

CORBA 

css 
DBMS 

DHTML 

DNF 

GIS 

GUI 

HTML 

HTTP 

IDL 

HOP 

ISO 

MBB 

NCSA 

OLAP 

OMA 

APPENDIX B 

LIST OF ACRONYMS 

Binary Space Partitioning 

Computer-Aided Design 

European Laboratory for Particle Physics 

Common Gateway Interface 

Constraint Handling in Prolog 

Constraint Logic Programming 

Conjunctive Normal Form 

Common Object Request Broker Architecture 

Cascading Style Sheet 

Database Management System 

Dynamic HyperText Markup Language 

Disjunctive Normal Form 

Geographic Information System 

Graphical User Interface 

HyperText Markup Language 

HyperText Transfer Protocol 

Interface Definition Language 

Internet Inter-ORB Protocol 

International Standard Organization 

Minimum Bounding Box 

National Center for Supercomputer Applications 

On-Line Analytic Processing 

Object Management Architecture 

114 



OMG 

OQL 

ORB 

PAM 

POA 

RDBMS 

SAM 

SGML 

SQL 

TCP/IP 

TIGER 

URL 

VLSI 

WWW 

W3 

W3C 

XML 

XSL 

Object Management Group 

Object Query Language 

Object Request Broker 

Point Access Methods 

Portable Object Adapter 

Relational Database Management System 

Spatial Access Method 

Standard Generalized Markup Language 

Structured Query Language 

Transmission Control Protocol/Internet Protocol 

Topologically Integrated Geographic Encoding and Referencing 

Universal Resource Locator 

Very Large Scale Integration 

World Wide Web 

World Wide Web 

World Wide Web Consortium 

Extensible Markup Language 

Extensible Stylesheet Language 

115 



APPENDIX C 

SETUP AND RUNNING OF THE APPLICATION 

A stock application as an example shows how to set up and run the applications in 

this dissertation. 

C.1 System Requirements 

To run the program we require: 

• a Web server - Apache HTTP server 

• a Java programming environment - SUN Java 2 SDK 

• an object request broker - Object Oriented Concept Orbacus 

• a database system - Hughes Technologies mSQL 

Java API for mSQL is not available in Hughes Technologies mSQL. We need to 

write Java programs to access mSQL or use available Java API for mSQL. We use 

mSQL.class in our implementation. mSQL.class is a Java class library that allows 

applications or applets to access and manipulate mSQL databases. It implements 

most of the mSQL C API. To demonstrate the portability of Java/CORBA imple

mentation we run our applications on UNIX and Microsoft Windows platforms. 

C.2 Setting Environment Variables 

We set up the CLASS_PATH to the directory where we extract Orbacus Java class 

library, OB.jar and mSQL Java class library, msql.jar so that the Web clients can 

access those classes through HTTP. Here is an example for the C Shell on UNIX: 

116 



117 

setenv CORBA_PATH -/orbacus 
setenv CLASSPATH . :$CORBA_PATH/classes 

The case for the Korn Shell and the Bourne Shell on UNIX can be done as follows: 

CORBA_PATH=$HOME/orbacus; export CORBA_PATH 
CLASSPATH=. :$CORBA_PATH/classes; export CLASSPATH 

Our sample for Windows 95/98/Me/NT /2000 is: 

set CORBA_PATH=d:\htdocs\corba 
set CLASSPATH=.;%CORBA_PATH%\classes 

We can set the specified paths permanently by adding them into autoexec. bat on 

Windows 95/98/Me or specifying them in User Variables in the system environment 

of Windows NT /2000. 

C.3 Creating the Database 

To create the database using in our example we follow the following steps: 

1. Start the mSQL server which is msql2d. 

2. Create the Invest database. The command is msqladmin create Invest. 

3. Create the database tables. This is our creating session: 

> msql Invest 
mSQL > create table company ( 
-> name char(30) not null, 
-> ticker char(5) not null, 
-> address char(40) not null, 
-> city char(20) not null, 
-> state char(11) not null, 
-> zipcode char(10) not null, 
-> phone char(14) not null, 
-> industry char(30) not null, 
-> exchange char(6) not null, 
-> employees int not null, 
-> group char(40) not null) \g 



Query OK. 1 row(s) modified or retrieved. 

mSQL > create table finance ( 
-> ticker char(5) not null, 
-> year int not null, 
-> eps real not null, 
-> low_price real not null, 
-> high_price real not null, 
-> close_price real not null, 
-> pe_ratio real not null) \g 

Query OK. 1 row(s) modified or retrieved. 

118 

4. Input data. getCoFinance and getColnfo are programs to read data into 

the database. 

C.4 Compiling the Programs 

We use make utility to simplify the compilation. Here is the sample of our Makefile 

for UNIX: 

all: 

clean: 

jidl --no-comments Invest.id! 
javac -d .. I .. /classes *. java 

rm -rf Invest· 
rm -rf .. I . . I classes/Invest 

The make. bat batch file is used on Windows 95/98/Me/NT /2000: 

@echo off 
rem Makefile 

if 11 %1 11 == 1111 goto all 
if 11 %1 11 == 11 clean 11 goto clean 
goto usage 

:all 



echo Building the Invest example ... 
call jidl --no-comments Invest.id! 
javac -d .. / .. /classes Invest\*.java *.java 
goto end 

:clean 
del Invest\*.* 
rmdir Invest 
goto end 

:usage 
echo Usage: make [clean] 

:end 

To compile the program type the make command. 

C.5 Creating a Web Page 

119 

Three HTML Web pages which embed the necessary applets and parameters for our 

application are created. Invest.html is the main page which contains Quote.html 

and Profile.html or PickStock.html. 

<html> 
<head> 
<title>Financial Analysis</title> 
</head> 
<head> 
<script language= 11 JavaScript 11 > 
function pickPage() { 

var facto= frames['up'] .document.criteria; 

for (var i = O; i < facto.enquiry.length; i++) 
if (facto.enquiry[i] .selected) act= facto.enquiry[i] .value; 

if (act== 11 tickerfinder") { 
msg = "Ticker Finder"; 
frames['low'] .window.location= "Profile.html"; 

} 

if (act== "profile") { 
msg = "Company Profile"; 
frames['low'] .window.location= "Profile.html"; 

} 



if (act== "price-earnings") { 

} 

msg = "PIE (Price Earnings) Ratio Analysis"; 
frames['low'] .window.location= "PickStock.html"; 

if (act == "volatility") { 
msg = "Volatility Analysis"; 
frames['low'] .window.location= "PickStock.html"; 

} 

} 

</script> 
<frameset rows="93,*" framespacing=O> 

<frame name="up" ·src="Quote.html" frameborder=O scrolling=no> 
<frame name="low" src="Profile.html" frameborder=O> 

</frameset> 
</body> 
</html> 

120 

Quote.html use fuctions written in JavaScript to decide to load either Profile.html 

or PickStock.html. 

<html> 
<head> 
<title>Quote Financial Database</title> 
</head> 
<body> 
<script language="JavaScript"> 
function clearup() { 

document.criteria.company.value=""; 
document.criteria.ticker.value=""; 
document.criteria. pe_ratio. value= 1111 ; 

document.criteria.percent.value=""; 
} 

</script> 
<form name= 11 criteria11 > 

<table border=!> 
<tr> 
<td align=center>Company 
<td align=center>Ticker 
<td align=center>Year 
<td align=center> 

<select name= 11 pe_op"> 
<option value= 11 gt-pe 11 ><b>P/E&gt;</b> 
<option value= 11 lt-pe"><b>P/E&lt;</b> 



</select> 
<td align=center>Percent 
<td align=center>Option 
<td align=center> 

<input type=button value= 11 Submit 11 

DnClick="parent. pickPage () 11 > 
</tr> 
<tr> 
<td><input type=text name= 11 company 11 size=15></td> 
<td><input type=text name= 11 ticker 11 size=5></td> 
<td> 

<select name= 11 year 11 > 
<option value=98>98 
<option value=96>96 
<option value=94>94 
<option value=92>92 
<option value=90>90 

</select> 
</td> 

<option value=97>97 
<option value=95>95 
<option value=93>93 
<option value=91>91 
<option value=89>89 

<td><input type=text name= 11pe_ratio 11 size=7></td> 
<td><input type=text name= 11 percent 11 size=5></td> 
<td> 

<select name= 11 enquiry 11 OnChange="parent. pickPage () 11 > 
<option value= 11 tickerfinder 11 >Find Ticker 
<option value= 11 profile 11 >Company Profile 
<option value= 11 price-earnings 11 >P/E Ratio 
<option value="volatili ty">Volatili ty 

</select> 
</td> 
<td align=center> 

<input type=button value= 11 Clear 11 name= 11 clearbutton 11 

DnClick="clearup() 11 > 
</tr> 

</table> 
</form> 
</body> 
</html> 

Profile.html embeds Profile applet. 

<html> 
<head> 
<title>Company Profile</title> 
</head> 

121 



<script language= 11 JavaScript 11 > 
function getProfile() { 

ticker= parent.frames['up'] .document.criteria.ticker.value; 
if (ticker != null) 

parent.frames['up'] .document.criteria.company.value= 
document.Stock.getProfile(ticker, 98); 

} 

</script> 
<body onLoad= 11 getProfile() 11 > 
<center> 
<b>Company Financial Highlight</b> 
<hr> 
<applet name= 11 Stock 11 mayscript code=StockApplet.class 

width=630 height=350 codebase=classes> 
<param name=org.omg.CORBA.ORBClass value=com.ooc.CORBA.ORB> 
<param name=org.omg.CORBA.ORBSingletonClass 

value=com.ooc.CORBA.ORBSingleton> 
</applet> 
<hr> 
</center> 
</body> 
</html> 

PickStock.html contains PickStock applet. 

<html> 
<head> 
<title>Company Profile</title> 
</head> 
<script language= 11 JavaScript 11 > 
function getList() { 

var facto= parent.frames['up'] .document.criteria; 
for Ci= O; i < facto.year.length; i++) 

if (facto.year[i] .selected) year= facto.year[i] .value - O; 
pe_ratio = parent.frames['up'] .document.criteria.pe_ratio.value; 
if (pe_ratio == null 11 pe_ratio == 1111 ) pe_ratio = 0. 0; 
else pe_ratio = pe_ratio - 0.0; 
percent= parent.frames['up'] .document.criteria.percent.value; 
if (percent== null I I percent== 1111 ) percent= 0.0; 
else percent= percent* 0.01; 
if (facto.pe_op[O] .selected) 

pe_op = facto.pe_op[O] .value; 
else pe_op = facto.pe_op[1] .value; 
if (pe_op == "gt-pe") op= 11 >11 ; 

122 



else op= 11 <11 ; 

if (facto.enquiry[3] .selected) 
document.Stock.volatility(year, op, pe_ratio, percent); 

else 
document.Stock.getList(year, op, pe_ratio); 

} 

</script> 
<body onLoad=" getList () 11 > 
<center> 
<b>Companies which meet criteria</b> 
<hr> 
<applet name="Stock" code=StockList.class width=630 height=4870 

codebase=classes> 
<param name=org.omg.CORBA.ORBClass value=com.ooc.CORBA.ORB> 
<param name=org.omg.CORBA.ORBSingletonClass 

value=com.ooc.CORBA.ORBSingleton> 
</applet> 
</center> 
</body> 
</html> 

123 

In order to use Orbacus ORB instead of ORB built in the Web browser we must 

have the following settings: 

<param name=org.omg.CORBA.ORBClass 
value=com.ooc.CORBA.ORB> 

<param name=org.omg.CORBA.ORBSingletonClass 
value=com.ooc.CORBA.ORBSingleton> 

C.6 Running the Programs 

Here is the steps to run the programs: 

1. Run java Invest Server to start the server. 

2. Access the Invest .html through Appletviewer or the Web browser such as 

Internet Explorer or Netscape Navigator to start the client. 



APPENDIX D 

INPUT FILE FORMAT FOR THE QUERY INTERFACE 

The plain text format contains 5 parts: database name, relations, attributes, tuple 

data, and graph. 

Campus 
Description Color 
Building,-14336 

Name,Address,Zip_Code,Usage 
0 0 0 0 
Math Science,Math Science,74078,0ffice & Classroom 

Tuple-ID Color 
0 -14336 
X y Th RHS 
1 0 >= 186 
0 1 >= 277 
1 0 <= 197 
0 1 <= 306 

124 



·N· 
VITA 

Chin-Chih Chang 

Candidate for the Degree of 

Doctor of Philosophy 

Thesis: IMPLEMENTATION AND APPLICATIONS OF QUERY INTERFACES 
TO CONSTRAINT DATABASES IN A DISTRIBUTED COMPUTING 
ENVIRONMENT 

Major Field: Computer Science 

Biographical: 

Personal Data: Born in Hsinchu City, Taiwan, Republic of China, December 
5, 1963, the son of Hai-Ti Chang and Show Chen. 

Education: Graduated from Hsinchu High School, Hsinchu City, Taiwan in 
June 1982;. received Bachelor of Engineering degree in Mechanical Engi
neering from Tamkang University, Tamsui, Taipei County, Taiwan in June 
1986; received Master of Science degree in Engineering Science from Na
tional Cheng Kung University, Tainan City, Taiwan in June 1990. Com
pleted the requirements for the Doctor of Philosophy with a major in 
Computer Science at Oklahoma State University in December, 2000. 

Professional Experience: Research Assistant, Spatial and Environmental 
Information Clearing House, Oklahoma State University, from June 1994 
to December 2000. Teaching Assistant, Department of Computer Science, 
Oklahoma State University, from January 1994 to May 1994. 


