
NEW EFFICIENT SPATIAL INDEX STRUCTURES,

PML-TREE AND SMR-TREE, FOR

SPATIAL DATABASES

By

KAPS.BANG

Bachelor of Science
Chung-Ang University

Seoul, Korea
1987

Master of Science
Oklahoma State University

Stillwater, Oklahoma
1992

Submitted to the faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of

the requirements for
the Degree of

DOCTOR OF PHILOSOPHY
December, 1995

NEW EFFICIENT SPATIAL INDEX STRUCTURES,

PML-TREE AND SMR-TREE, FOR

SPATIAL DATABASES

Thesis Approved:

Dean of the Graduate College ·

11

ACKNOWLEDGMENTS

I wish to express my sincere appreciation to my major advisor, Dr. Huizhu Lu for

her intelligent supervision, constructive guidance, inspiration and friendship. My sincere

appreciation extends to my committee members Dr. John P. Chandler, Dr. K. M. George

and Dr. Brian J. Conrey, whose guidance, assistance, encouragement, and friendship are

also invaluable.

I wouJd also like to give my special appreciation to my wife, Hye-sun, for her strong

encouragement at times of difficulty, love and understanding throughout this whole

process. Thanks also go to my parents and parents-in-law for their support and

encouragement

111

TABLE OF CONTENTS

Chapter Page

I. INTRODUCTION . 1

Background of the Spatial Index Structures . 2

The Problems of the Existing Spatial Index Structures 3

Research Objectives . 6

II. REVIEW OF THE LITERATURE 7

Point Index Structures . 7

Spatial Index Structures . 13

Parameter Space Indexing . 13

Native Space Indexing . 14

Non-disjoint decomposition . 15

Disjoint decomposition . 23

Projection Method 32

Applications . 34

III. THE PML-TREE: A NEW

PARALLEL SPATIAL INDEX STRUCTURE 35

Introduction . 35

The Structure and Algorithms of the PML-tree 37

The PML-tree Structure 37

Algorithms of the PML-tree . 43

Insertion of the PML-tree . 46

Minimum Number of Entries 46

Absolute Crowd Index . 48

Relative Crowd Index . 53

lV

Chapter Page

Node Split of the PML-tree . 60

Search of the PML-tree . 68

Deletion of the PML-tree . 69

IV. PERFORMANCE ANALYSES

OF PARALLEL SPATIAL INDEX STRUCTURES 72

Implementations of the Spatial Index Structures 73

Test Data Sets and Types of Queries . 75

Experiment Results . 79

V. THE SMR-TREE: A NEW EFFICIENT

SERIALSPATIALINDEXSTRUCTURE 92

Introduction . 92

The Structure and Algorithms of the SMR-tree 93

The SMR-tree Structure 93

Algorithms of the SMR-tree 95

Insertion of the SMR-tree 97

Node Split of the SMR-tree 100

Search and Deletion of the SMR-tree100

Performance Comparisons .102

Implementations of the Spatial Index Structures103

Experiment Results .104

Summary .113

VI. CONCLUSIONS 115

REFERENCES .. 116

APPENDIX--TIGER/Line™ files 124

V

LIST OF TABLES

Table Page

1. Contents of Structure CI for Two Trees in

Algorithm SelectTree_by_AC 53

2. Contents of Structure CI for Two Trees in

Algorithm SelectTree_by _RC . 58

3. Coordinates of the Ten Data Objects Used

in Figure 25 . 65

4. List of Parameters Used for the PML-tree

Split Algorithms for each of (a) Horizontal

Axis and(b) Vertical Axis . 67

5. Data Description Factors of the Four Data Sets . 76

6. The Number of Re-inserted Entries for the

Four Test Data Sets . 90

7. Distributions of the Data Objects among the

Trees in the SMR-tree ... : 112

Vl

LIST OF FIGURES

Figure Page

1. (a) Organization of Point Objects Using a k-d tree and

(b) k-d tree Structure Corresponding to (a) 8

2. (a) Organization of Point Objects Using a BD-tree and

(b) BD-tree Structure Corresponding to (a) 9

3. Space Mapping Using a Z-ordering: (a) 4 Sub-spaces and

(b) 16 Sub-spaces . 11

4. Space Mapping Using a Gray-code: (a) 4 Sub-spaces and

(b) 16 Sub-spaces . 11

5. Space Mapping Using a Hilbert-curve: (a) 4 Sub-spaces and

(b) 16 Sub-spaces . 11

6. (a) Organization of Point Objects Using G-tree and

(b) G-tree Structure Corresponding to (a) . 12

7. (a) Parameter Space and (b) Data Space . 14

8. (a) Organizations of Bounding Rectangles (the Solid Lines

Construct Object Rectangles; the Dash Lines Construct

Intermediate Rectangles) and (b) the R-tree Structure 16

9. (a) Organizations of Bounding Rectangles (the Solid Lines

Construct Object Rectangles; the Dash Lines Construct

Intermediate Rectangles) and (b) the R*-tree Structure 18

Vll

Figure Page

10. (a) Space Decomposition Using the skd-tree with Bucket

Capacity 3 and (b) the skd-tree Structure . 19

11. The MXR-tree Structure with Three Disks 22

12. (a) Organizations of Bounding Rectangles (the Solid Lines

Construct Object Rectangles; the Dash Lines Construct

Intermediate Rectangles) and (b) the R+-tree Structure 24

13. The R+-tree (a) with MBR and (b) without MBR 26

14. The Grid file with CAP= 3 . 28

15. R-file with CAP= 3.(a) Data Space Cell, (b) Two Half

Cells and (c) One Quarter Sub-cell . 30

16. (a) Image, (b) Binary Image Array and (c) The Morton

Code Addressing Scheme for Labeling Pixels 31

17. (a) Projections of Objects on Axes, (b) Array Structure

for Horizontal Projections before Insertion of Object 4 and

(c) Array Structure for Horizontal Projections after

Insertion of Object 4 . 33

18. The PML-tree Layout with Three-layer Four-tree 40

19. Organizations of Bounding Rectangles (the Solid Lines

Construct Object Rectangles; the Dash Lines Construct

Intermediate Rectangles) on the (a) First Data Space,

(b) Second Data Space and (c) Third Data Space 41

20. The PML-tree Structures for the (a) 1st Data Space in Figure 19 (a),

(b) 2nd Data Space in Figure 36(b) and (c) 3rd Data Space

in Figure 19(c) . 42

viii

Figure Page

21. Parallel Disk Access Time of: (a) the MXR-tree in Figure 8(a);

and (b) the PML-tree in Figure 19 43

22. An Example for Absolute Crowd Index and Relative Crowd Index

Object Distribution Heuristics (a) the First Data Space and

(b) Nodes on Insertion Path of the First Tree 52

23. An Example for Absolute Crowd Index and Relative Crowd Index

Object Distribution Heuristics (a) the Second Data Space and

(b) Nodes on Insertion Path of the Second Tree 52

24. Illustrate Intermediate Rectangles after Insertion of Data Object 7:

(a) the First Data Space and (b) the Second Data Space 54

25. Split of an Overflowing Node . 65

26. Organizations of Bounding Rectangles (the Solid Lines Construct

Object Rectangles; the Dash Lines Construct Intermediate

Rectangles) Using the PML-tree with Node Capacity 9 68

27. Average Numbers of Disk Accesses of the MXR-tree, PME-tree,

PAC-tree and PRC-tree vs. the Size of Query Using Data Set V 80

28. Average Numbers of Disk Accesses of the MXR-tree, PME-tree,

PAC-tree and PRC-tree vs. the Size of Query Using Data Set T 80

29. Average Numbers of Disk Accesses of the MXR-tree, PME-tree,

PAC-tree and PRC-tree vs. the Size of Query Using Data Set R 81

30. Average Numbers of Disk Accesses of the MXR-tree, PME-tree,

PAC-tree and PRC-tree vs. the Size of Query Using Data Set U 81

31. Average Response Time of the MXR-tree, PME-tree, PAC-tree

and PRC-tree vs. the Size of Query Using Data Set V 83

lX

Figure Page

32. Average Response Time of the MXR-tree, PME-tree, PAC-tree

and PRC-tree vs. the Size of Query Using Data Set T 83

33. Average Response Time of the MXR-tree, PME-tree, PAC-tree

and PRC-tree vs. the Size of Query Using Data Set R 84

34. Average Response Time of the MXR-tree, PME-tree, PAC-tree

and PRC-tree vs. the Size of Query Using Data Set U 84

35. Performance Gain of the PME-tree, PAC-tree and PRC-tree over

the MXR-tree vs. the Size of Query Using Data Set V 85

36. Performance Gain of the PME-tree, PAC-tree and PRC-tree over

the MXR-tree vs. the Size of Query Using Data Set T 85

37. Performance Gain of the PME-tree, PAC-tree and PRC-tree over

the MXR-tree vs. the Size of Query Using Data Set R 86

38. Performance Gain of the PME-tree, PAC-tree and PRC-tree over

the MXR-tree vs. the Size of Query Using Data Set U 86

39. An Example of the MXR-tree Node Split for Uniformly Distributed

Data: (a) before Split and (b) after Split . 88

40. Actual Memory Sizes of the MXR-tree, PME-tree, PAC-tree and

PRC-tree for Each of the four Data Sets V, T, Rand U 89

41. Space Utilization of the MXR-tree, PME-tree, PAC-tree and

PRC-tree for Each of the four Data Sets V, T, Rand U 89

42. Construction Time of the MXR-tree, PME-tree, PAC-tree and

PRC-tree for Each of the Four Data Sets V, T, Rand U 90

X

Figure

43. (a),(b) Organizations of Bounding Rectangles (the Solid Lines

Construct Object Rectangles; the Dash Lines Construct

Page

Intermediate Rectangles) and (c),(d)the SMR-tree structure 94

44. Average Number of Disk Accesses of the R-tree, R+-tree, R*-tree

and SMR-tree vs. the Size of Query Using Data Set V 105

45. Average Number of Disk Accesses of the R-tree, R+-tree, R *-tree

and SMR-tree vs. the Size of Query Using Data Set T 105

46. Average Number of Disk Accesses of the R-tree, R+-tree, R*-tree

and SMR-tree vs. the Size of Query Using Data Set R 106

47. Average Number of Disk Accesses of the R-tree, R+-tree, R*-tree

and SMR-tree vs. the Size of Query Using Data Set U 106

48. Average Response Time of the R-tree, R+-tree, R*-tree and SMR-tree

vs. the Size of Query Using Data Set V 107

49. Average Response Time of the R-tree, R+-tree, R*-tree and SMR-tree

vs. the Size of Query Using Data Set T .107

50. Average Response Time of the R-tree, R+-tree, R*-tree and SMR-tree

vs. the Size of Query Using Data Set R .108

51. Average Response Time of the R-tree, R+-tree, R*-tree and SMR-tree

vs. the Size of Query Using Data Set U .108

52. Performance Gain of the SMR-tree over the R-tree, R+-tree and R*-tree

vs. the Size of Query Using Data Set V .11 O

53. Performance Gain of the SMR-tree over the R-tree, R+-tree and R*-tree

vs. the Size of Query Using Data Set T .11 O

xi

Figure Page

54. Performance Gain of the SMR-tree over the R-tree, R+-tree and R*-tree

vs. the Size of Query Using Data Set R .111

55. Performance Gain of the SMR-tree over the R-tree, R+-tree and R*-tree

vs. the Size of Query Using Data Set U .111

56. Actual Memory Sizes of the R-tree, R+-tree, R*-tree and SMR-tree for

Each of the four Data Sets V, T, R and U .112

57. Space Utilization of the R-tree, R+-tree, R*-tree and SMR-tree for
V

Each of the Four Data Sets V,T, Rand U 113

58. Construction Times of the R-tree, R+-tree, R*-tree and SMR-tree for

Each of the Four Data Sets V, T, R and U .113

xii

CHAPTER I

INTRODUCTION

In modern database systems, geometric data (e.g., points, lines, polygons,

polyhedra, or splines) play a very important role. Spatial data is frequently used in

many non-standard applications, such as in geographic information systems (GIS),

CAD, and VLSI layout; it is also used for computer vision, robotics and image

databases. Additionally, spatial data can be used in a conventional database, where a

record with k attributes can be represented as a point in a k-dimensional space.

Efficient handling of spatial data is one of the most important requirements for future

database management systems (DBMS). To use an existing DBMS for spatial

retrieval, the DBMS has to be supplemented by new indexing structures and

evaluation systems in order to process spatial queries [71].

During the last decade, several spatial index structures have been proposed, but

none of them has been proven to outperform all others in every aspects of performance

[100]. Most proposed spatial index structures perform query operations in a serial

manner. Parallelization of the spatial index structures using multiple disks can

increase the performance of the spatial index structures significantly, since the

operations in most spatial index structure applications are highly 1/0 bound.

Currently, parallelization of the spatial index structure is a comparatively unexplored

topic. In this research, the author proposes and implements an efficient new parallel

spatial index structure. In the following, the. background of the spatial index

structures, the problems of the existing spatial index structures and the research

objectives of this study are discussed.

1

Background of the Spatial Index Structures

A spatial object may be a point or an object which has area or volume and can

overlap with other spatial objects. In many cases, very large sets of spatial data are

stored in secondary storage (e.g., disks). Therefore, the number of disk accesses,

which is heavily determined by the spatial indexing technique, becomes a critical factor

in fast retrieval of spatial data. Spatial index structures should be dynamic, i.e.,

insertion and deletion can be performed without completely re-organizing the index

structure. Also, the index structures should be storage space efficient given any

distribution of data. Currently, there are two major spatial indexing methods used for

spatial data:

1. parameter space indexing that transforms spatial objects into points in higher

dimensional space and

2. native space indexing that organizes data based on the locations of the data.

Parameter space indexing does not preserve spatial locality. That is, two closely

located objects in the original data space may be mapped into parameter space

arbitrarily far apart. Therefore, this indexing method is not proper for applications

which require certain range queries (e.g., finding the nearest neighbors of a given point

or object). The parameter space indexing method is fine for storage applications.

Native space indexing method decomposes data space, in which the data objects are

drawn, into sub-spaces. This method keeps spatial locality and enables spatial index

structures to answer to various types of range queries.

Hashing [55, 59, 79, 80, 81, 84] has the best performance for exact match

queries. However, hashing approaches are not proper to support range queries, since

hashing structures cluster data by hashed key value, not by key value. Several

hashing structures (e.g., order preserving hashing [44]) support range queries as well

as exact match queries. These structures, however, cannot fully support range

2

queries, since hashing methods require approximately uniform key distributions. Tree

structures, which locally grow as data is inserted and new index term(s) is posted for

the growing space by insertion into parent node(s), are suitable for spatial data

handling. The GP (grow and post) trees are always balanced; besides, entries

inserted into the GP-trees that are close in data space are close in the tree location

[62]. This property of the tree structure satisfies the spatial locality requirement of

spatial index structures and provides a natural, high level, object oriented search [86].

In most spatial index structure applications (e.g., GIS, CAD and image

processing), data objects do not conform to any fixed shape. Therefore, it is very

expensive to perform spatial queries on exact locations and extents of the data

objects. There are two methods, region decomposition and minimum bounding

rectangle, for initial approximation (filtering) of irregularly shaped spatial objects. The

region decomposition method decomposes a sub-space occupied by an object into

disjoint raster squares of desired resolution. The minimum bounding rectangle method

uses the smallest rectangle enclosing an irregularly shaped spatial object. The region

decomposition method (e.g., quadtree) is suitable for image processing and the

minimum bounding rectangle method is used in proximity query processing [72].

Native space indexing methods using the GP-tree structure, which are related to the

design of new parallel spatial index structure in this research, are briefly discussed in

the following; detailed classification of the spatial index structures are discussed in

Chapter IL

The Problems of the Existing Spatial Index Structures

One of the most popular approaches to native space indexing methods is the R-tree

and its variants. The R-tree is the extension of the B-tree in multi-dimensional space

[40]. It is a height balanced tree. The R-tree and its variants use a minimum

3

bounding rectangle (MBR) to represent a spatial data object in the space. Although

this approximation loses some information, this method requires small amounts of

space to store an object and still reserves the most important information about the

objects (e.g., location and extension of the object). The R-tree variants use two node

types: intermediate nodes and leaf nodes. Leaf node entries consist of two parts: a

tuple identifier used to refer to a tuple in a database; coordinates that define a n­

dimensional rectangle for enclosing the spatial object. Each entry in an intennediate

node consists of a child pointer to the node at a lower level, and coordinates

representing a rectangle that completely encloses all rectangles at the lower levels.

The R-tree allows overlapping intennediate rectangles and this increases the chance

of redundant searching in query operations. If k overlaps exist in an area and a search

range includes that area, it is necessary to search all k paths to find objects

· overlapping the search area. As a result, the number of disk accesses for the query

are increased. Also, the split algorithms of the R-tree are not efficient with unifonnly

distributed data. In Chapter Ill, a drawback of the R-tree's split algorithms is

discussed in detail with examples.

The R+-tree is a variant of the R-tree and it uses a disjoint space decomposition

method [95]. That is, the R+-tree does not allow overlapping among the intermediate.

rectangles. Upon splitting, an intermediate rectangle is partitioned into two

intennediate rectangles and all rectangles on the split line are divided. If a leaf node

rectangle is on the split line, it is divided into two leaf nodes with the same object

name in both intermediate rectangles. It causes redundancies at the leaf node level

and as a result, the total number of nodes in the tree is increased. Redundancies in

the R + -tree provide faster access in point queries and in very small size range

queries. However, note that redundancies at the leaf node level cause disadvantages

in range queries and deletions as the search range grows. Also, the R + -tree deletion

algorithm provided in [95] cannot delete all objects overlapping a given deletion range.

4

It needs to search all objects overlapping a deletion range and then deletes one object

at a time using obtained coordinates of objects from the range search.

The MXR-tree is the first parallel spatial index structure [51]. It is a variation of

the R-tree. The MXR-tree distributes R-tree nodes over multiple disks. The MXR­

tree suggests 4 different heuristics (round robin, minimum area, minimum intersection

and proximity index) to distribute nodes over the disks. Among them, proximity index

has the best performance. The purpose of the proximity index is to place a newly

created node on a disk where the node has the least chance of retrieval together with

the nodes already on the disk. To make an ideal node distribution, all sibling nodes on

the same level have to be considered. However, this requires too many disk

accesses. The proximity index heuristic of the MXR-tree only considers sibling nodes

· of the same parent node to calculate proximity. Therefore, the proximity heuristic can

result in unbalanced node distributions in some cases. The MXR-tree has a redundant

search path problem along with the R-tree, since the MXR-tree inherits structural

properties (e.g., split algorithms) of the R-tree. In query operations on the parallel

spatial index structures, D (the number of disk used) processes are created and each

of processes searches the associated disk simultaneously. The MXR-tree has a

single tree structure and all the nodes are distributed into D disks. Therefore, the

MXR-tree needs inter-process communications during a query operation whenever

each of the D processes finds an intermediate entry overlapping the given search or

deletion range. Inter-process communication is another factor that slows down query

performance of the MXR-tree. The time for inter-process communication is increased

as the number of disks used for the MXR-tree increases. Detailed description of this

method is discussed in Chapters III and IV with examples.

5

Research Objectives

The goal of this research is to design and implement a new dynamic parallel

spatial index structure called a parallel multi-layer (PML) tree using native space

indexing with a disjoint space decomposition method. The PML-tree avoids the

redundant search path problem of the R-tree and the leaf node redundancy problem of

the R+-tree. Also, the PML-tree does not need inter-process communication in query

operations. Three objects distribution heuristics, which distribute data objects over

the multiple disks evenly, are proposed and implemented. Compared with the MXR­

tree, the PML-tree increases space (node) utilization and improves query

performances on a system with multiple disks. The author also proposes a serial

spatial index structure called serial multi-R (SMR) tree using native space indexing

with a disjoint space decomposition method. The SMR-tree improves the

performances of currently existing serial spatial index structures (e.g., the R-tree, R+­

tree, R*-tree, ... , etc.).

6

CHAPTER II

REVIEW OF THE LITERATURE

Since conventional database management systems (DBMS) were developed to

handle one-dimensional data objects, such as integers, real numbers, or strings, they

are not efficient for handling multi-dimensional data objects, e.g., boxes or polygons

[18, 91, 92]. Large spatial data handling is required in databases for the geographic

information systems (GIS), computer vision, CAD, VLSI and the image databases.

Therefore, it is important to provide an efficient access method to improve the

performance of spatial databases.

During the last decade, several spatial index structures have been proposed.

However, there has been no single dominating spatial index structure for general

purpose use. The performance of spatial index structures varies depending on data

types and applications. In one-dimensional index structures, the B-tree and its

variants are accepted as efficient general purpose structures. In a spatial (n­

dimensional, n ~ 2) index structure, there are many parameters which affect

performance of the spatial index structure and interact in a very complicated way with

each other. A brief overview of the work done in this area is given based on the

following classification: point index structures, spatial index structures and

applications.

Point Index Structures

Multi-dimensional point index structures usually handle records with n attributes

which can be represented as points in n-dimensional data space.

7

The k-d tree [10, 11, 12] is a k-dimensional binary tree. It partitions a n-

dimensional data space into hyper-rectangles using a suitable discriminator, i.e.,

median value of one axis (attribute) selected by certain criteria. For example, Figure

l(a) shows space decomposition of the k-d tree with bucket capacity 3. Upon

insertion of object 4, the data space is divided by vertical line di. To resolve next

level bucket overflowing, hyper planes d2 and d3 are used to sub-divide sub-spaces A

and B, respectively. Figure l(b) illustrates the k-d tree structure corresponding to

Figure l(a). It is a well-defined and efficient index structure for the storage and

manipulation of multi-dimensional point objects. However, the k-d tree is a main

memory resident structure, · since this structure does not account for paging of

secondary memory.

dl
i

! • l
j b2 • 4

2•1 1------------- d2
I B

3•

al

I

d3 -------------------~ • 6 A I

I
I
I

e8
a2 bl

1. 7

i
I

(a) (b)

Figure 1 (a) organization of point objects using a k-d tree and (b) k-d tree
structure corresponding to (a).

The Quintary-tree [56] consists of multi-level binary trees. For each level

(attribute) the Quintary-tree has a binary tree as a skeleton and attached to each

node of the skeleton tree are three additional sub-trees (two sub-trees for the two

sub-files in the lower level separated by the hyper plane associated with the node and

one sub-tree for the record on the hyper plane). This structure is also a main memory

8

resident structure and node redundancy is typical when all key values of the attributes

are unique.

The BD-tree [69] uses a binary decomposition method to partition a data space

into sub-spaces. The BO-tree is uses binary tree structure to organize sub-spaces.

Intermediate nodes of the BO-tree consist of a partition number, a discriminator zone

(DZ) expression , and two branches of the child nodes (in and out branches)

depending upon whether a point belongs to the DZ expression or not. A DZ

expression is a binary string representing the location of a sub-space. Figure 2(a)

shows an example of the space decomposition method of the BO-tree. The capacity of

a data bucket is 3. The DZ expression at each node represents one of two sub-spaces

with greater cardinality. For example, the second level DZ expression in Figure 2(b)

is selected as 110* which represents sub-space a, since sub-space a has more entries

than sub-space b2. The BD-tree can typically be very deep, since this structure is not

a balanced tree. Also, the BO-tree is a main memory resident structure.

3•

bl

e8

I I

: 1. :
I I

: I •4
I I

: •2 a:
: I
I :
I I

I 6• :
1--------"
I

! b2
B

I
I

! • 7
I
I
I
I

(a)

3

(b)

Figure 2 (a) organization of point objects using a BD-tree and (b) BD-tree
structure corresponding to (a).

The k-d-b [85] tree is the first index structure that has been designed specially

for paged secondary memory. The k-d-b tree is a generalization of the B-tree to higher

dimensions for indexing points in arbitrary dimensions.

9

Another point indexing approach uses mapping functions e.g., Z-ordering [75, 76,

77, 78], Gray-code [23] and Hilbert-curve [48,49]. Mapping functions map multi­

dimensional points into a single-dimensional space. For example, Z-ordering maps a

multi-dimensional point object into a single-dimensional space with a single bit string.

The single bit string can be obtained by interleaving the bits that represent the

attribute values of the object on the space. Any existing one-dimensional index

structures (e.g., B+trees) can be used to organize these mapped bit strings. Z­

ordering can be recursively defined. For example, in Figure 3(a) (page 11), a given

region can be divided into quadrants and a Z curve can be drawn. Then each quadrant

is sub-divided in tum into four as in Figure 3(b). Figures 4 and 5 (page 11) illustrate

Gray-code and Hilbert-curve methods, respectively. However, these mapping

functions cannot keep spatial locality, close spatially located objects should be closely

located in the index structure, too. Two closely located objects in multi-dimensional

space can be mapped into one-dimensional space arbitrarily far apart with these

mapping functions, since there are only two adjacent neighbors of an object in one­

dimensional space.

In geographic information systems, each spatial object can be assigned to a class

(e.g., water, land use) such that multi-class range queries, which are range queries to

an arbitrary sub-set of classes of objects, can be answered. The multi-class grid file

[68] is proposed to handle multi-class range queries to multi-dimensional point

objects. This structure is a variant of a multi-level grid file. Each class has its own

data space partitioning and its own data blocks, but entries referring to directory

blocks are stored in a common directory tree.

The generalized grid file (GGF) [13] is proposed to offer multi-attribute access.

It behaves like B-tree if single attributes are supported and like a grid file for multiple

attributes. The directory of the GGF is a tree of arbitrary depth with pages as nodes.

10

Each page consists of n scales and an n-dimensional pointer array to handle data with

n-attributes.

(a) (b)

Figure 3 Space mapping using Z-ordering: (a) 4 sub-spaces and (b) 16 sub­
spaces.

I
I
I
I

I -----·------ ------· I
I
I
I
I
I
I
I
I
I
I
I
I

(a) (b)

Figure 4 space mapping using Gray-code: (a) 4 sub-spaces and (b) 16 sub­
spaces.

I

I
I
I

-----·------ ------' I
I
I

I
I
I
I
I
I

(a)

I ----------·--------- ---' I
I
I
I
I
I
I
I

I
(b)

Figure 5 space mapping using a Hilbert-curve: (a) 4 sub-spaces and (b) 16 sub­
spaces.

11

The G-tree [54] is a mixed structure of the grid file and the B-tree. This structure

is very similar to the BO-tree [69]. Both structures use the same space

decomposition method, binary decomposition. The G-tree directly maps a sub-space

into a page (bucket) while in the BO-tree, buckets can exclude some sub-spaces from

a given space. Figure 6(a) illustrates an example of the G-tree's space

decomposition. Data space is decomposed by using a binary decomposition scheme

and each sub-space can be represented using a DZ expression (e.g., sub-spaces a, b,

c and d can be represented as O*, 10*, 110* and 111*, respectively}. Those sub­

spaces are organized in the B-tree by associated DZ expressions as shown in Figure

6(b).

3•

a

.s

I 1. I
I I

I I •4
I •2 CI I I
I I
I I d
I 6• I
1--------.1-------1
I
I
I
I

I
I

I •7
I
I
I
I

(a)

b

3

(b)

Figure 6 (a) organization of point objects using a G-tree and (b) G-tree
structure corresponding to (a). ·

The parallel grid file [58] proposes an algorithm for initial loading of large existing

data files into processing nodes. This method loads an initial file F into N processing

nodes by using logical decomposition, then creates a local grid file in each node. This

method assumes that the initial data file already exists in some format. Frequent

update operations will degenerate the balance between processor nodes. Therefore,

this bulk loading method is not for dynamic spatial indexing structures.

12

The BANG file [25] has a tree structured directory that has a self-balancing

property. Its directory always expands at the same rate as the data regardless of the

data distribution. The BANG file uses a set of hash functions which map the

coordinates of a point in the data space to the number of the grid region in which it lies.

Spatial Index Structures

Spatial data is non-point data and it has extent on each dimension and can

overlap with other spatial data. Many index structures have been proposed to handle

point data; however, very little has been done with structures handling non-point data,

i.e., lines, boxes and polygons [57]. For the multi.:.dimensional spatial objects, there

are two different indexing approaches, parameter space indexing and native space

indexing [43, 64].

Parameter Space Indexing

Parameter space indexing transforms a spatial object into a point in higher

dimensional space, say parameter space. The number of dimensions of the parameter

space is twice that of the native space. For example, a rectangle in 2-d can be

transformed into a point in 4-d since a rectangle in 2-d can be represented by four

coordinates. Once objects are transformed into points in parameter space then those

points can be assigned into exactly one of the regions of the partitioned parameter

space and any multi-attribute point indexing method discussed above can be used to

organize them. One of the advantages of this indexing method is that non-spatial

attributes can be indexed with the spatial ones at the same time within a single index

structure [64]. Transforming objects to parameter space is not always appropriate for

spatial objects since this methods does not preserve spatial locality. For example,

13

one-dimensional line segments Al, A2 and A3 in Figure 7(b) are transformed into

points in two-dimensional parameter space in Figure 7(a) using the starting and

ending points of the line segments. In Figure 7(a), the nearest neighbor of the point

Al is the point A3. However, in Figure 7(b), the line segment A2 is closer to the line

segment Al in the data space than A3 is. Besides the spatial locality problem,

dimensionality of parameter space is too high, twice as high as that of original data

space [43]. This indexing method is not proper for applications which require various

range queries (e.g., finding the nearest neighbors of a given point or object).

Parameter space indexing method is fine for storage applications.

End

Start

(a)

Figure 7 (a) parameter space and (b) data space.

Native Space Indexing

(b)

Al

A2

A3

Native space indexing preserves spatial locality by decomposing the original

space, in which the data objects are drawn. This method organizes data based on

location of the data object. Spatial objects are grouped into sub-spaces and sub­

spaces are grouped into upper level sub-spaces recursively. This method enables

spatial index structures to answer to various types of range queries. Native space

14

indexing is much more complicated than parameter space indexing, since objects have

their own extent in the space. There are two approaches to native space indexing:

non- disjoint decomposition and disjoint decomposition .

Non-disjoint Decomposition

Structures with this method allow overlapping among intermediate sub-spaces.

The R-tree developed by Gtittman is an extension of the B-tree to n-dimensions (n ~

2) [40]. It is a height-balanced tree with index records stored in leaf nodes containing

pointers to data objects. The R-tree consists of two node types: intermediate and leaf

nodes. Leaf node entries consist of two parts: a tuple identifier used to refer to a tuple

in a database; coordinates that define an n-dimensional rectangle for enclosing the

spatial object. Each entry in an intermediate node consists of : a child pointer to the

node at a lower level; coordinates representing a rectangle that completely encloses

all rectangles at the lower levels [40]. The R-tree uses non-disjoint space

decomposition; that is, the R-tree structure allows overlapping among the

intermediate rectangles. In Figure 8(a), the pairs of the second level intermediate

rectangles overlapping each other are (11, 12), (11, 15), (12, 13), (13, 14), and (14,

15). Figure 8(b) shows the R-tree structure corresponding to Figure 8(a). If k

overlaps exist in an area and a search range includes that area, it is necessary to

search all k paths to find objects overlapping the search area. To alleviate this

problem, a packing technique was proposed [86]. The packing algorithm takes as

input a set of data objects to be packed and produces as output a near-optimal packed

R-tree. For each data object on the input list, the packing algorithm invokes the

nearest neighbor search function, which returns the nearest neighbor on the list and

deletes it from the list, as many times as the number of node branching factor. This

algorithm assumes that the spatial database remains relatively static, and it takes a

15

lot of computation time. Therefore, this packing algorithm cannot be applied to every

insertion [95]. The R-tree employs the quadratic and linear split algorithms. The

quadratic split algorithm yields better split performance than the linear split algorithm.

2 4

I 15 ~----------------,,
I ----------------------- ..L --:, 11

:: : I 8 :i
I 1 ,------------------· -t - ~ ,----------- tt-\..~,
I• I 1 1 : • •• ••
11 I i I II 11
• 1 , I".------------------ -- t-r----- -----1 I' Ii 11 , • , 14 , ,1
U 11 •-1 I I 61 II
I 1.:---f! --------- ---- --- fl=--~ !.---- _____ :

II I I

1 7 I I - ---- -- ~-----t ---- --~
II 2 10 • -·-..-II I I I'
11 I Ii
11 I
11 4 I

1611 12 5 I
!I 3 I I I
II I I i _____ J ___ It"' ____ ; -

11 7

...._ I
I
I
I
I
I
I
I

9 13

I ... ___ _ ___ _. t_ _ __ ., I
L---~

(a)

16

(b)

Figure 8 (a) organizations of bounding rectangles (the solid lines construct
object rectangles; the dash lines construct intermediate rectangles) and (b)
the R-tree structure.

The R *-tree [7] is a more refined variant of the R-tree and also uses non-disjoint

space decomposition. In insertion, the R *-tree algorithm selects a node that gives

minimal overlap with its neighbors after it is enlarged to include the newly inserted

object. It uses a modified split algorithm to reduce area, margin and overlap. In node

splitting, for each axis, entries in the overflowing node are sorted using the upper and

the lower coordinates of their rectangles. For each sort, the possibilities of dividing

16

CAP + 1 entries into two groups are CAP - 2m + 2 where CAP denotes node capacity

and m denotes the minimum number of entries in a node [7]. Among all possible

horizontal and vertical distributions, the axis that gives the minimal margin value is

selected, and the distribution that gives the minimum overlap value is chosen. The

minimum area value is used to break a tie. This method actually increases

overlapping areas among the intermediate rectangles. The splitting algorithm of the

R *-tree also uses forced re-insertion which removes a certain percentage, e.g., 30%, of

the entries from an overflowing node and re-inserts them. Re-inserted entries tend to

be inserted either in nodes near the original node from which they were removed or in

the original node. This process makes adjacent intermediate rectangles grow and as a

result overlapping areas between them are increased. This structure cannot avoid

overlapping sub-regions. The splitting algorithm of the R *-tree requires much more

construction time compared to that of the R+-tree, almost 9 times longer [43]. The

R *-tree takes less storage space than the R + -tree but its performance is not as good

as the R+-tree because of the non-disjoint nature of space decomposition as in the R­

tree [43]. Figure 9(a) (page 18) illustrates organization of bounding rectangles using

the R*-tree and Figure 9(b) shows the corresponding R*-tree structure.

The spatial k-d (skd) tree [72] is a generalization of the k-d tree for multi­

dimensional point data to handle non-zero sized data objects. This structure uses the

same space decomposition method as the original k-d tree. At each node of the skd­

tree, a discriminator value is chosen in one of the dimensions to partition a k­

dimensional space into two sub-spaces. Since non-zero sized data objects may

extend over to the other sub-space, the skd-tree introduces a virtual sub-space for

each original sub-space such that all objects are completely enclosed in one of two

virtual sub-spaces. In this method, the placement of an object in a sub-space is

decided by the value of its centroid.

17

7

~---••••••--••••••••-••• I

14

I
I , 8 115
I I I ,-------, -· .. ------------ .. --:,
I I

- 13 6

2 I 10
I
I

;;-== -±=- ff: -===-*== 1-:J:~ 5
,. ~=.ur:. :J: __ ;:_. ---=F-- ·==.:i.r=--'."I,
II ,,1 • 3 I Ii, :I
11 I I I 1 1

II L--- ... -:: ·:::.- :::::.f':.':. I

I ._ I .; ,.. ______ .;.i --------- ________ ., • • J

~-------,, --------- ------------- ----- -~,----
18 11 7 9 !l

:• 11 ,I
,: :• 16
LL::::::::::::::::::::::: ________ •j

(a)

(b)

Figure 9 (a) organizations of bounding rectangles (the solid lines construct
object rectangles; the dash lines construct intermediate rectangles) and (b)
the R *-tree structure.

Figure 1 O(a) illustrates space decomposition using the skd-tree with bucket capacity

3. Upon insertion of object 4 into a node which already has three entries (i.e., 1, 2, and

3), the node overflows and needs to be split into two. Four objects are divided by a

discriminator value dl on the horizontal axis . The maximum virtual boundary of

entries in the left child node on the horizontal axis is b2 and the minimum virtual

boundary of the entries in the right child node on the horizontal axis is b 1 . An

intermediate node consists of 6-tuples, two child pointers, a discriminator, a

discriminator value, a maximum virtual boundary of objects in the left child node along

the dimension specified by the discriminator and a minimum virtual boundary of objects

18

in the right child node along the dimension specified by the discriminator. A leaf node

consists of 4-tuples, a discriminator, a pointer to a data page, minimum and maximum

values of objects in the data page along the dimension specified by the discriminator.

In Figure 1 O(b), node structures of the skd-tree are illustrated.

bl dl b6 b2d3 b5
b7 ________

••

I
I
I : .
l 8
i

bl2

I • -······ blO
...._-------------~. : 6i• 4 : I :

! I ! b4

2 •
I L : 10 I bl 1 I i I I

~- ... ---1--.J -----.... --.s-· -- d2

I . I
.--+-+I-. I \3-, --,

.... _I; __ - .. _i .. _: : : ... i_

b8

b3

b9

................ Max. value of low son or Min. value of high son
-------· discriminator

• centroid of object rectangle

(a)

(x,/ , dl, '()

[y b7 b8] (y, b4, , d2, , b3)
''' / ~

[x, bl, , b9] (x/ , d3, ~

3 5 , :~b~r1bl0; ;·:;'J1.b12;
7

(b)
Figure 10 (a) space decomposition using the skd-tree with bucket capacity 3 and

(b) the skd-tree structure.

19

The skd-tree uses virtual boundaries of the sub-spaces to process intersection

searches (range queries) and uses tighter boundaries decided by a partition line to

process containment searches. This structure can have an arbitrary size of data page.

However, due to the nature of binary trees, small number of fanouts, intermediate and

leaf nodes of the skd-tree do not account for paging of secondary memory. The skd­

tree can be very deep, since this structure is not a balanced tree. Also, for

intersection searches, this structure can suffer from overlapping sub-spaces as in the

R-tree.

The minimum bounding sphere (MBS) method to approximate spatial data

objects is used for the KD2B-tree and the Sphere-tree [74]. The split lines of the

KD2B-tree have arbitrary angles and two split lines, Left-line and Right-line, are used

to partition a sub-space. Left-line defines the smallest sub-space that completely

enclose all the objects of the left sub-set. Right-line is defined analogously. The

KD2B-tree has a binary tree structure, since it uses a binary space decomposition

method. Therefore, to be adapted to the paging environment, an intermediate node of

the KD2B-tree contains a tree structure consisting of a sub-set of the binary tree.

This structure allows overlapping intermediate partitions and the modified binary tree

structure, for paging systems, requires more complicated update processing. The

Sphere-tree is very similar to the R-tree. It uses MBSs instead of minimum bounding

rectangles (MBRs) to approximate arbitrarily shaped spatial data objects. One

advantage of this structure is that representation of MBS requires less memory space

than that of MBR. The MBS needs only one point and a radius, i.e., d+ 1 floating point

numbers to represent an object on ct-dimensional data space, and the MBR needs two

points for each axis, i.e. 2d floating point numbers. The perfonnances of the MBS and

MBR approximation methods depend on the patterns of the spatial data objects. This

structure still has all the disadvantages of the R-tree.

20

The GBD tree [70] is a mixed structure of the R-tree [40] and the grid file [67].

It uses a minimum bounding rectangle and a binary string representing binary space

decomposition to manage space decomposition. The minimum bounding rectangle

(MBR) is used for query process as in the R-tree and the binary string is used for

insertion and deletion operations. Therefore, each entry in the GBD tree consists of

three parts, a pointer to a child node, coordinates of the MBR and a binary string (DZ

expression). To express the position and the size of the decomposed area, a DZ

expression is used. The GBD tree also uses the center point of the object to decide

the region in which the object is placed, as in the skd-tree. This structure inherits the

problem of the R-tree, overlapping intermediate rectangles. The GBD tree requires

more memory space than the R-tree and as a result the node capacity of the GBD tree

is smaller than that of the R-tree when the same page size (e.g., 1 Kbyte) is used. If

a node in the GBD tree is split, then both minimum bounding rectangles and DZ

expressions associated with the entries on the insertion or deletion path have to be

adjusted. The GBD tree splitting method only considers the number of overlapping

sub-regions to make an even split of entries in an overflowing node. However, this

method ignores one of the most important principles which the spatial index structures

with a non-disjoint space decomposition method should satisfy to improve

performance; that is, the minimization of overlapping areas among the intermediate

rectangles to alleviate the number of redundant search paths. The split method of the

GBD-tree can make two intermediate rectangles partially or completely overlap each

other after a node split. In query operation, the GBD tree also uses minimum

bounding rectangles to find overlapping objects. Heavy overlapping among the

intermediate rectangles in the GBD tree will result in poor query performance.

Assuming that this structure is implemented on secondary storage, insertion or

deletion performances of the GBD-tree is not expected to outperform that of the R­

tree.

21

The parallel R,.tree (MXR-tree) [51] is an variation of the R-tree. The MXR-tree

distributes R-tree nodes over several disks which can be accessed in parallel. The

hardware architecture is a single processor with multiple disks. Total response time

for a query is proportional to the sum of the maximum disk access time of each level.

The MXR-tree suggests four different heuristics to distribute nodes among the disks.

The proximity index has the best performance of the four heuristics. Proximity

between two rectangles represents the spatial adjacency of two rectangles. All

sibling nodes are grouped by the disk number and proximity is calculated between a

new node and each of the nodes in each group. The proximity index (Pl) selects

maximum proximity for each group. The proximity index assigns a new node onto a

disk with the lowest proximity index. The purpose of the proximity index is to reduce

the chance of retrieval of the new node together with the nodes which are already on

that disk. For ideal node distribution, all sibling nodes on the same level have to be

considered. However, this requires many extra disk accesses. Therefore, the

proximity index heuristic only considers sibling nodes under the same parent node to

calculate proximity. In Figure 11, DJ, D2, and D3 represent disk numbers.

13

D2

2 4

nl n2 n3 n4 n5

Figure 11 the MXR-tree structure with three disks.

As can be observed, node distribution among the siblings under the same parent node

works well. However, the proximity index does not affect distribution among child

nodes which have different parent nodes. For example, in Figure 11, nodes nl and n5

22

are in the same disk D2 and corresponding intermediate rectangles for these two

nodes are close in data space in Figure 8(a). To speed up parallel disk accessing,

these two nodes should be placed on different disks. As mentioned by Kamel [51],

84% speed up of an MXR-tree with 5 disks over an R-tree with 1 disk is considered to

be low.

Disjoint Decomposition

Structures with the disjoint decomposition method do not allow overlapping

among intermediate sub-spaces at the same level. The hB-tree [60, 62] is derived

from the k-d-b-tree [85]. It avoids downward split propagation and saves re­

structuring cost and storage utilization. An hB-tree node may have multiple parents,

so strictly speaking, this is not a tree structure. The k-d tree [10] is used as an

internal structure to remember space decomposition that was performed to produce its

child nodes. Node splitting requires that the k-d tree be split. This makes a region

represented by the node like the holey brick. This is different from the k-d-b-tree in

which the node is always represented as a rectangle.

The R + -tree [95] is a variant of the R-tree. The major difference between the R­

tree and the R + -tree is that the R + -tree does not allow overlapping among the

intermediate rectangles. Upon node splitting, an intermediate rectangle is partitioned

into two intermediate rectangles and all rectangles on the partition line are divided. If

a leaf node rectangle is on the partition line, it is stored in both intermediate

rectangles with exactly the same coordinates. Figure 12(a) shows a grouping of

rectangles using the R + -tree and Figure 12(b) illustrates the R + -tree structure for

Figure 12(a). In Figure 12(a), object rectangles 1, 2, 3, 4, 5, 6, 8, and 10 overlap with

more than one intermediate rectangles. For example, rectangle 10 overlaps with

intermediate rectangles 13, 14, 17, and 18. The object rectangle is not split but stored

23

in all intermediate rectangles that partially overlap the object rectangle [95]. In this

case, coordinates for rectangle 10 in intermediate rectangles 13, 14, 17, and 18 remain

the same. That is, intermediate rectangles 13, 14, 17, and 18 perform as if each of

them enclosed rectangle 10 completely. This causes redundancies at the leaf node

level and as a result the total number of nodes in the tree are increased as shown in

Figure 12(b).

12 I
I 19 I

8 I
I
I 1 I
I r---- -------- -· _ 151

~ ----- --------- -- , -- ------' 18
6

13 2 I 10 i ----
I -·
I 17 ----- --------- ---1 I ------------·--· 4 5

11 I
3

I
I I

'--

7 14 9
16

;

(a)

8

2 3 4 10 3 5 9 5 6 10

(b)

Figure 12 (a) organizations of bounding rectangles (the solid lines construct
object rectangles; the dash lines construct intermediate rectangles) and (b)
the R+-tree structure.

24

In Figure 12(a), the top 2 level intermediate rectangle boundaries are omitted to avoid

too many lines. Net space (node) utilization is decreased because of the

redundancies. Redundancies in the R + -tree provide faster access in point queries and

in very small size range queries than the R-tree. However, it is also noted that

redundancies at the leaf node level causes disadvantages in range queries and

deletion operations, since these operations access all nodes containing redundant

entries overlapping the search range. The R + -tree has high leaf node redundancy for

the data objects with a high degree of overlap.

The original literature for the R + -tree [95] does not provide insertion and split

algorithms in detail. The R+-tree may become extremely complicated to implement if

it uses minimum bounding rectangles (MBRs) to enclose lower level rectangles. For

example, in Figure 13(a) (page 26), none of the intermediate rectangles, 1, 2, 3, and 4

can include a new data rectangle N without overlapping other intermediate rectangles.

To resolve overlapping boundaries of intermediate rectangles after insertion of N, the

R + -tree insertion algorithm should search all the neighbors overlapping an

intermediate rectangle in which data rectangle N is inserted and adjust boundaries

between them. There is no guarantee that all the overlapping intermediate rectangles

are Siblings under the same immediate parent node. Therefore, extra node accesses

may be required. Also, in some cases, adjusting boundaries of the intermediate

rectangles can invoke a chain reaction; boundaries of some intermediate rectangles

which do not overlap the intermediate rectangle, in which new data rectangle N is

inserted, may need to. be adjusted. If a minimum bounding rectangle for intermediate

rectangles of the R+-tree is not used, then there are not always gaps between

intermediate rectangles as in the k-d-b tree. Figure 13(b) shows the R+-tree space

decomposition without using MBR.

25

r-0----1 2

I I r:---------1 I I ,o o· . .
I I •c:::::::J I : C=:J : N ~-----..!
~---------!l!lllr--------~

r-----~ :o rJ.:
31001 L__~

I I

iD
D D : c:::::::J

N•

_c:::::] ____ 1111-----------

DDi D~

2

I I
I r--,1
~ - _L:-:-::J .! D: 3 4

(a) (b)

Figure 13 the R+-tree (a) with MBR and (b) without MBR.

The cell [35, 36, 37] method uses a disjoint decomposition approach. This

structure can be viewed as a combination of a binary space partitioning (BSP) tree

[28] and an R + -tree. The cell tree is a balanced tree and leaf nodes contain the cells

and intermediate nodes correspond to a hierarchy of nested convex polyhedron. Each

leaf node entry consists of 2-tuples (e.g., E.Z represents the geometry of the cell and

E.D denotes the object ID). Intermediate nodes contain entries which consist of 3-

tuples (e.g., Cp, P and C). Cp is a pointer to the child node. P is a convex k­

dimensional polyhedron from the binary space partitioning. C is the container which is

also a ct-dimensional convex polyhedron. However, C is the sub-set of P and provides

a more accurate localization of the cells in the sub-tree to speed up search processes.

To insert an object, one must compute a convex cover for the object. If the object is

not convex, then the object must be decomposed into a small set of convex polyhedra

[34]. Each convex polyhedron is inserted into the cell-tree. Decomposition of an

object into a set of small convex polyhedra may provide more accurate approximation

of the object. However, this structure has a more serious redundancy problem than

the R+-tree. While the leaf nodes of the R+-tree contain as many duplicated data

objects as the number of intermediate rectangles intersecting a given data object, the

leaf nodes of the cell-tree contain as many duplicated data objects as the number of

26

intermediate cells intersecting a given polyhedron which is a part of a data object. The

cell-tree and the R+-tree cannot properly perform deletion by range operations, i.e.,

delete all data object intersecting a given deletion range, since deletion algorithms

provided by these structures cannot delete all duplicated data objects from the tree.

The grid file [67, 41] splits an overflowing cell into two sub-cells. The simplest

splitting policy is to select the dimension cyclically with a fixed order. With other

splitting policies, one dimension can be selected more frequently as the split

dimension than the other. Since this splitting variation increases precision of the

answer, it is good for the queries in which a favored attribute (dimension) is specified

[67]. Figure 14 (page 28) shows the organization of ten rectangles, which are the

same as in Figure 12(a), using the grid file. Capacity of the cell is three and cyclically

a splitting dimension is selected. To organize ten rectangles, the grid file uses 23

cells. There are many rectangles which are stored in more than two cells; for example,

rectangle 3 is stored in 7 cells. A storage space of 23 cells, with capacity 3, can hold

69 rectangles. However, only 10 rectangles are stored in 23 cells. Space utilization

for this example is 14.49%. In geographic applications, overlapping and density of the

data are higher than this example. Redundancy of the grid file degrades space

utilization and query response time. The EXCELL method [101, 102] uses the same

approach as the grid file. To index non-zero sized objects, this method duplicates

objects in all cells that the objects intersect.

The multi-layer grid file [99] uses a multi-layer paradigm. This method limits the

number of layers to three. In the first and second layers, there is no clipping, however

clipping is allowed in the third layer . This method also has a redundancy problem as

does the grid file. In this method, once a split position is fixed it cannot be adjusted

unless a merge operation is done. Therefore, successive insertions and deletions can

make this structure degenerated (e.g., low space utilization). Also, in the case of

27

bucket (node) under flow, merging a sub-space with one of its neighbors is not always

possible.

j I

I I
I I
I I

I
I

8 i
! 1 ! 1----.

I
I I

I I 1---- l"'---::t.---- -----·- ------ ... I
I

I I I I
6

I I· I

I I I 2 ! ! 1-.... 1 _____ 1-+-tl
I I 10 I -. --.-+"

·------· ----•---- + -.,-- ---
1 4•1 I I
I I 5 I
I I I I

I .--- -i 3 r-- •--'9'-----1
I I ! I I I

I I I ! ______ ,_.....,_, _ ~ ____ .. ___ -1----· '"' .. ____ _

I I 9
I I
I I
I I
I I
I I

I • __.
I ;

7

Figure 14 the grid file with CAP= 3.

The BANG file is extended [26, 27) to handle non-zero sized data objects. The

extended BANG file uses the same partition scheme, binary division, as the original

BANG file. The extended BANG file combines two distinct but related

representations, one point and one spatial, within a single directory structure. Point

representation is for processing containment queries and spatial representation is for

processing intersection (partial containment) queries. For point representation, the

center points of objects are used. However, processing of the containment query

using point representation needs extra steps to remove objects whose center points

lie in a specified region but are not completely enclosed by the specified region. An

entry of the directory node consists of 4-tuples, a pointer to a child node, a cover

region level number, a point region level number, and a binary partition string. Level

numbers for point regions and cover regions indicate the number of bits in the binary

partition string representing each region.

28

The splitting operation of the R-file [45] decomposes a splitting cell into three

cells, two disjoint halves and an original cell. Then the rectangle in the splitting cell, is

stored in the smallest cell which can enclose that rectangle completely. In Figure 15

(page 30), the R-file splitting method is illustrated using the same example as in

Figure 12(a). One original data space cell is split into two as shown in Figure 15(b)

and the right half cell is split into two sub-cells as shown in Figure 15(c). This

method partitions the rectangles among the original cell and a sub-cell created from

the original cell by repeated halving [45]. However, there are problems with this

method. If more than CAP, capacity, rectangles are on the splitting line of one cell,

then splitting this cell cannot resolve overflowing. For example, in Figure 15(a),

insertion of rectangle 10 makes the original cell overflow. To solve this problem the R­

file literature proposes to use one-dimensional the R-file to organize the rectangles

according to their projection on the split line. In range queries, cells which do not

contribute to answer the queries, have to be searched. Rectangles in the large cell

tend to intersect the split line and this cell has empty space off the split line. To

prevent excessive cell searching in range queries, the R-file associates each cell with

one-dimensional interval bounding the coordinates of the rectangles in the split

dimension. This information is stored in a directory.

The priority R (PR) file [6] is proposed for the maintenance of seamless,

scaleless maps. In cartography, generalization is a technique which represents

geographic objects depending on the scale. That is, a geographic object appears on a

map only if its priority is high enough. For a priority query, data objects with the same

associated priority' can be stored in a separate spatial index structure. The PR-file

integrates all single priority structures into one common access structure using the R­

file.

The MR-tree [4, 5] is a spatial index structure using a multi-layer paradigm. It

distributes spatial objects into several data spaces to avoid redundancy in the leaf

29

nodes. Space utilization of the MR-tree is considered to be low and the object

distribution in the data spaces is not balanced.

10 2

5

3

7 9

(a) (b)

r--------------------------------,
8

6

~-----------------------~----------------t

'------------------------ ------------------------
(c)

Figure 15 the R-file with CAP= 3.(a) data space cell, (b) two half cells and (c)
one quarter sub-cell.

The quadtree [9, 21, 42, 46, 65, 66, 89, 90, 96, 97] is a hierarchical index structure

which recursively decomposes space. The quadtree sub-divides the image array into

30

four equal-sized quadrants. If the array does not consist entirely of l's or O's, then it is

sub-divided into sub-quadrants, until all blocks in the image array consist of entirely of

l's or O's. The image array is represented by the tree of degree four. This type of

quadtree is not efficient in dealing with paging and disk 1/0 buffering due to its small

number of branching factors. The linear quadtree [29, 104] is introduced to partially

alleviate this problem. It stores only black nodes, encodes each node using the

Morton address scheme and encodes a path from the root to the node. Morton

addresses are produced by interleaving the bits of binary representation of x and y

coordinates. In Figure 16(c), block address 22 is created from bit string 1010 by using

base-4 digits. The sequence, 12 21 30 31 32, represent the image in Figure 16(a). A

node in the linear quadtree is split by replacing it with its four children.

00 01 10 11

0 0 0 0 00 00 01 10 11

0 0 1 0 01 02 03 12 13

0 1 1 1 10 20 21 30 31

0 0 1 0 11 22 23 32 33

(a) (b) (c)

Figure 16 (a) image, (b) binary image array and (c) the Morton code addressing
scheme for labeling pixels.

To organize a sorted list of quadtree blocks, some one-dimensional index structure

(e.g., B-tree) should be used. This type of quadtree cannot handle overlapping data

objects properly. The linear quadtree assumes that all the blocks are disjoint and

cover the entire image. Spatial data usually does overlap (e.g., geographic data

containing satellite photographs of regions of the earth [63]). The quadtree

indiscriminately decomposes the objects into lower level pictorial primitives, such as

31

quadrants, line segments, or even pixels. In a search operation, the quadtree requires

elaborate re-construction of the spatial object from the low level primitives of the

leaves [86]. To re-construct the image, the quadtree requires a list of size, location

and value of each of the blocks comprising the image. Usually, the quadtree methods

are suitable for image processing

Projection Method

The spatial index structure proposed by Lee [57] uses projections of the

minimum bounding rectangle (oriented parallel to the coordinate axis). Projections of

the boundary points of the objects are shown in Figure l 7(a). For example, boundary

points of the object 2 on the horizontal axis are represented by 21 and 2r where l and r

denote left and right, respectively. For the vertical axis, 21 and 2u represent lower and

upper boundary points of the object 2, respectively. An array is associated with each

axis and an entry in the array consists of 5-tuples (object ID, coordinate value of the

projection boundary point, coordinate value of the matching projection boundary point,

boundary indicator, and pointer to a 2-3-4 tree). Figure l 7(b) shows an array

structure organizing projected boundary points on the horizontal axis before the

insertion of object 4. All object IDs which overlap a specified coordinate value are

stored in the 2-3-4 tree associated with that coordinate. For example, objects 2 and 3

are stored in the 2-3-4 tree associated with the projected coordinate value 31, since

these objects overlap value 31 on the horizontal axis. To process a range query, for

the horizontal axis, find a set of objects X from ID trees associated with the projected

values from Xi to Xj (i S j and S1 S Xi S Xj S Sr where S denotes a search range).

Similarly, for the vertical axis, a set of objects Y can be found. Objects overlapping a

given search range S can be obtained from intersection of the two sets X and Y.

Insertions and deletions of this method are very inefficient, since this method uses

32

arrays to organize projected boundary coordinates. To insert an object in the two­

dimensional case, this structure needs to shift entries in the array down to make

space for each of the four projected coordinate values of the object. Also, the object ID

is inserted into all ID trees associated with the projected coordinate values which

overlap the interval of the inserted object on the given axis.

ID Value Spoust Left/Right ID Tree

1 11 lr L - ~1 I
1 lr l 1 R - ~1 I
2 21 2r L - ~2 I
3 31 3r L - ~ 2,3 I
3 3r 31 R - ~ 2,3 I
2 2r 21 R - ~2 I

(b)

ID Value Spousf Left/Right ID Tree

1 11 lr L - i:JI 1 I
4 41 4r L - ~ 1,4 - I
1 lr 11 R - ~ 1,4 I
2 21 2 L - ~ 2,4 I r
3 31 3r L - ~2.3,4 I

4r 3r 2r 4 4r 41 R - ~2.3,4 I

(a)
3 3r 31 R - ~2.3 I
2 2r 21 R - ~2 I

(c)

Figure 17 (a) projections of objects on axes, (b) array structure for horizontal
projections before insertion of object 4 and (c) array structure for horizontal
projections after insertion of object 4.

For example, to insert object 4, in Figure 17(a), the entries of the array for the

horizontal axis have to be shifted down to make space for values 41 and 4r. Then, the

object ID for object 4 should be inserted into all ID trees in shaded area of Figure

17(c). Update of the array for the vertical axis is analogous to the case for the

horizontal axis. Even though this method suggests a modified B-tree to organize the

33

projected coordinate values of the objects, the update processes in this method are too

expensive.

Applications

Recently, applications which rely heavily on spatial data have increased in

database area [33]. In spatial database systems, spatial information of the objects is

stored in separate spatial index structures and non-spatial information can be stored

in database relations while maintaining appropriate links between the spatial and non­

spatial components of each object [1]. Spatial index structures have applications in

the geographic information systems (GIS) [24, 30, 51, 53, 73, 88, 96, 105], computer

vision [14, 47], CAD, VLSI [82] and the image databases [16, 17, 20, 32, 50, 76, 83,

87, 109]. It is also used in cartography [52 , 103] and remote sensing [38] Spatial

index structures can be used to support 3-dimensional image reconstruction in

structural biology [8]. For example, three-dimensional images of anatomical objects

are reconstructed from sets of ordered two-dimensional cross-sectional slices.

The spatio-temporal (multi-version) database which is a spatial database in

which data objects may change their shapes and/or spatial locations at different time

intervals [19, 61, 93, 98, 106, 107] is another application of spatial index structures.

This database can be viewed as a spatial database with an additional dimension, time.

34

CHAPTER III

THE PML-TREE: A NEW PARALLEL SPATIAL

INDEX STRUCTURE

Introduction

In this chapter, design and implementation of the parallel spatial index structure

called a parallel multi-layer (PML) tree using native space indexing with the disjoint

space decomposition method are proposed.

In most applications, very large sets of spatial data are stored in secondary

storage (e.g., disk) and the access time for one page of secondary storage is much

longer than processing time for one page in main memory [51]. This means that the

performances of the spatial index structures highly depends on the number of disk

accesses to the secondary storage. Parallelization of 1/0 operations can reduce query

response time of the spatial index structure significantly, since the operations in

applications of most spatial index structures are highly 1/0 bound. The hardware

architecture for parallel spatial index structures discussed in this chapter is multiple

processors with multiple disks. Parallelization using multiple disk units is suitable to

handle massive data. In parallel spatial index structures, the entries which are in

different disks and overlap a given search range are simultaneously accessed during

query processing. An efficient parallel spatial index structure should require a small

number of total disk accesses and at the same time the disk accesses should be

distributed evenly among the disks. Therefore, object distribution strategy is crucial

to the performances of parallel spatial index structures.

Parallelization of the spatial index structure is a comparatively unexplored topic.

The MXR-tree is the first parallel spatial index structure [51]. It is a variation of the

R-tree. The MXR-tree distributes R-tree nodes over multiple disks using heuristics

35

(e.g., round robin, minimum area or proximity index) as discussed in Chapter II. The

proximity index gives the MXR-tree the best performance. The purpose of the

proximity index is to place a newly created node to the disk with the lowest proximity

index (e.g., a disk with the least similar nodes, spatially, with respect to the newly

created node). For ideal node distribution, all nodes on the same level of the MXR­

tree have to be considered in the calculation of the proximity index. However, this

method requires too many extra disk accesses. Therefore, the proximity index

heuristic only considers sibling nodes under the same parent node to calculate the

proximity index. The MXR-tree uses the same split algorithm as the R-tree. Thus,

the MXR-tree has a redundant search path problem. Query operations in the parallel

spatial index structures create the same number of processes as disks, with each

process being associated with one disk. Each process performs a query operation

simultaneously for a given search range on each disk. Since, the MXR-tree has a

single tree structure on multiple disks, nodes in different disks are linked by the

pointers. Therefore, during parallel processing of the query operation, inter-process·

communications are required and consequently all disks cannot be fully parallelized all

the time. For example, assume that nodes N 1 and N 2 are in disks D 1 and D 2,

respectively. If an entry E in node N 1 overlaps the given search range and a child

node of entry E is node N 2, then node N 2 in disk D 2 cannot be accessed until the

process associated with disk D 1 completes processing of the entry E and sends a

signal to the process associated with disk D2. Detailed inter-process communication

of the MXR-tree is discussed in Chapter IV, Implementations of Spatial Index

Structures.

The purpose the PML-tree is to increase query performances by:

1. reducing the total number of disk accesses,

2. distributing data objects evenly among the disks for parallel processing and

3. high space (node) utilization.

36

To reduce the total number of disk accesses in query processing, a spatial index

structure should overcome disadvantages of the R-tree, R *-tree and R+-tree (see

Chapter II). The PML-tree distributes data objects in multiple data spaces to remove

overlaps between intermediate rectangles and to avoid leaf node redundancy. To

speed up query processing in parallel disk 1/0, the PML-tree distributes data objects

evenly (in terms of the number of objects and spatial distribution) among the multiple

disks using object distribution heuristics while maintaining the properties mentioned

above. Object distribution heuristics of the PML-tree provide high space utilization.

The author proposes three object distribution heuristics for the PML-tree in this

chapter. Three different PML-trees with three object distribution heuristics and one

MXR-tree with the proximity index heuristic are implemented in Chapter IV. Using

four test data sets (e.g., two system generated data sets and two real application

data sets), the performances of these four parallel spatial index structures are

compared and analyzed. The structure and the algorithms of the PML-tree are

discussed in the following.

The Structure and Algorithms of the PML-tree

The PML-tree Structure

An efficient spatial index structure should satisfy at least the following properties

[60]:

1. good space (node) utilization with a large index fanout, resulting in a small

number of nodes and a small number of disk accesses to process a query,

2. easy incremental re-organization as the file grows,

3. simple algorithms with an absence of special cases,

4. ability to handle range queries and exact match queries.

37

The PML-tree should satisfy the above properties and it must have proper structure

for parallel processing. The PML-tree is a dynamic parallel spatial indexing structure

using native space with the disjoint space decomposition scheme. In the following,

three structural aspects of the PML-tree are discussed.

First, to decrease the number of disk accesses in a query, the PML-tree should

overcome the redundant search path problem of the R-tree or R *-tree and the

redundancy problem of the R + -tree. The PML-tree uses native space indexing with a

disjoint space decomposition method. The disjoint space decomposition method is

used to remove redundant search paths. The PML-tree guarantees that all sub­

rectangles are completely enclosed by an upper level intermediate rectangle to remove

a redundancy problem. For this, multiple data spaces are used and these multiple

spaces are suitable for parallelization using multiple disks.

Second, to increase query performance of the parallel spatial index structure on a

system with multiple disks, some object distribution heuristics are required. In

parallel spatial index structures, the query performance is proportional to the

maximum number of disk accesses among the disks. An efficient object distribution

heuristic reduces the query response time by distributing data objects spatially evenly

among the disks. Some of the heuristics (e.g., round robin or minimum area [51]) do

not consider spatial locations of the data objects to be inserted and these heuristics

are structure independent. Some heuristics (e.g., proximity index of the MXR-tree)

consider spatial locations of the data objects to be inserted with other data objects

which already exist on the disks. The PML-tree uses three object distribution

heuristics:

1. minimum number of entries - selecting a tree that has minimum number of

entries among the trees in the same layer;

2. absolute crowd index - selecting a tree with the minimum probability of the

node splitting along the insertion path among the trees in the same layer;

38

3. relative crowd index - selecting a tree with relatively less crowding along the

insertion path among the trees in the same layer.

These three object distribution heuristics are discussed in detail in this chapter with

algorithms and examples.

Third, space utilization is one of the factors that affects performance of the spatial

index structures. A spatial index structure with higher space utilization is space

efficient and has a smaller number of nodes than the spatial index structure with lower

space utilization. In point queries and very small size range queries, high space

utilization may not reduce the number of disk accesses. However, high space

utilization becomes an important factor in reducing the number of disk accesses as the

search range grows. For example, if the search range is an entire data space, then all

the nodes in the structure have to be accessed. In this case, structures with higher

space utilization take fewer disk accesses. The split algorithms and object

distribution heuristics of the PML-tree provide high space utilization.

The PML-tree has a multiple-layer, multiple-tree structure. Each layer consists

of multiple trees and the number of the trees is the same as the number of the disks

used. Each tree is a height balanced tree and all trees in the same layer have the

same heights. Each tree in each layer is associated with a data space. The PML-tree

distributes spatial objects into multiple data spaces by using object distribution

heuristics and splitting algorithms. Each data space is associated with a tree which is

an independent structure and is placed on one of the disks. A disk can hold more than

one tree. No inter-process communications during query operations is necessary,

since in the PML-tree, each of the trees is an independent structure. Therefore, all

disks can be fully parallelized. Figure 18 illustrates the PML-tree layout with three­

layers and four-trees. Each tree can be identified by tree ID, Tij where i denotes the

layer number and j denotes the tree number; the tree number is also the disk number.

Disk j contains trees with ID number Tij (i= 1, 2, .. L, Lis the number of layers). For

39

example, in Figure 18, disk 1 contains trees T11, T21, and T31. Therefore, the query

response time of the PML-tree in parallel accessing of the disks is proportional to the

maximum number of the disk accesses. If Pij is the processing time of the nodes in

tree Tij on a range query, then query response time (R) of the PML-tree can be

obtained by:

R= max j= 1 ... o(.± Pij)
l= 1

where D is the number of disks used and L is the number of layers.

Figure 18 the PML-tree layout with three-layer four-tree.

Figure 19 illustrates an example of object distribution of the PML-tree with the

same two-dimensional objects used in Chapter II. The PML-tree retains the same

node structures as the R-tree, R *-tree and R+ -tree as described in Chapter II. All

objects are stored in leaf nodes. Intermediate nodes consist of entries that represent

intermediate rectangles. For example, entries in the intermediate node in Figure

20(a) are 11 and 12. Those entries repr~sent the intermediate rectangles 11 and 12 in

Figure 19(a), respectively. In this example, the PML-tree uses the simplest object

distribution heuristic, minimum number of entries, to distribute the object rectangles 1

40

through 10 into the three data spaces. In Figure 19, all the data spaces contain

disjoint intermediate rectangles and the rectangles are completely enclosed by an

upper level intermediate rectangle. Figure 20(a), (b), and (c) show the corresponding

trees of the 1st, 2nd and the 3rd data spaces. In Figure 20, ni denotes node ID, and

all the nodes in tree Tij are stored on disk j. At the leaf level, there are no duplicated

object rectangles. In this case, the PML-tree has a one-layer, three-tree structure.

fCJ, I I
I I

I 8 I
I I
I I
I

~-------------------1 ~ , . I .
• 14

I
I
I
I

I 11 I 10 II
L---------------------------------------~

2 13
4

5

f[JL I I
I I
I I
I I
I I
I I

,-------------------, ___________________ J

~----------""
(a) T11 (b) T12

. [Jl 6 I
. I

I
I
I
I
I
I

I 3 I
I

9

, _________________________________

(c) T13
Figure 19 organizations of bounding rectangles (the solid lines construct object

rectangles; the dash line construct intermediate rectangles) on the (a) first
data space, (b) second data space and (c) third data space.

41

T11 T12

1 i 10 I di 1: : 'f : : n
6

I 2 i • I di ~: r : : n? I 3 I 6 I 9 I
nl n2 n3 n4 n5

(a) (b) (c)
Figure 20 the PML-tree structures for the (a) 1st data space in Figure 19 (a),

(b) 2nd data space in Figure 19(b) and (c) 3rd data space in Figure 19(c).

Figures 21(a) and 21(b) compare the parallel disk access methods of the MXR­

tree in Figure 11 (page 22) and the PML-tree in Figure 20, respectively, to process a

given point query. In Figure 11, Di denotes disk ID and ni denotes node ID. The

search area is marked as a point in Figures 8(a) (page 16) and 19; those are the data

spaces for the MXR-tree and the PML-tree, respectively. In Figure 21, a division on

the horizontal axis represents unit time for a disk access. Let's assume that the time

to access a disk is constant and the size of a node is one page. Only the data object 1

overlaps the given point. In Figure 21(a), the MXR-tree needs to access 5 nodes to

process a given point query and the time to access these 5 nodes in parallel is 4. The

total number of nodes accessed by the PML-tree for the same point query is 5 and

time to access these 5 nodes in parallel is 2 as can be observed in Figure 21(b). To

distribute nodes over the disks, the proximity heuristic of the MXR-tree only

considers the sibling nodes under the same parent node; therefore, the proximity

heuristic can produce unbalanced node distributions in some cases. For example, in

Figure 11, nodes nl and n5 are on the same disk D2 and corresponding intermediate

rectangles for these two nodes are close to each other in data space in Figure 8(a).

To obtain good performance, these two nodes have been placed on different disks. As

mentioned previously, inter-process communications are involved with every node

accesses in the MXR-tree. For example, in Figure 21 (a), a process associated with

42

disk DJ has to send a signal after processing the entry 15 in node n7 (see Figure 11)

to the process associated with the disk D2 to access node n5. In the PML-tree, each

process associated with each disk only accesses nodes that have entries overlapping

the given search range, and no inter-process communications are required. The

algorithms of the PML-tree are discussed in the following section.

I node access time I node access time
I I I I
I I I I ; .. Ill i .. Ill

I
I I I
I I I I

j--l!l-,1 I 1-'1Yll--1ll--li DI I DI I
I
I I I
I I I
I I I
I I I
I I I

D2 ~ t-1!2--flt--111-i D2 t--D1-ilJ-!!Ltl
I
I
I
I
I

D3 ~. D3 t-1!2--11
I I
I I
I I
I I
I I
I I
I I

I 2 3 4 2 3 4
disk access time disk access time

(a) (b)
Figure 21 parallel disk access times of: (a) the MXR-tree in Figure 8(a);

(b) the PML-tree in Figure 19.

Algorithms of the PML-tree

All the algorithms and examples proposed in this chapter are based on two­

dimensional data objects. However, they can be easily extended to higher

dimensional data objects. Using C-like structures, all symbols and data types used in

algorithms are defined in the following:

#define
#define
#define
#define

CAP
D
w
M

I* node capacity */
I* number of disks used */
I* weight */

I* initial balancing factor; set to 30% of CAP */

43

struct RECT { /* the four coordinates of a 2-d rectangle */
int lower_x, lower_y, upper_x, upper_y;

};

struct ENTRY {
struct RECT *R; /* the four coordinates of a 2-d rectangle */
struct NODE *P; /*pointer to a child node or to a record in the database */

} ;

struct NODE {
int ent_num;
struct ENTRY *ETY[CAP + 1];

};

struct TREE_INFO {
int total_ent;
struct NODE *P;

};

struct LA YER {
struct TREE_INFO *TREES [D];
struct LA YER *next;

} ;

struct CROWD {
int order;
int value;
char status;

};

*W;
*E, *E', *NEW;

/* number of entries in the node */
/* array of entry pointer */

/* number of entries in the tree
/* root node pointer of the tree

*/
*/

I* tree order */
/* crowd index value */

I* tree status for NEW object */

/* search or delete range */
/* entry pointers */

struct RECT
struct ENTRY
struct NODE
struct LA YER
struct CROWD

*N, *SP, *P, *R, *REM;
*LAY, *LAY_LIST;
*CI, *CI_List[D];

/* node pointers */
/* layer pointers */

int /* Tree or disk ID */

Structure ENTRY consists of two parts, structure R and structure P. In the case

of leaf level entry, R represents a minimum bounding rectangle of a spatial data object

and P is a pointer to the record related to the spatial data object in the database. In

the case of an intermediate entry, R represents a minimum bounding rectangle for all

44

the rectangles associated with the entries in the child node and P is a pointer to a child

node; in the algorithms defined herein, P is defined only as a child node pointer.

Structure NODE consists of two parts, ent_num which denotes number of entries in

the node and structure ENTRY which holds entry pointers in the node. A node can

hold up to CAP entries and one extra space is for an overflow entry in the case of a

node split. The size of the node is set to a multiple of the actual page size. For

example, if one page size is 1 Kbytes and about 30 entries can be store in 1 Kbytes,

then node capacity should be set to multiple of 30 (30 * k, k= 1, 2, ... , n). Structure

TREE_INFO is to keep information about each tree, the total number of entries in the

tree and the root node pointer. The structure LA YER contains the structure

TREE_INFOs for trees in the current layer. Structure CROWD is used for data

insertion with the object distribution heuristics: absolute crowd index and relative

crowd index. It consists of three parts: order, which denotes reverse height of the

tree; value, which represents absolute crowd index or relative crowd index; status,

which denotes status (e.g., A: accept, S: accept and split and R: reject) of the tree for

entry NEW.

All the definitions of symbolic notation include only basic contents to simplify

algorithms. In actual implementation, more information (e.g., node offset, number of

nodes in a tree, file pointer, tree name, list of freed node offset, ... , etc.) should be

added. Entries of the PML-tree do not need space for the disk ID of the child nodes,

since all the nodes in a tree are on the same disk. However, in MXR-tree, each entry

needs one extra space for the disk ID of the child node. These extra spaces reduce

capacity of the MXR-tree.

In the following sections, algorithms of insertion, split, search and deletion for the

PML-tree are proposed.

45

Insertion of the PML-tree

The PML-tree uses three object distribution heuristics. Therefore, an insertion

method for each of three different object distribution heuristics is proposed.

Algorithms Insert, SelectEntry and Adjust are shared by three different insertion

methods.

Algorithm Insert ()
[Output] a new PML-tree after insertion of NEW.
[Comment] To insert a leaf entry NEW, invoke one of three insertion methods

(Insert_by_ME (), Insert_by_AC () or Insert_by_RC ()). Removed
entries are re-inserted.

1. set LAY= LAY _LIST->next; REM->ent_num= O;
2. invoke Insert_by_ME (LAY, NEW, REM), Insert_by_AC (LAY, NEW, REM)

or Insert_by_RC (LAY, NEW, REM);
3. if REM->ent_num > 0 then /* if there is removed entry */

for each entry E in REM,
set NEW= E; goto step 2 to re-insert removed leaf level entries;

Algorithm Insert takes one entry NEW to insert, sets LAY to the first layer in

LA YER_LIST and invokes one of three distribution methods: Insert_by _ME,

Insert_by_AC, or Insert_by_RC. If there exists data object(s) removed by node split

during insertion of NEW, then each of them are re-inserted. First, the simplest object

distribution heuristic, minimum number of entries, is considered.

Minimum Number of Entries Object distribution by minimum number of entries

(abbreviated as ME) heuristic is the simplest distribution method. Insertion with ME

distribution heuristic consists of six algorithms, Insert, Insert_by _ME,

SelectTree_by_ME, InsertRect, SelectEntry, and Adjust.

46

Algorithm Insert_by _ME (LAY, NEW, REM)
[Input] LAY- structure LAYER. NEW- entry to be inserted.

REM- store removed entries.
[Output] a new PML-tree after insertion of NEW.
[Comment] Select a tree using Select_by _ME(), then invoke InsertRect() to insert

NEW.
I. invoke i= SelectTree_by_ME (LAY, NEW); /* i denotes selected tree ID */

let N be the root node of the ith tree, N= LAY-> TREES[i]->P;
2. invoke SP= InsertRect(N, NEW, REM), where SP denotes a split node;
3. if insertion of new object rectangle NEW is successful then

if SP,::;:. NULL then /* root node split*/
create entries E and E' for node N and SP;
create a new root node R and insert E and E' into R as entries;
reset root node in LAY, LAY-> TREES[i]->P= R;

else if there is no tree in which NEW can be inserted in the current layer then
set LAY= LA Y->next; goto step 1;

else goto step 1 ;

Algorithm SelectTree_by _ME (LAY, NEW)
[Input] LAY- structure LA YER. NEW- entry to be inserted.
[Output] ID of the tree in which NEW can be inserted.
[Comment] Select a tree in the current layer with a minimum number of entries.
1. if LAY is NULL then

create a new layer; for all i (i= 1, 2, ... ,D), initialize LAY-> TREES[i]= NULL
and LAY->TREES[i]->total_ent= O; and put LAY into LAY_LIST;

2. select a tree with a minimum number of entries from trees in the current layer,
i= {i I MIN(LAY->TREES[i]->total_ent, i= 1, 2 ... D)}, except the tree(s) which
already rejects NEW;

3. return i;

Algorithm Insert_by _ME calls SelectTree_by _ME to select a tree in the current

layer. Algorithm SelectTree_by _ME selects a tree with a minimum number of data

objects in it. The tree which already rejects an entry NEW is excluded from

consideration. The ME distribution heuristic gives balance among the trees in terms

of number of data objects. With a selected tree, algorithm Insert_by _ME invokes

algorithm InsertRect. If entry NEW is inserted at the leaf node of the selected tree

and root node is split, then a new root node is created. In the case that the selected

47

tree cannot accept entry NEW, goto step 1 and repeat the insertion process. If no

trees in the current layer accept entry NEW, then move to the next lower layer and

repeat the insertion process.

Absolute Crowd Index The ME distribution heuristic provides perfect balancing

among the trees in terms of number of data objects. However, spatial data objects can

have arbitrary shapes and sizes. Also, data object can overlap each other and are not

necessarily uniformly distributed in the data space. That is, certain areas in the data

space can be much denser than other areas. Average density of data objects can be

obtained by dividing the sum of data objects' areas by area of data space. For

example, average density 2 means that 2 data objects overlap any given point in data

space. In query processing, D processes are created and each process searches trees

in the associated disk for the same search range. Therefore, to obtain good

performance, each of the trees in the same layer of the PML-tree should approximately

the same number of nodes in the search path. Object distribution by the ME heuristic

may not provide balance among the trees in terms of the number of nodes in the search

range, since, in insertion, it does not consider the locations of the objects. A tree with

higher probability of node splitting along the insertion path tends to create more nodes

(intermediate nodes and leaf nodes). As a result more nodes have to be accessed

upon query processing of the area corresponding to the insertion path, with a higher

probability of node splitting. Object distribution by absolute crowd index (abbreviated

as AC) finds a tree with the lowest probability of node splitting along the insertion

path to insert entry NEW. The AC distribution heuristic measures crowdness of

nodes along the insertion path to determine probability of node splitting. The AC

index value for each of the trees can be calculated as follow:

48

h

2, (W x j x Nr>ent_num)
j= 1

where h is the order of the tree, W is a weight constant and Nj is the node with

order j in insertion path.

Weight constant W is used to give more weight to a node with a higher order. A

higher ordered node is more likely split by the insertion of entry NEW, since NEW is

inserted in a leaf node and the leaf node has the highest order. A tree with the lowest

AC index value is selected for insertion of an entry NEW. Insertion by AC

distribution heuristic provides high space (node) utilization. Space utilization of the

parallel spatial index structures for various test data sets are given in Chapter IV.

Insertion by the AC distribution heuristic consists of seven algorithms, Insert,

Insert_by _AC, SelectTree_by _AC, Calc_AC, InsertRect, SelectEntry and Adjust.

Algorithm Insert_by _AC invokes algorithm SelectTree_by _AC to select a tree in

which entry NEW can be inserted. Algorithm SelectTree_by _AC creates D processes

and each process i (i= 1, 2, ... , D) invokes algorithm Calc_AC for each tree i in the

current layer to obtain information (tree order, absolute crowd index value and tree

status). Algorithm Calc_AC descends a tree from root node to leaf node by using

algorithm SelectEntry. Algorithm Calc_AC is executed in parallel on all disks.

Algorithm SelectEntry returns either an entry that can include entry NEW or NULL if

no entry in node N can accept NEW. For each node in the insertion path, crowd index

value is calculated and this value is cumulative. If a leaf node can accept NEW, then

the tree status is set to either A or S depending on the number of entries in the node

N. For the trees with status either A or S, algorithm SelectTree_by _AC selects a tree

using four criteria (tree order, absolute crowd index value, tree status and number of

objects in the tree). If no tree in the current layer accepts NEW, then the current layer

is set to the next lower layer and the selection process is repeated.

49

Algorithm Insert_by_AC (LAY, NEW, REM)
[Input] LAY- structure LAYER. NEW- entry to be inserted.

REM- store removed entries.
[Output] a new PML-tree after insertion of NEW.
[Comment] Select a tree using Select_by _AC (), then invoke InsertRect() to insert

NEW.
1. invoke i= SelectTree_by_AC (LAY, NEW); /* i denotes selected tree ID*/

let N be the root node of the ith tree, N= LAY->TREES[i]->P;
2. invoke SP= InsertRect(N, NEW, REM), where SP a denotes split node;
3. if SP -.t NULL then /* root node split */

create entries E and E' for node N and SP;
create a new root node R and insert E and E' into R as entries;
reset root node in LAY, LAY->TREES[i]->P= R;

Algorithm SelectTree_by_AC (LAY, NEW)
[Input] LAY- structure LA YER. NEW- entry to be inserted.
[Output] ID of the tree in which NEW can be inserted.
[Comment] Select a tree using four criteria (height, crowd index value, tree status

and number of entries).
1. create D child processes;
2. each child process i (i= 1, 2, ... , D) invokes Calc_AC (Cl_list[i], NEW,

LAY->TREES[i]->P) in parallel; exit;
3. if all CI_list[i]->status is R (Reject) then

set LAY= LAY->next;
if LAY is NULL then

create a new layer; for all i (i= 1, 2, ... , D), initialize
LAY->TREES[i]= NULL and LA Y->TREES[i]->total_ent= O;
insert LAY into LAY _LIST; select the 1st tree, i= 1;

else goto step 1 ;
else, for all trees with status A (Accept) or S (accept and Split),

select a tree i with minimum height,
i= {i I MIN (Cl_list[i]->order, i= 1, 2, ... , D)};

resolve ties by choosing a tree with minimum crowd index value,
i= {i I MIN (Cl_list[i]->value, i= 1, 2, ... , D)};

resolve ties by selecting a tree with status A over status S;
resolve ties by choosing a tree with a minimum number of entries,

i= {i I MIN (LAY->TREES[i]->total_ent, i= 1, 2, ... , D)};
4. return i;

50

Algorithm Calc_AC (CI, NEW, N)
[Input] CI- structure CROWD. NEW- entry to be inserted. N- node.
[Output] information of each tree (e.g., order, crowd index value and status).
[Comment] Decide order of tree, crowd index value and status. Status characters

A, R and S denote Accept, Reject and Split, respectively.
1. initialize CI->order= 1, CI->value= 0 and CI->status= R;
2. if N is NULL then /* empty tree */

set CI->status= A and exit;
3. if N is not leaf node then

E= SelectEntry (N, NEW); /* Eis an entries in N */
if E -::t NULL then /* calculate crowd index value */

CI->value= CI->value + (CI->order * W * N->ent_num);
set N= E->P; /* move to child node */
increase CI->order by one; goto step 3;

else exit;
4. if N->ent_num < CAP then /* N is a leaf node */

CI->status= A; I* can accept NEW in node N *I
else CI->status= S; I* node N need to be split after insertion */
CI->value= CI->value + (CI->order * W * N->ent_num);

Figures 22 and 23 illustrate insertion by the AC distribution heuristic. In this

example, node capacity is 3, the number of disks used is 2, weight constant W is set

to 3 and data space is 40 x 40. Figures 22(a) and 22(b) represent the first data space

and tree, respectively, before the insertion of data object 5. Figures 23(a) and 23(b)

represent the second data space and tree, respectively, before the insertion of data

object 5. In algorithm SelectTree_by_AC, the values of four criteria after invoking

algorithm Calc_AC for two trees are illustrated in Table 1. The CI->values of the first

and the second trees are calculated in the algorithm Calc_AC as follow:

(3 x 2) + (6 x 2) + (9 x 2)= 36 and

(3 X 2) + (6 X 3) + (9 X 2)= 48

Algorithm SelectTree_by_AC selects the first tree to insert data object 5. In this

example, the first and the second trees have the same number of entries in leaf nodes.

51

••••••••••••••••••••••••• r • -. -··---------.
30- 10

21

20- '-······-------·· r•••••••••••••••••••-,

1~1 1 ! ·:·5· .. ·. 2 !
! 11 i
L •••••••••••••••••••• ~ 10- "·····-··············----·

22

'--------·----------·····-·
I I I

10 20 30

(a) (b)

Figure 22 an example for absolute crowd index and relative crowd index object
distribution heuristics (a) the first data space and (b) nodes on insertion
path of the first tree.

30-

20-

10-

,--···-------------·······

23

r-··················-······································· r--····-··-·-·--·-·--·-··•••••••···--····••••••••••••••• I I

! 14 !
I I "·------------------------·····-------------------------·
r r;--, []1 ~~
! L2_J i! ! !LJ 4 !! !
I == I ! 13 :: 12 1
L _________ •••••••••••••••••••• i : J

'·-···---··-···-----------··--·------------------------------
I I I

10 20 30

(a) (b)

Figure 23 an example for absolute crowd index and relative crowd index object
distribution heuristics (a) the second data space and (b) nodes on insertion
path of the second tree.

52

Tree_id Cl->order Cl->value Cl->status total_ent
1 3 36 A -
2 3 42 A -

Table 1 contents of structure CI for two trees in algorithm SelectTree_by _AC.

However, the node with order 2 in the second tree has one more entry than the node

with order 2 in the first tree. Therefore, the probability of the node split for the second

tree is higher than for the first tree.

Relative Crowd Index Relative crowd index (abbreviated as RC) distribution

heuristic uses relative crowdness of the nodes in the insertion path to select a tree to

insert an entry NEW. The RC distribution heuristic selects a tree with relatively less

crowded insertion path considering the area sizes of the intermediate rectangles. To

obtain good performance, each of the trees in the same layer of the PML-tree should

have approximately the same number of nodes in the search path. That is, the number

of intermediate rectangles overlapping given a search range in each of the data spaces

should be nearly the same, since each of the nodes in the search path is associated

with an intermediate rectangle in the data space and the PML-tree uses the disjoint

space decomposition method. Therefore, each data space should have approximately

the same size of intermediate rectangles at a specific area; to maintain this condition,

the RC distribution heuristic calculates the average area size per entry at each visited

node along the insertion path, except the root node, and accumulates that value.

Obviously, the bigger the value, the less crowded the area. The RC distribution

heuristic selects a tree with the least crowded nodes, relatively, along the insertion

path. For example, Figure 24(a) and 24(b) show space decomposition of the two data

space after insertion of data object 7. Insertions of object 7 causes the intermediate

rectangles in each data space to split. However, the average intermediate rectangle

size in the first data space is smaller than that in the second data space. If the shaded

53

rectangle represents a search range, then a search operation on the tree associated

with the first data space has to access one more leaf node than a search operation on

the tree associated with the second data space. Therefore,· data object 7 should be

inserted into the second data space to reduce the number of nodes in the search path.

The RC index value for each of insertion paths can be calculated as follow:

h M· x wG- 2) I c J)
j= 2 Nr>ent_num

where h is the order of the tree, W is a weight constant, Nj is the node with order

j in the insertion path and Mj denotes the area of the minimum bounding rectangle

forNj.

Weight constant W is used to normalize the sizes of intermediate rectangles

associated with the nodes in the insertion path, since an intermediate rectangle

associated with a higher ordered node is completely enclosed by an intermediate

rectangle associated with a lower ordered node.

·------------..-------------. =~=r= : 4 I I

: i i . . .
l9J __ 5 ••••• ..J

(a) (b)

Figure 24 illustrate intermediate rectangles after insertion of data object 7:
(a) the first data space and (b) the second data space.

54

Algorithm Insert_by_RC (LAY, NEW, REM)
[Input] LAY- structure LAYER. NEW- entry to be inserted.

REM- store removed entries.
[Output] a new PML-tree after insertion of NEW.
[Comment] Select a tree using Select_by _RC (), then invoke InsertRect() to insert

NEW.
1. invoke i= SelectTree_by_RC (LAY; NEW); /* i denotes selected tree ID */

let N be the root node of the ilh tree, N= LAY->TREES[i]->P;
2. invoke SP= InsertRect(N, NEW, REM), where SP denotes split node;
3. if SP~ NULL then /* root node split */

create entries E and E' for node N and SP;
create a new root node R and insert E and E' into R as entries;
reset root node in LAY, LAY->TREES[i]->P= R;

Algorithm SelectTree_by _RC (LAY, NEW)
[Input] LAY- structure LA YER. NEW- entry to be inserted.
[Output] ID of the tree in which NEW can be inserted.
[Comment] Select a tree using four criteria (height, tree status, index value and

number of entries).
1. create D child processes;
2. each child process i (i= 1, 2 ... D) invokes Calc_RC (CI_list[i], NEW,

LAY->TREES[i]->P) in parallel; exit;
3. if all CI_list[i]->status is R (Reject) then

set LAY= LAY->next;
if LAY is NULL then

create a new layer; for all i (i= 1, 2, ... , D), initialize
LAY->TREES[i]= NULL and LA Y->TREES[i]->total_ent= O;
insert LAY into LAY _LIST; select the 1st tree, i= 1;

else goto step 1 ;
else, for all trees with status A (Accept) or S (accept and Split),

select a tree, i, with minimum height,
i= {i I MIN (CI_list[i]->order, i= 1, 2, ... , D)};

resolve ties by choosing a tree with status A over status S;
resolve ties by selecting a tree with a maximum index value,

i= {i I MAX (CI_list[i]->value, i= 1 ... D)};
resolve ties by choosing a tree with a minimum number of entries,

i= {i I MIN (LAY->TREES[i]->total_ent, i= 1, 2, ... , D)};
4. return i;

55

Algorithm Calc_RC (Cl, NEW, N)
[Input] CI- structure CROWD. NEW- entry to be inserted. N- node.
[Output] information for each tree (e.g., order, index value and status).
[Comment] Decide order of tree, index value and status. Status characters A, R

and S denote Accept, Reject and Split, respectively.
int Area;
1. initialize Cl->order= 1, Cl->value= 0 and Cl->status= R;
2. if N is NULL then I* empty tree */

3.

4.

set Cl->status= A and exit;
if N is not a leaf node then

E= SelectEntry (N, NEW); /*Eis an entries in N *I
if E -:t- NULL then /* calculate index value */

set N= E->P; /* move to child node */
Area= IE->upper_x - E->lower_xl * IE->upper_y - E->lower_yl;
Cl->value= Cl->value + ((pow(W, Cl->order - 1) * Area) I

N->ent_num);
increase Cl->order by one; goto step 3;

else exit;
if N->ent_num < CAP then

Cl->status= A;
else Cl->status= S;

I* N is a leaf node */
I* can accept NEW in node N */

I* node N need to be split after insertion */

Insertion by the RC distribution heuristic consists of seven algorithms, Insert,

Insert_by _RC, SelectTree_by _RC, Calc_RC, InsertRect, SelectEntry and Adjust.

Algorithm Insert_by _RC invokes algorithm SelectTree_by _RC to select a tree in

which the entry NEW can be inserted. Algorithm SelectTree_by _RC creates D

processes and each process i (i= 1, 2, ... , D) invokes algorithm Calc_RC for each tree i

in the current layer to obtain information (e.g., tree order, relative crowd index value

and tree status). Algorithm Calc_RC descends a tree from root node to leaf node by

using algorithm SelectEntry. Algorithm Calc_RC is executed in parallel on all disks.

Algorithm SelectEntry returns either an entry if that can include entry NEW or NULL

if no entry in node N can accept NEW. For each node in the insertion path, except the

root node, the index value is calculated and this value is cumulative. If a leaf node can

accept NEW, then the tree status is set to either A or S depending on the number of

entries in the node N. For the trees with status either A or S, algorithm

56

SelectTree_by_RC selects a tree using four criteria (tree order, tree status, index

value, and number of objects in the tree). In the RC distribution heuristic, the tree

status has higher precedence order than the index value. When the index value has

higher precedence order than the tree status, the PML-tree has better query

performance, but space utilization is not high enough. Therefore, the RC distribution

heuristic evaluates tree status before the index value to provide high space utilization,

although the query performance decreased slightly. If no tree in the current layer

accepts NEW, then the current layer is set to the next lower layer and the selection

process is repeated.

Figures 22 and 23 (page 53) illustrate insertion by the RC distribution heuristic.

In this example, node capacity is 3, the number of disks used is 2, weight constant W

is set to 3 and data space is 40 x 40. Figures 22(a) and 22(b) represent the first data

space and tree, respectively, before the insertion of data object 5. Figures 23(a) and

23(b) represent the second data space and tree, respectively, before the insertion of

data object 5. The values of four criteria after invoking algorithm Calc_RC for two

trees in algorithm SelectTree_by_RC are illustrated in Table 2. The CI->values of the

first and the second trees are calculated in the algorithm Calc_RC as follow:

((242 x 1) / 2) + ((77 x 3) I 2)= 236.5

where 242 and 77 denotes sizes of the intermediate rectangles 21 and 11,

respectively, in Figure 22(a) and

((528 X 1) / 3) + ((231 X 3) / 2)= 522.5

where 528 and 231 denotes sizes of the intermediate rectangles 24 and 13,

respectively in Figure 23(a).

In this example, the first and the second trees have the same number of entries in leaf

nodes. However, average area size per entry of the second tree is bigger than that of

the first tree. Therefore, the nodes in insertion path of the second tree is relatively

57

less crowded than those of the first tree. Algorithm SelectTree_by _RC selects the

second tree to insert data object 5.

Tree id Cl->order Cl->value Cl->status total_ent
1 3 236.5 A -
2 3 522.5 A -

Table 2 contents of structure CI for two trees in algorithm SelectTree_by _RC.

Algorithm InsertRect (N, NEW, REM)
[Input] N- node. NEW- entry to be inserted .. REM-· stores removed entries.
[Output] re-organized tree after insertion of NEW. .
[Comment] This algorithm is called recursively. Split node pointer, SP, is returned.
1. if N is not a leaf node then

invoke E= SelectEntry (N, NEW);
if E * NULL then /* goto child node pointed to by E */

save node pointer N, P= N, and set N= E->P;
invoke SP= lnsertRect (N, NEW, REM) recursively;
if NEW is inserted in a leaf node then

call Adjust (E);
if SP* NULL then /* if node N is split */

create an entry E' for split node SP at a lower level;
insert E' into node P, P->ETY[P->ent_num++]= E';
if P->ent_num S CAP then

SP=NULL;
else invoke SP= Split (P, REM); /* parent node split */

else SP= NULL;
2. insert NEW into N, N->ETY[N->ent_num++]= NEW;

if N->ent_num S CAP then
SP=NULL;

else invoke SP= Split (N, REM) to re-distribute entries in node N into
two nodes after split;

3. return SP;

Algorithm InsertRect descends a selected tree from root node to leaf node to

insert an entry NEW. At each node visited, one entry is selected from the node by

algorithm SelectEntry and the algorithm InsertRect invokes itself recursively until the

leaf node is reached. If entry NEW is inserted in a leaf node, then algorithm Adjust

calculates minimum bounding rectangles of the nodes in the insertion path. In the case

58

of node overflowing, algorithm Split is called to re-distribute CAP + 1 entries in node

N into two nodes, original node N and split node SP.

Algorithm SelectEntry (N, NEW)
[Input] N- node. NEW- entry to be inserted.
[Output] E- selected entry pointer.
[Comment] Select an entry E in the node N. A child node of entry E can accept

NEW without violating PML-tree properties.
1. for each entry E in node N, if more than one entry overlaps NEW then

return NULL;
2. if only one entry E overlaps with NEW then

compute minimum enlargement of E->R to enclose NEW;
if the enlarged rectangle overlaps with other rectangles in the node then

return NULL;
else return E;

3. if there is no entry overlapping NEW then
for each entry E, compute minimum enlargement of E->R and check
whether each enlarged rectangle overlaps other rectangles;

if there is no entry which can enclose NEW without overlapping other rectangles
then

return NULL;
else select an entry E having minimum enlargement to enclose NEW;·

resolve ties by selecting an entry whose child node has a minimum number
of entries; return E;

Algorithm Adjust (E)
[Input] E- entry.
[Output] E- entry with new adjusted coordinates.
[Comment] Calculate coordinates which completely enclose all rectangles

associated with entries in the child node, E->P->ETYU]->R.
1. for all entries E' (E'= E->P->ETYU], j= 1, 2, ... , E->P->ent_num) in the child

node pointed to by E, find maximum and minimum coordinates along each axis;
2. adjust the coordinates of E->R with those maximum and minimum coordinates;

Algorithm SelectEntry searches entries in the node to find if there is an entry

which can enclose a new entry NEW and still satisfy PML-tree properties (e.g.,

disjoint intermediate rectangles and complete enclosure of the data rectangles).

Minimum enlargement is the first choice parameter to select an entry. Reducing area

59

sizes of intermediate rectangles is crucial, since the PML-tree does not allow

overlapping intermediate rectangles. Reducing area of intermediate rectangles allows

more intermediate rectangles on a data space and this reduces the total number of

data spaces of the PML-tree. The number of sub-rectangles in the intermediate

rectangle is used as a tie breaker. Selecting an intermediate rectangle with a smaller

number of sub-rectangles distributes rectangles evenly over the nodes and reduces

the chance of node overflow. This parameter increases space utilization.

For each axis, the algorithm Adjust calculates minimum and maximum

coordinates of the rectangles associated with the entries in the child node of E. Then,

the coordinates for E->P is updated with these bounding coordinates.

Node Split of the PML-tree

In the case of node overflow during an insertion operation, a splitting process is

needed. The PML-tree's split algorithm consists of three major sub-algorithms, Split,

SelectSpline and SubSplit. The parameters for split algorithms and their precedence

order are proposed as follows:

1. an even distribution of the entries among nodes to improve space utilization,

2. minimization of the number of rectangles intersecting the split line to minimize

the number of re-insertions,

3. minimization of the sum of the two intermediate rectangle areas (sub-regions)

on both sides of the split line.

In algorithm Split, for each axis, the coordinates of starting and ending points of

rectangles associated with. entries in an overflowing node are stored in Split_pos[]

and sorted. The total number of starting and ending points along each axis in the

overflowing node on an axis is 2(CAP + 1), since split algorithms are invoked only

when a node has CAP + 1 entries. The balancing factor, Xmin or Ymin, is defined as a

60

variable and set to M (the initial balancing factor value). Experiments have shown

that M set to 30% of the CAP yields the best performance for the PML-tree. The

algorithm Split invokes the algorithm SelectSpline.

Algorithm Split (N, REM)
[Input] N- overflowing node with CAP+ 1 entries.

REM- store removed leaf entries.
[Output] SP- split node pointer.
[Comment] For each axis, sort lower and upper coordinates of the entries and call

SelectSpline () to obtain a split position. Then select the split axis and
split position and invoke SubSplit () to re-distribute CAP + 1 entries.

int Xmin, Ymin; /* balancing factors; initially set to M (30% of CAP) */
int X_ov, Y_ov; /* number of entries overlapping selected split line */
int Split_pos[2(CAP + 1)]; /* keeps lower and upper coordinates of the entries */
int j; /* j= 1, 2, ... , 2(CAP + 1) */
1. for the horizontal axis,

for each entry E in N,
Split_pos[j++]= E->R->lower_x; Split_pos[j++]= E->R->upper_x;

sort Split_pos; set Xmin= M;
invoke Xpos= SelectSpline (N, Xmin, Split_pos, X_ov);

for the vertical axis,
for each entry E in N,

Split_pos[j++]= E->R->lower_y; Split_pos[j++]= E->R->upper_y;
sort Split_pos; set Ymin= M;
invoke Ypos= SelectSpline (N, Ymin, Split_pos, Y _ov);

2. select an axis giving maximum entry distribution, MAX(Xmin, Ymin);
resolve ties by choosing axis with minimum overlap, MIN(X_ov, Y _ov);
resolve ties by selecting axis having the smaller area size for two groups after
split;

3. if the horizontal axis is selected as the split axis then
invoke SP= SubSplit(N, Xpos, REM);

else invoke SP= SubSplit(N, Ypos, REM);
4. return SP;

For each coordinate in Split_pos[j], j= 1, 2, ... , 2(CAP + 1), the algorithm

SelectSpline computes the number of entries in overflowing node N whose upper and

lower coordinates on given axis are all less than or equal to Split_pos[j] and that

number is stored in LO_count[j]. Also, the number of the entries in N whose upper

and lower coordinates on an axis are all greater than or equal to Split_pos[j] is

61

computed and that number is stored in UP _count[j]. The number of entries in N

overlapping Split_pos[j] is computed and stored in OV _count[j]. The summation of

three values of LO_count[j], UP _count[j] and OV _count[j] is CAP + 1. Therefore, the

value of OV _countLi] can be obtained by (CAP + 1) - (LO_count[j] + UP _count[i]).

For example, for Split_pos[9] in Table 4(a), OV _count[9] is calculated as follows: 10

- (3 + 4)= 3, where 10= (CAP + 1); 3 and 4 are values of LO_count[9] and

UP _count[9], respectively. For each LO_count[j] and UP _count[j] (j= 1, 2, ... , 2(CAP

+ 1)), the smaller number is stored in Temp[j].

Algorithm SelectSpline (N, m, Split_pos, ov)
[Input] N- overflowing node.

m- balancing factor; initially set to M (initial balancing factor).
Split_pos[]- holds sorted coordinates of the entries in N.
ov- to return number of entries overlapping the selected split position.

[Output] a split position on an axis.
[Comment] Select a split position on given axis using three parameters for the

PML-tree split algorithms.
int UP _count[2(CAP + 1)], LO_count[2(CAP + 1)], OV _count[2(CAP + 1)],

Temp[2(CAP + 1)], j;
1. for each coordinate in Split_pos[j],

compute the number of entries in N whose coordinates on the given axis are
less than or equal to Split_pos[j] and store that number in LO_count[j];
compute the number of entries in N whose coordinates on the given axis are
greater than or equal to Split_pos[j] and store that number in UP _count[j];
compute the number of entries in N whose lower coordinates are less than
or equal to Split_pos[j] and upper coordinates are greater than or equal to
Split_pos[j] and store that number in OV _count[j];

2. Temp[j] = MIN(LO_count[j], UP _countfj]), j= 1, 2, ... , 2(CAP + 1);
3. if there is no Temp[j] ~ m then /* set m with maximum distribution */

m= MAX(Temp[j], j= 1, 2, ... , 2(CAP + 1));
if m > Othen

for all j for which Temp[j] ~ m, select j with minimum overlap entry count,
j= {j I MIN(OV _count[j], j= 1, 2, ... , 2(CAP + 1)) } ; ov= OV _count[j];
resolve ties by choosing Split_pos[j] with the minimum area for the two
groups after split;
return Split_pos[j];

else return NULL;

62

Balancing factor m is used is to provide balanced entry distribution between nodes N

and SP. In the case that there is no Temp[j] whose value is greater than or equal to

m, mis set to MAX(Temp[j], j= 1, 2, ... , 2(CAP + 1)). For all j, for which Temp[j]

values are greater than or equal to m, the algorithm SelectSpline selects one j for

which OV _count[j] has a minimum value. If there is more than one minimum

OV _count[j], then resolve ties by choosing j with the minimum summation of areas of

two intermediate rectangles associated with nodes N and SP after split by split

position, Split_pos[j].

After invoking algorithm SelectSpline for each axis, algorithm Split obtains one split

position and the number of entries overlapping selected split position for each axis

unless mis 0. If Xmin and Ymin values become 0, then the node capacity should be

increased. The node capacity for spatial index structures with the disjoint space

decomposition method should be greater than the maximum entry overlap; otherwise,

it is impossible to split an overflowing node.

Algorithm SubSplit (N, Spos, REM)
[Input] N- overflowing node with CAP + 1 entries.

Spos- split position on selected axis.
REM- stores removed leaf entries.

[Output] SP- split node pointer.
[Comment] Create split node SP and re-distribute entries into two nodes. If an

entry is on the split line and it is an intermediate entry then its child
node is recursively split by calling SubSplit (). A leaf entry on the split
line is removed and stored in REM.

1. create split node SP; save node pointer, P= N;
2. for each entry E in P,

if entry E overlaps with Spos and is a leaf level entry then
put E into REM->ETY[REM->ent_num++]= E;

else if E is on the split line and is an intermediate level entry then
set N= E->P and invoke E'= SubSplit(N, Spos, REM).
P->ETY[P->ent_num++]= E; SP->ETY[SP->ent_num++]= E';

else if coordinates of E->R on the split axis are less than or equal to Spos then
P->ETY[P->ent_num++]= E;

else SP->ETY[SP->ent_num++]= E;

63

For example, if the given node capacity is 3 and there are four rectangles (1, 2, 3,

4) with each rectangle completely enclosed by another (1 is enclosed by 2, 2 is

enclosed by 3, 3 is enclosed by 4), then no split line can be found under the given node

capacity. Algorithm Split selects a split axis with a bigger balancing factor value to

provide even entry distribution. If Xmin and Ymin are the same, then an axis with

minimum overlap value, MIN (X_ov, Y_ov), is selected. Minimum area for two

groups after the split is used to resolve ties. After selecting the axis and split

position, algorithm Split invokes algorithm SubSplit.

Algorithm SubSplit actually distributes CAP + 1 entries into two nodes (original

overflowing node N and newly created split node SP) using the selected split position,

Spos, on the split axis. A leaf level entry which has coordinates overlapping split

position Spos is removed and stored in REM for re-insertion. In Chapter IV, the

number of re-inserted entries for the four test data sets are illustrated. An

intermediate level entry which has coordinates overlapping split position Spos is sub­

divided by calling SubSplit recursively with the selected split axis and split position.

An entry whose coordinates are less than or equal to the split position Spos is stored

in the original node N. An entry whose coordinates are greater than or equal to the

split position Spos is stored in the split node SP. A split node pointer SP is returned.

An example of a node split is shown in Figure 25 (page 65). The node capacity in

this example is 9 and M is set to 3. The starting and ending coordinates of the

rectangles for each axis are listed with their object rectangle IDs in Table 3. In the

algorithm Split, starting and ending coordinates of the rectangles are sorted into

Split_pos[] for each axis as shown in the second columns of Tables 4(a) and 4(b),

respectively. For each Split_pos[j], the algorithm SelectSpline computes number of

entries for LO_count[j] and UP _count[j]. Then, the minimum value of LO_count[j]

and UP _count[j] is stored in Temp[j]. The algorithm SelectSpline selects a split

position using three criteria: balancing factor m, OV _count and area size. First, the

64

algorithm SelectSpline selects all possible split positions which have a corresponding

Temp[j] greater than or equal to m.

,

8 .. __ _,
.. ____ _,

30- ;;; ::::::::: ,._ I 6i
·:.-t::::.:.:: :.::·::.:·::::.:.::: :·.:·:;:::· .. :,i· ·= ... :.:i: .. ·:r.:l-·4·+=· .. ·::.:i .. ~:i=;-r-,

:: .. : .. !--........ :.-, t 4 t t10 .isl
' I : f·+L. I' : .. .;............... : :

io-.t~t!tDl .. t.1.. ii t
I T

10 30

Figure 25 split of an overflowing node.

object_id lower_x lower_y upper_x
1 2 28 24
2 6 10 14
3 12 12 30
4 18 9 21
5 27 11 37
6 31 22 38
7 9 3 17
8 22 32 35
9 28 2 34
10 16 20 33

Table 3 coordinates of the ten data objects used in Figure 25.

upper_y
38
31
16
29
25
34
14
39
14
24

Therefore, four possible split positions for the horizontal axis and three possible split

positions for the vertical axis are selected. Those selections are marked with shaded

area as shown in the 5th columns of Tables 4(a) and 4(b). In Table 4(a), the values of

OV _count[] for all the selected possible split positions are the same. Therefore, the

area for two groups after the split for each Split_pos[] selected is considered. The

65

values in the 7th columns of Table 4(a) and 4(b) are the sum of the areas of the two

minimum bounding intermediate rectangles on both sides of the split position. For ·

example, area_size value corresponding to Split_pos[9] in Table 4(a) is the sum of

the minimized areas of the two intermediate rectangles that enclose the group of

object rectangles 2, 4, 7 and another group of object rectangles 5, 6, 8, 9, respectively.

The sum of the minimized areas equals 1012. The algorithm SelectSpline chooses

Split_pos[9] as the final split position for the horizontal axis.

A similar process is carried out for the vertical axis. The final split position

Split_pos[9] is selected for the vertical axis by the algorithm SelectSpline. Then, the

algorithm Split chooses one split position from Split_pos[9]= 21 (horizontal axis) and

Split_pos[9]= 16 (vertical axis) as the final split position for the split process by using

the three parameters specified. In this example, the split position Split_pos[9]= 16

(vertical axis) is selected as the final split position, since the summation of minimum

areas of the two bounding intermediate rectangles (sub-regions) on two sides of the

split position on the vertical axis is smaller than that on the horizontal axis.

Consequently, the ten entries are distributed into two nodes, N= {3, 7, 9} and SP= { 1,

6, 8, 10}. If rectangles 2, 4 and 5, intersect the split line, represent leaf level entries,

then they are removed from this space and re-inserted into one of the available data

spaces or a new data space in the PML-tree. If rectangles 2, 4 and 5 represent

intermediate entries, then each of them are sub-divided by calling algorithm SubSplit

recursively. Figure 26 shows the resulting original data space after the split.

66

j Split posU] LO countLi] UP countU] Temp[j] OV countU] area size
1 2 0 10 0 0
2 6 0 9 0 1
3 9 0 8 0 2
4 12 0 7 0 3
5 14 1 6 1 3
6 16 1 6 1 3
7 17 2 5 2 3
8 18 2 5 2 3

14 30 5 1 1 4
15 31 5 1 1 4
16 33 6 0 0 4
17 34 7 0 0 3
18 35 8 0 0 2
19 37 9 0 0 1
20 38 10 0 0 0

(a)

j Split_pos[j] LO_countli] UP _count[j] Templi] OV _count[i] area_size
1 2 0 10 0 0
2 3 0 9 0 1
3 9 0 8 0 2
4 10 0 7 0 3
5 11 0 6 0 4
6 12 0 5 0 5
7 14 2 4 2 4
8 14 2 4 2 4
9 16 3 4

I :···•;mrn :.:: :

::)/-
10 20 3 4
11
12
13
14
15
16
17
18
19
20

22 3 3 4
24 4 2 2 4
25 5 2 2 3
28 5 2 2 3
29 6 1 1 3
31 7 1 1 2
32 7 1 1 2
34 8 0 0 2
38 9 0 0 1
39 10 0 0 0

(b)

Table 4 list of parameters used for the PML-tree split algorithms for each of (a)
horizontal axis and(b) vertical axis.

67

!

8
1

6

11 I 10
I
I

--------------------------------,
I 3 ,.......I_
I I

7 12
9

~-----------------------................

Figure 26 organizations of bounding rectangles (the solid lines construct object
rectangles; the dash lines construct intermediate rectangles) using the
PML-tree with node capacity 9.

Search of the PML-tree

Search operations consist of two algorithms, Search and SearchTree. The

algorithm Search creates D processes, where D is the number of trees in a layer or

number of disks used in the PML-tree. Each process i invokes algorithm SearchTree

using the root node of the ith tree in the current layer, in parallel. The algorithm

SearchTree traverses the tree recursively and finds all data objects overlapping the

search range. Since all the nodes in a tree of the PML-tree are in the same disk, there

is no need of inter-process communications. On the other hand, the MXR-tree search

algorithm needs inter-process communications among the D processes whenever each

process finds an intermediate entry overlapping the search range. Implementational

details of search algorithms for the PML-tree and MXR-tree are discussed in Chapter

IV.

68

Algorithm Search (W)
[Input] W- structure RECT; search range.
[Output] all data objects overlapping W.
[Comment] For each layer, create D processes and invoke SearchTree ().
1. set LAY= LAY _LIST->next;
2. create D child processes;
3. if LAY -:tNULL then

each child process i (i= 1, 2, ... , D) invokes
Search Tree (LAY-> TREES[i]->P, W) in parallel;
LAY= LA Y->next; goto step 3;

exit;

Algorithm SearchTree (N, W)
[Input] N- node. W- structure RECT; search range.
[Output] data objects overlapping W.
[Comment] Traverse tree recursively and save leaf entries overlapping W.
1. save node pointer, P= N;
2. if Pis not a leaf node then, for each entry E in P,

if E->R overlaps W then
set N= E->P and invoke SearchTree (N, W) recursively;

3. if Pis a leaf node then for each entry E in P,
if E->R overlaps W then /* qualifying entries*/

save entry pointer;

Deletion of the PML-tree

Deletion operations consist of three algorithms, Delete, DeleteTree and Adjust.

The algorithm Delete creates D processes, where D is the number of trees in a layer

or number of disks used in the PML-tree. Each process i, where i= 1, 2, ... , D, invokes

algorithm DeleteTree using the root node of the ith tree in the current layer, in parallel.

The algorithm DeleteTree traverses the tree recursively and removes all the data

objects overlapping the search range. If there is a removed leaf level entry, then all

the entries in the deletion search path need to adjust bounding rectangles associated

with them. If any node becomes empty, then the parent entry for that node is

69

removed. An empty root node results in removal of the tree from the current layer of

the PML-tree. As in search operations, the PML-tree does not need inter-process

communications.

Algorithm Delete (W)
[Input] W- structure RECT; delete range.
[Output] re-structured PML-tree.
[Comment] For each layer, create D processes and invoke DeleteTree ().
int Flag; /* set to TRUE if there is at least one leaf entry removed */
1. set LAY= LAY_LIST->next; set Flag= False;
2. create D child processes;
3. if LAY -:t NULL then

in each child process i (i= 1, 2, ... , D),
if LAY->TREES[i] -:t NULL then /* if not empty tree*/

invoke DeleteTree (LAY->TREES[i]->P, W, Flag, LAY->TREES[i]);
if LAY->TREES[i]->P->ent_num is O then /*root node empty*/

set LAY->TREES[i]->P= NULL; /* remove tree from LAY*/
set LAY= LAY->next; goto step 3;

exit;

Algorithm DeleteTree (N, W, Flag, Tree)
[Input] N- node. W- structure RECT; delete range. Flag- integer.

Tree- structure TREE_INFO.
[Output] re-structured PML-tree:
[Comment] Traverse tree recursively. Remove leaf entries overlapping W.
1. save node pointer, P= N;
2. if P is not a leaf node then for each entry E in P,

if E->R overlaps W then
set N= E->P and invoke DeleteTree (N, W, Flag, Tree) recursively;
if Flag then /* there exists at least one removed leaf entry */

if N->ent_num > 0 then /* not empty node*/
invoke Adjust (E) to re-adjust boundary of E;

else remove E from P; P->ent_num--;
3. if Pis a leaf node then for each entry E in P,

if E->R overlaps W then
remove entry E from P; P->ent_num--; Tree->total_ent--;
and set Flag= True;

70

In the PML-tree, all object rectangles associated with the entries in a node are

completely enclosed by an upper level intermediate rectangle associated with an entry

pointing to that node. Therefore, deletion algorithm of the PML-tree does not need to

take multiple deletion paths to delete an overlapping object as in the R+-tree.

71

CHAPTER IV

PERFORMANCE ANALYSES OF PARALLEL

SPATIAL INDEX STRUCTURES

Parallel spatial index structures can improve query performance significantly by

introducing parallelism in I/0 operations with multiple disks. In serial spatial index

structures (e.g., R-tree, R+-tree, R*-tree, ... , etc.), the performance of query

operations highly depends on the total number of disk accesses. However, in the

parallel spatial index structures, the performance of query operations depends on the

maximum number of disk accesses among the disks. Therefore, the distributions of

data objects among the disks is important in parallel spatial index structures. An

efficient distribution heuristic for the parallel spatial index structure should distribute

data objects over the disks evenly in terms of the number of objects and spatial

distribution to obtain maximum performance. The MXR-tree uses the proximity index

(PI) distribution heuristic and the PML-tree proposes three distribution heuristics:

minimum number of entries (ME); absolute crowd index (AC); relative crowd index

(RC).

In this chapter, the performances· of parallel spatial index structures are compared

using various test data sets: two system generated data sets and two real application

data sets. The structures compared are the MXR-tree with the PI distribution

heuristic and the PML-tree with three distribution heuristics. The MXR-tree was

chosen, since this is the only parallel spatial index structure known to the author. The

MXR-tree uses a native space approach and a non-disjoint space decomposition

method. The MXR-tree has good space utilization, as in original R-tree, and this

factor makes range queries more efficient as the query size increases. The

performance of serial R-tree is illustrated in Chapter V. Numbers of disk accesses

72

and the actual response times to process a range query are given for the four parallel

spatial index structures: one MXR-tree and three PML-trees with three different

object distribution heuristics. The relative performance gains of the PML-trees over

the MXR-tree are also given. Construction speed, space utilization and actual

memory size of the four index structures are compared.

Implementations of the Spatial Index Structures

In Chapter III, three different object distribution heuristics were proposed for the

PML-tree. For each object distribution heuristic, the PML-tree is implemented based

on the algorithms proposed in Chapter III. Let PME-tree, PAC-tree and PRC-tree

represent the PML-tree with the three object distribution heuristics, ME, AC and RC,

respectively. In insertion operation, the PME-tree does not need to create D

processes to calculate the index values, since the ME distribution heuristic simply

considers the number of data objects in each tree to select a tree. However, the PAC­

tree and PRC-tree create D (number of disks used) processes, respectively, to

calculate heuristic index values, and each of the D processes descends the associated

tree from root node to leaf node simultaneously to calculate heuristic index values. In

this experiment, algorithm Calc_AC for PAC-tree and algorithm Calc_RC for PRC-tree

are implemented in parallel. In search or deletion operations of the PME-tree, PAC­

tree and PRC-tree, D processes are created. Each process searches or deletes data

objects overlapping the given search or deletion range from the tree(s) on an

associated disk simultaneously. No communication is required among the processes,

since all nodes in a tree are stored on the same disk. Therefore, implementation of

search and deletion algorithms for the PML-trees are simple.

The MXR-tree with the proximity index heuristic is implemented based on the

functions proposed in [51]. The reason that the proximity index was selected as a

73

heuristic for the MXR-tree is that it has the best performance among the four proposed

heuristics in [51]; in Chapter III, the proximity index heuristic is briefly described. The

MXR-tree has the same basic structure as that of the R-tree presented by Guttman

[40]. The quadratic split algorithm is used for the MXR-tree implementation, since

the quadratic splitting algorithm has better performance than the linear splitting

algorithm does. The minimum node fill factor of the MXR-tree is set to 40% of the

node capacity to result in the best splitting performance.

Insertion operations of the MXR-tree are performed in serial manner. In search

or deletion operation, the MXR-tree also creates D processes to access D disks in

parallel. However, as mentioned in Chapter III, the MXR-tree needs inter-process

communications whenever any of the D processes finds an intermediate entry

overlapping the search or deletion range. For example, assume that process i is

associated with disk i, where i= 1, 2, ... , D. If process i finds that one intermediate

entry in currently uploaded node overlaps the search or deletion range and the child

node of this entry is on disk j U= 1, 2, ... , D), then process i has to put a child node

pointer in the queue associated with process j for later disk access. The search and

deletion implementations of the MXR-tree use semaphore operations to provide

mutual exclusion among the D processes, since at any moment there should be only

one process inserting a node pointer in a queue. The time for inter-process

communications increases as the number of disks used for the MXR-tree increases.

Also, all the queues have to be shared memory. Of course, the MXR-tree can use

breadth first search (BFS) method to avoid inter-process communications. In BFS of

the MXR-tree, at each level of the tree, all nodes whose parent entries overlap search

or deletion range are uploaded by the D processes in parallel, and all uploaded nodes

are processed in serial. However, the BFS method takes even more time than the

inter-process communication method. All entries and nodes in the MXR-tree need

extra memory space for disk IDs and this space reduces the capacity of the node.

74

In this experiment, buffering was not used. That is, nodes pointed to in insertion,

search and deletion operations have to be uploaded from disks to main memory using

disk ID, tree ID and node offset. The offsets for empty nodes are stored in a list and

assigned to the newly created node(s). After completion of operations, all the nodes

updated or newly created are downloaded from main memory to disks.

All programs are written in C language and tested with two-dimensional test

data sets. Characteristics of the test data sets used in the experiments are discussed

in the following.

Test Data Sets and Types of Queries

Two types of data, system generated data (uniformly distributed data and

randomly distributed data) and real application data (Tiger/Line™ files of the TIGER

(geographic information system) database and VLSI layout data generated by the

Magic system), are used with the proposed parallel spatial index structures and the

MXR-tree. Let V, T, Rand U represent the VLSI data set, the Tiger/Line™ data set,

the randomly distributed data set and the uniformly distributed data set, respectively.

The test data sets can be characterized by four data description factors, the number of

objects, object density, range of object sizes and data space. The object density or the

average data density is defined as:

d t d 't (d) summation of space area occupied by data objects a a ens1 y = -------=--------=----='-------=---
total data space area

If an area of the data space is occupied by two overlapping data objects, then that area

is counted twice in the summation of space area occupied by data objects. The range

of object sizes is the range of the ratio of object sizes to the data space. Table 5

illustrates data description factors for the four data sets.

75

data type object number density object size range data space
V 4085 0.34 0.00017 -0.45249% 1320 X 1768
T 41058 0.25 0.00000 - 0.34798% 533552 X 349200
R 30000 4.35 0.00250- 0.14000% 3000x3000
u 30000 5.38 0.00111 - 0.04000% 3000x3000

Table 5 data description factors of the four data sets.

System generated data sets are easily obtained and data description factors can

be easily changed. These data sets are useful to test performances of the spatial

index structures under the various conditions. The data set R randomly distributes

two-dimensional data objects in virtual data space by using the coordinates generated

with a random number generator. The data set U contains six square sets of different

sizes as spatial objects. For uniform distribution, center points of squares are

predetermined according to the number of squares and the coordinates of the squares

are calculated.

Experiments with real application data sets have a credibility that simulation

with system generated data frequently lacks [64]. The data set V is generated by

VLSI layout systems (Magic system). VLSI design layouts consist of a large number

of geometries that describe the layout of transistors and signal wires that inter­

connect them on a number of mask layers [2]. Since most VLSI design layouts use

manhattan or rectilinear geometries, all design objects (e.g., transistors and wires)

are represented as rectangles parallel to the horizontal and vertical axes. The

primitive geometry operations in VLSI design layouts can be defined as follows [2].

1. Exact match: Given the coordinates (lower_x, lower_y, upper_x, upper_y), find

rectangles that have exactly the same coordinates.

2. Point search: Given the coordinates of a point, (x, y), find all rectangles that

contain a that point.

3. Overlap detection: Given a rectangular search area, find all rectangles that

overlap that area.

76

4. Abutting search: Given a rectangular search area, find all rectangles that abut

the boundary of the area.

5. Containment search: Given a rectangular search area, find all rectangles that

are completely contained within that area.

6. Upper/lower rectangle search: Given a vertical axis value, find all rectangles

that are completely contained in the upper/lower half of that line.

7. Left/right rectangle search: Given a horizontal axis value, find all rectangles

that are completely contained in the left/right half of that line.

8. Nearest neighbor search: Given a rectangular search area, find the nearest

rectangle(s) to that area.

All the operations described above are basically the range searches. For example, if

the data space is 100 x 100 and a horizontal axis value for operation 7 is set to 50,

then the operation 7 is exactly the same as the range search with coordinates (0, 0 ,

50, 100) or (50, 0, 100, 100). Operation 8 is a sequence of one or more range

searches. First, a range search is performed for the area bigger than given search

area (e.g., average object size can be used as an initial area size for range search). If

at least one rectangle is found, then determine the nearest neighbor from the

rectangle(s) found. If no rectangle is found, then double the search area and repeat

the range search until at least one rectangle is found.

The data set T is from the Tiger/Line TM files of the TIGER database system. The

TIGER database system provides information that describes the points, lines and

areas on Census Bureau maps. Information related to Tiger/Line TM files are given in

Appendix. Data set Tis prepared from the file (file ID: TGR40109.F51) for Oklahoma

City County in Oklahoma. Even though average density of this data set is very low

(about 0.25), some areas have very high densities (e.g., over 60). Typical query

operations used in this application are described in [43] as follows.

77

1. Given an end point of a line segment, find all the line segments that are

incident to it (all line segments having the same end points).

2. Given an end point of a line segment, find all the line segments that are

incident at the other end point of the line segment.

3. Given a point in the two-dimensional data space, find all the nearest line

segments.

4. Given a point in the two-dimensional data space, find the minimal enclosing

polygon by outputting its constituent line segments.

5. Given a two-dimensional rectangular search area, find all line segments

overlapping that area.

As in VLSI application, all the query operations are simple variations of a range query.

Query 1 and 2 are simple point queries. A point query is a special case of a range

query. Queries 3, 4 and 5 are variations of range queries. For example, query 4 can

be executed by performing query 3 and query 2 recursively. First, query 3 finds the

nearest line segment, say segment A, to the given point. Second, starting from the

line segment A, query 2 finds the a line segment, say segment B, that is incident at

the other end of the line segment A and has exactly the same polygon identification

number (see Appendix) as the line segment A. The second step is repeated until the

line segment found by query 2 is the first line segment found by query 3; then, all the

line segments found construct the minimal enclosing polygon.

All the query operations in VLSI and Tiger/Line TM applications are simple

variations of a range query. Therefore, range queries can be used to measure

performances of spatial index structures.

78

Experiment Results

All the programs are run on a Sequent Symmetry SBJ with twenty-four 80386

processors running at 20 Mhz each. In this experiment, page size is 1 Kbytes and the

number of disks used for parallel 1/0 is four.

In the PME-tree, PAC-tree and PRC-tree, an entry size is 35 bytes (e.g., 7 bytes

for each of four coordinates and one child node pointer). Node capacity is 58 (2 pages)

for test data sets T, R and U and 29 (1 page) for the test data set V, since the number

of data objects in data set V is 7 to 10 times smaller than data sets R, U and T. In the

MXR-tree, an entry size is 37 bytes, since each entry needs 2 bytes for the disk ID.

Node capacity of the MXR-tree for the data sets T, R and U is 54 (2 pages). For data

set V, node capacity of the MXR-tree is 27 (1 page).

A query rectangle represents the area in a data space that has to be searched for

processing a range query (a point query is included in the category of range query,

with zero area). Range of the query rectangle's area is 0% to 12% of the data space.

For each search range, e.g., 4% of a data space, 500 search regions are randomly

selected and searched. The corresponding average number of disk accesses and the

response time for each search range are presented.

Each of four Figures 27, 28, 29 and 30 illustrates the average number of total disk

accesses for the four index structures vs. the size of the query for the four data sets V,

T, R and U. In Figures 27 through 38, n and d denote the number of objects and the

average density of the data set, respectively. The PAC-tree and PRC-tree require

fewer disk accesses than the MXR-tree for most of search ranges (e.g., a query range

> 2%). Even for the small search ranges (a query range ~ 2%), the PAC-tree and

PRC-tree have fewer overlapping leaf nodes than the MXR-tree. However,

intermediate nodes along the search paths of the multiple trees increase the total

number of disk accesses of the PML-trees. As the size of search range increases, the

79

PML-trees reduce the ratio of intermediate nodes to the total number of nodes

overlapping the search range . The PME-tree requires more disk accesses than the

MXR-tree for data sets V, T and R. The PAC-tree requires the smallest number of

disk accesses among the three PML-trees, except for data set V. The structural

drawback of the MXR-tree is redundant search path problem, as mentioned in Chapter

II, and it increases the number of nodes involved in redundant search paths as the

search range increases.

(n= 4,085 d= 0.34)
160

"' 0) • MXR "' 120 "' 0)
u • PME
1:;l

..s.: II PAC
"' 'o 80
'-

El PRC
0 ...
0)
.0
E 40 ::,
C:

0

0 2 4 6 8 10 12

size of query(%)

Figure 27 average numbers of disk accesses of the MXR-tree , PME-tree, PAC­
tree and PRC-tree vs. the size of query using data set V.

0 2 4 6 8

(n= 41 ,058 d= 0.248)

10 12

size of query(%)

• MXR

• PME

Ill PAC

El PRC

Figure 28 average numbers of disk accesses of the MXR-tree, PME-tree, PAC­
tree and PRC-tree vs. the size of query using data set T.

80

(n= 30,000 d= 4.35)
400

VJ
a) • MXR VJ
VJ
a) • PME u
~

1111 PAC ~
VJ

:a 200 fJ PRC
'-
0
a)
.0
E
:::,
C:

0
0 2 4 6 8 10 12

size of query(%)

Figure 29 average numbers of disk accesses of the MXR-tree, PME-tree, PAC­
tree and PRC-tree vs . the size of query using data set R.

(n= 30,000 d= 5.38)
400

VJ
a)
VJ
VJ • MXR
a)
u
u • PME
(',)

~
VJ

Ill PAC
:a 200
'- El PRC
0
a)
.0
E
:::,
C:

0
0 2 4 6 8 10 12

size of query(%)

Figure 30 average numbers of disk accesses of the MXR-tree, PME-tree, PAC­
tree and PRC-tree vs. the size of query using data set U.

Each of four Figures 31, 32, 33 and 34 illustrates the average query response

time for the four index structures vs. the size of the query for the four data sets V, T, R

and U. In serial spatial index structures (e .g., R-tree, R+-tree and R *-tree), the query

performance of the structures is approximately proportional to the total number of disk

accesses to process a given query. Time to process nodes uploaded into main

memory does not make a significant differences in the query performance of the spatial

81

index structures, since one node access time from secondary storage takes much

longer than one node processing time in main memory. In the parallel spatial index

structures, query performance of the structures is not exactly proportional to the total

number of disk accesses for the given search range. For example, let's assume that

four disks are used for each of the two parallel spatial index structures A and B In

query processing for a certain search range, the number of disk accesses of structure A

is 10, 10, 10 and 30 for each disk, respectively, and the number of disk accesses of

structure B is 20, 20, 20 and 20 for each disk, respectively. The maximum number of

disk accesses of the structures A and B are 30 and 20, respectively. Therefore,

structure B is faster than structure A in response time although the structure B has

more disk accesses than the structure A. Query processing time in parallel spatial

index structures is proportional to the maximum number of disk accesses among the

disks used. The PRC-tree takes more disk accesses than the PAC-tree (see Figure

28) for search ranges greater than 2%. However, the response times of the PRC-tree

are faster than the PAC-tree, in Figure 32, throughout the search range. In range

queries with very small search sizes (e.g., point query), the effect of parallel disk

accessing for the MXR-tree is comparatively small. Since the MXR-tree has a single

tree structure, the nodes in the search path most likely have to be accessed

sequentially. For example, in Figure 30, the MXR-tree requires fewer disk accesses

than the PML-trees for point query, but in Figure 34, the MXR-tree has a slower

response time than the PML-trees. Another factor that affects the query performance

of the parallel spatial index structures is the search strategy. As mentioned in

Implementations of the Spatial Index Structures, inter-process communications of the

MXR-tree further slow down query processing. On the other hand, the PML-trees do

not need inter-process communications in search or deletion operations.

82

(n= 4,085 d= 0.34)
2

,-.. • MXR
u
II) • PME
~

.g II PAC

EJ PRC
II)

"' C
0
0..
"' II)

0
0 2 4 6 8 10 12

size of query(%)

Figure 31 average response time of the MXR-tree, PME-tree, PAC-tree and
PRC-tree vs. the size of query using data set V.

12

10 ,....
u
II)

8 ~
II)

E
6

II)

"' §
4 0..

"' II)
2

0
0 2 4 6 8

(n= 41,058 d= 0.248)

10 12
size of query(%)

• MXR

• PME

II PAC

EJ PRC

Figure 32 average response time of the MXR-tree, PME-tree, PAC-tree and
PRC-tree vs. the size of query using data set T.

83

(n= 30,000 d= 4.35)
8

,....._
6 u

ll)

~

• MXR

• PME
ll)

E - 4
Ill PAC
[J PRC

ll)
u,
c::
0
0.
u,

2 ll) ...

0
0 2 4 6 8 10 12

size of query(%)

Figure 33 average response time of the MXR-tree, PME-tree, PAC-tree and
PRC-tree vs. the size of query using data set R.

(n= 30,000 d= 5.38)
6

5 ,....._ • MXR
u
ll)

4 ~ • PME
ll)

.§ 3
ll)
u,

m PAC

[] PRC

c::
0
0. 2
u,
ll) ...

0
0 2 4 6 8 10 12

size of query(%)

Figure 34 average response time of the MXR-tree, PME-tree, PAC-tree and
PRC-tree vs. the size of query using data set U.

Let RT_MXR, RT_PME, RT_PAC and RT_PRC denote response times of the

MXR-tree, PME-tree, PAC-tree and PRC-tree, respectively. Also, let PME/MXR,

PAC/MXR and PRC/MXR denote the performance gains of the PME-tree, PAC-tree

and PRC-tree over the MXR-tree, respectively. Figures 35, 36, 37 and 38 illustrate

performance gains of the three PML-trees over the MXR-tree with the four data sets.

The performance gain PME/MXR can be defined as:

84

. RT MXR - RT PME
performance gam PME/MXR (%)= - - x 100

RT_PME

The PAC/MXR and PRC/MXR are defined correspondingly.

(n= 4,085 d= 0.34)
50

i
40

'-'
C 30 ·c,3
00
<!)

20 u
C
,,:

6 10 2
<!)
0..

0

-10

0 2 4 6 8 10 12
size of query(%)

• PME/MXR

• PAC/MXR

Ill PRC/MXR

Figure 35 performance gains of the PME-tree, PAC-tree and PRC-tree over the
MXR-tree vs. the size of query using data set V.

30

~ 20
C
·@
00
<!)

10 u
C
,,:

6
2 0 <!)
0..

-10

0 2 4 6

(n= 41,058 d= 0.248)

8 10 12
size of query(%)

• PME/MXR

• PAC/MXR

Ill PRC/MXR

Figure 36 performance gains of the PME-tree, PAC-tree and PRC-tree over the
MXR-tree vs. the size of query using data set T.

85

0 2 4 6

(n= 30,000 d= 4.35)

8 10 12
size of query(%)

• PME/MXR

• PAC/MXR

1111 PRC/MXR

Figure 37 performance gains of the PME-tree, PAC-tree and PRC-tree over the
MXR-tree vs . the size of query using data set R.

~ .__,

·~ 20
eo
Q)
u
c::
"' E
t3 10
g_

0
0 2 4 6

(n= 30,000 d= 5.38)

8 10 12
size of query(%)

• PME/MXR

• PAC/MXR

Ill PRC/MXR

Figure 38 performance gains of the PME-tree, PAC-tree and PRC-tree over the
MXR-tree vs. the size of query using data set U.

All three PML-trees outperform the MXR-tree throughout the search ranges, except

point query with data sets V and R (see Figures 35 and 37) . With data set U, all

three PML-trees have better query performance than MXR-tree throughout all search

ranges (see Figure 38). The MXR-tree has the lowest query performance for data set

U, since the split algorithms of the MXR-tree are not efficient when uniformly

distributed data is used. The MXR-tree uses the same split algorithms as the R-tree.

86

In a node split, the split algorithm of the MXR-tree selects a pair of entries that would

waste the most area if both were put in the same node. Those two entries are the

seed entries for two nodes, the original node and the split node. Then, the split

algorithm selects one entry at a time giving the greatest preference for one of the

nodes from the remaining entries and inserts the selected entry into one of the nodes

[40]. With this split algorithm, the two nodes can severely or completely overlap after

the node split for uniformly distributed data objects. For example, in Figure 39,

assume that node capacity is 15. Insertion of entry 16 makes the node overflow. Let

A and B in Figures 39(a) and 39(b) denote intermediate rectangles associated with

the nodes X and Yin Figures 39(c) and 39(d), respectively. To split the overflowing

node, the split algorithm of the MXR-tree selects entries 1 and 16 as the seed entries

for nodes X and Y, respectively, as shown in Figures 39(a) and 39(c). In this

example, entries 4, 7, 10 and 13 give the same preferences to nodes X and Y and each

of these entries can be put in either X or Y. Figure 39(a) shows one of the possible

distributions. Intermediate rectangles A and B overlap heavily after the node split. In

some case, one of the intermediate rectangles can be completely enclosed by the

another intermediate rectangle after the node split. Increased overlapping areas

among the intermediate rectangles in the MXR-tree increase the number of disk

accesses and as a result query performance is reduced. On the other hand, the PML­

trees have disjoint intermediate rectangles after the node split as shown in Figures

39(b) and 39(d), since split algorithms of the PML-tree split an overflowing

intermediate rectangle using a selected split line on one of the axes. With data set T,

the PAC-tree and PRC-tree have better query performances than the MXR-tree

throughout all search ranges, and the PME-tree has better query performance than the

MXR-tree for the range queries with search sizes greater than 4% (see Figure 36).

87

.--,
i~ G B[EJ ~! : .---"I,

!!G ~ G @J!!
II 11
II 11
II ti
II ti

!!0 0 l2] 011 e

"1---J:
: A :

10 0 D 01 ___________________________ J

(a)

!~ G B[EJ ~1
IE~ ~ G @JI .. ___ .,,

f0 0 l21 0] . .
: A :

!0 0 D 0i
.. .11

(b)

!1!_2~1s~l_3~1_6,~9-1_4~11_ol--._.._ ___._ ___ ~, X

_!16~!_1s~!i_2_!14~l_11~!_s_j13~!_1~1--~~...__._~__.I Y
(c)

!_1_!_2_!3_!_4_!s_!_6_!1~!_s~! _____________ ! x

I 9 l 10 l 11 I 12 l 13 I 14 I 1s I 16 I y
(d)

Figure 39 an example of the MXR-tree node split for uniformly distributed data:
(a) before split and (b) after split.

Figure 40 illustrates sizes of the memory space required by the four parallel

spatial index structures. The PAC-tree requires the smallest memory spaces and the

MXR-tree uses the biggest memory space. The following formula is used to

determine space (node) utilization of the four implemented parallel spatial index

structures for Figure 41:

space utilization (%)= total number of distinct entries x 100
total number of nodes x CAP

where total number of distinct entries is the sum of the number of intermediate

node entries and leaf node entries.

The PAC-tree has the highest space utilization, except for data set V. The MXR-tree

has the lowest space utilization.

88

3

Q) MXR >,
.0 2 • PME 6
<l.l Iii PAC
N

·;;:; El PRC
:>,
0
E
<l.l
E

0
V T R u

data type

Figure 40 actual memory sizes of the MXR-tree, PME-tree, PAC-tree and PRC­
tree for each of the four data sets V, T, Rand U.

80

i 60 • MXR
'-'

C: • PME
.9

Iii PAC "' -~ 40 El PRC
;:::,
<l.l
u
ro 20 c..
er.

0
V T R u

data type

Figure 41 space utilization of the MXR-tree, PME-tree, PAC-tree and PRC­
tree for each of the four data sets V, T, Rand U.

Figure 42 illustrates construction time for each of the four index structures. The PME-

tree has the fastest construction time for all data sets due to its simple object

distribution heuristic. The PAC-tree and PRC-tree have longer construction times

than the MXR-tree and PME-tree, since their object distribution heuristics take extra

time. However, construction times for these two structures can be improved further

by fully parallelizing the insertion processes. This is one of the future researches; in

89

this research, the author is focusing on improvement of query performance. Table 6

illustrates the number of re-inserted entries during the construction of the three PML-

trees for the four test data sets.

30000

,-..
:::: u I • MXR CJ

~
CJ 20000 • PME
.g Ill PAC
C El PRC .9
u
::,

10000 ...
.;;
C
0
u

0

V T R u
data type

Figure 42 construction times of the MXR-tree, PME-tree, PAC-tree and PRC­
tree for each of the four data sets V, T, Rand U.

data type PME PAC PRC
V 43(1.05%) 40(0.98%) 29(0.71 %)
T 127(0.31 %) 236(0.57%) 277(0.67%)
R 1813(6.04%) 1639(5.46%) 1782(5.94%)
u 1608(5.36%) 1435(4.78%) 1260(4.20%)

Table 6 the number of re-inserted entries for the four test data sets.

As mentioned in Chapter II, the MXR-tree has the same structure as the R-tree .

Therefore, the same complexity analyses for the R-tree given in [91] can be used for

the MXR-tree, too . The performance analysis for the R-tree given in [22] uses one-

dimensional intervals of equal length and transforms them to points in two-

dimensional space. This method provides limited performance analysis [91], since

using uniformly distributed one-dimensional objects to analyze the performance of the

spatial (multi-dimensional) index structures is inadequate. In the complexity

analyses given in [91], spatial index structures are assumed to be constructed in

batch manner. That is, all data objects are known prior to the construction.

90

The construction time and space requirements of the MXR-tree for n data objects

are both O(n), as mentioned in [91]. There is no leaf node redundancy in the MXR­

tree; that is, a data object appears only in one of the leaf nodes; also the PML-tree

does not have leaf node redundancy. For n data objects, the construction time and

space requirements of the PML-tree are both O(n).

91

CHAPTER V

THE SMR-TREE: A NEW EFFICIENT SERIAL

SPATIAL INDEX STRUCTURE

Introduction

In this chapter, an efficient spatial index structure called the Serial Multi-R tree

(SMR-tree) for spatial databases is proposed. The SMR-tree is designed to improve

performance of existing serial spatial index structures (e.g., the R-tree, R +-tree, R *­

tree, ... , etc.) [5]. The SMR-tree is a variation of the PML-tree for serial disk I/0.

The split algorithms and part of insertion algorithms of the SMR-tree are the same as

those proposed for the PML-tree in Chapter III. The SMR-tree improves query

performance by distributing spatial objects into several data spaces instead of one

data space in the R-tree, the R + -tree or the R *-tree. Each data space is associated

with a tree in the SMR-tree. The structure of the SMR-tree avoids the node

redundancy which appears in the R + -tree at the leaf level and uses disjoint

intermediate rectangles.

Three popular spatial index structures, the R-tree, R+ -tree and R *-tree, are

implemented, based on the algorithms given in the original literature, and are

compared with the SMR-tree. An experimental performance analysis for the four

implemented structures is given with various types of testing data sets: random data,

uniformly distributed data, VLSI layout data and TIGER/Line™ file data. The number

of disk accesses and actual response time for each of those four index structures to

process a query are compared. Construction time, space utilization and the actual

memory size of the four index structures are also given.

92

The Structure and Algorithms of the SMR-tree

The SMR-tree Structure

The purpose of proposing the SMR-tree is to improve shortcomings of the R-tree,

R + -tree and R *-tree, to provide better search and deletion performances. The SMR­

tree is a dynamic serial spatial index structure using native space indexing with a

disjoint space decomposition method. The SMR-tree is a variant of the PML-tree for

serial disk 1/0. In the PML-tree proposed in Chapter Ill, data objects are distributed

into multiple trees stored on different disks using object distribution heuristics. In

each tree of the PML-tree, all intermediate rectangles associated with intermediate

nodes are disjoint and there is no redundancy in the leaf nodes. This way, the PML­

tree speeds up query processing in parallel disk accessing with multiple disks.

However, in a serial disk accessing environment, balanced multiple trees of the PML­

tree increase the total number of disk accesses for query operations, since all

intermediate nodes in the multiple trees have to be accessed in serial. The SMR-tree

inserts all data objects into the first tree and removed data objects are inserted into

other trees. Therefore, the first tree contains most of data objects (e.g., for

TIGER/Line™ data set, about 90% of the data objects are stored in the first tree).

The SMR-tree remains the same node structures as the PML-tree (see Chapter Ill).

All data objects are stored at leaf nodes. Intermediate nodes consist of entries that

represent intermediate rectangles. For example, entries in the intermediate node in

Figure 43(c) are 11, 12, 13, 14, 17 and 18. Those entries represent the intermediate

rectangles 11, 12, 13, 14, 17 and 18 in Figure 43(a), respectively. Each intermediate

rectangle completely encloses all the rectangles in the child node at the lower level.

This is one of the properties that is different from the R+-tree; since an intermediate

rectangle in the R+-tree may not completely enclose all the rectangles in the child node

93

at the lower level. It can be clearly seen that this property makes the leaf nodes

without redundancy possible. Furthermore, the intermediate rectangles are disjoint in

the SMR-tree; thus, it makes fast search and deletion operations possible. The SMR-

tree keeps the advantage of the R-tree, no redundancy at leaf level, and retains the

good property of the R + -tree, disjoint intermediate rectangles. In addition, the SMR­

tree distributes data objects into several data spaces to eliminate duplication of data

objects in leaf nodes.

18!o!~~! ! 8 ! !
17 I I I

r~-------------------~----------------l I I I 121 I
I 1-:---:1 I
--------------..

I I
I I

2 11

I
-------------1 ;

I
I
I
I
I
I
I

I
I
I
I
I
I
I

4 I I

5 I

7
.----~
I
I
I

I
I
I

11 I I
I I I
I I I

9 13

l ._ ______________ J J
••••••••••••••••••••L •••• '-::::::::::::•J

(a)

2 7

(c)

11 I ,6 6 •
I
I
I
I
I

I I i I 10 ,--
~---

-----------------------~
15 11 3 II

t ·----------------------

(b)

3 6 10

(d)

Figure 43 (a),(b) organizations of bounding rectangles (the solid lines construct
object rectangles; the dash lines construct intermediate rectangles) and (c),
(d) the SMR-tree structure.

94

In the SMR-tree, each data space is associated with a tree. Figure 18 uses the

same set of two-dimensional data objects that were used in the examples for the R­

tree, the R+-tree, and the R*-tree in Chapter II. The split algorithms for the SMR-tree

extract the object rectangles 1, 3, 6, 10 and place them into another data space, say

the second data space, to avoid overlapping as shown in Figure 43(b). Figure 43(a)

shows the resulting object distribution in the original data space, i.e., the first data

space. Figures 43(c) and 43(d) show the corresponding trees of the first and the

second data spaces. At the leaf level of the SMR-tree, there are no duplicated object

rectangles while each of the object rectangles 1, 2, 3, 4, 5, 6, 7, 8, and 10 was located

at more than one leaf node in the R+-tree as shown in Figure 12(b) (page 24).

Algorithms of the SMR-tree

There are some parameters that affect performance of the spatial index structure

and decide insertion and split policies. Parameters affect each other independently; a

change in one parameter may cause changes in other parameters. Also, this

interrelation among the parameters acts differently on different data sets and different

index structures. Therefore, it is difficult to optimize all parameters. The parameters

in the following list are often considered in the design of spatial index structures:

1. area of intermediate rectangles,

2. overlapping areas between intermediate rectangles,

3. number of rectangles on the split lines,

4. perimeter of intermediate rectangles,

5. space utilization of nodes.

Parameters 1 through 4 should be minimized for good performance, and parameter 5

should be maximized. Not all combinations of the parameters can be applied to every

spatial index structure. For example, parameter 3 cannot be used for index structures

95

with a non-disjoint space decomposition approach, e.g., R-tree or R *-tree, since these

methods allow overlapping intermediate rectangles. In the split algorithm of some

index structures with a disjoint decomposition method, parameter 1 is always the

same no matter which split axis and split line are selected if the index structure does

not use a minimum bounding rectangle. Parameter 2 is inapplicable to index structures

using a disjoint space decomposition approach, e.g., the R+-tree or the SMR-tree,

since intermediate rectangles of these methods are disjoint. Different combinations

and precedence orders of parameters also give different performance. Therefore, in

order to optimize the performance of a spatial index structure, one must carefully

select parameters and properly set the precedence order for those parameters during

the design of the index structure with operational algorithms.

In the design of the SMR-tree and its associated algorithms, parameters 1, 3, and

5 are taken into account; parameter 5 is given the highest priority for split algorithms

and is maximized. For a very small search range, an index structure with higher space

utilization may not reduce the number of disk accesses. However, as the search range

grows, maximizing parameter 5 has more effect on reducing the total number of disk

accesses in a query than other parameters. Higher space utilization reduces the total

number of nodes in the index structure, and as a result the height of the tree is most

likely decreased. Even for the same height, a higher space utilization structure

requires fewer disk accesses than a structure with lower space utilization. The SMR­

tree's split algorithms evenly distributes entries into the nodes to increase space

utilization. The insertion algorithm of the SMR-tree applies parameter I first to select

an entry in every node along the insertion path and parameter 5 is used to resolve tie.

Using C-like structures, all symbols and data types used in algorithms are defined in

the following:

96

/* node capacity */ #define
#define

CAP
M I* initial balancing factor; set to 30% of CAP *I

struct RECT { /* the four coordinates of a 2-d rectangle */
int lower_x, lower_y, upper_x, upper_y;

};

struct ENTRY {
struct RECT *R; /* the four coordinates of a 2-d rectangle */
struct NODE *P; /* pointer to a child node or to a record in database */

};

struct NODE {
int ent_num; /* number of entries in the node */
struct ENTRY *ETY[CAP + 1]; /* array of entry pointer */

} ;

· struct TREE_INFO {
struct NODE *P; /* root node pointer of the tree *I
struct TREE_INFO *next;

} ;

struct RECT
struct ENTRY
struct NODE
struct TREE_INFO

*W;
*E, *E', *NEW;
*N, *SP, *P, *R, *REM;
*TREE_LIST, *TREE;

I* search or delete range */
/* entry pointers */
/* node pointers */

In the following sections, of insertion, split, search and deletion algorithms for the

SMR-tree are proposed.

Insertion of the SMR-tree

The insertion operation of the SMR-tree consists of five algorithms: Insert,

SelectTree, InsertRect, SelectEntry and Adjust. Algorithms InsertRect, SelectEntry

and Adjust are the same as those used for the PML-tree in Chapter III; these three

algorithms are not given in this chapter (see Chapter III, page 58).

97

Algorithm Insert takes one entry NEW to insert, sets TREE to the first tree in

the SMR-tree and invokes algorithm SelectTree. Algorithm SelectTree invokes the

algorithm InsertRect until either the entry NEW is inserted into one of the trees or

none of trees in the SMR-tree accepts the entry NEW without violating the SMR-tree

properties (e.g., the properties of disjoint intermediate rectangles and complete

enclosure of the object rectangles in an intermediate rectangle). If no tree accepts

entry NEW, then a new tree is created and the entry NEW is inserted . into it.

Algorithm InsertRect invokes itself recursively to select the insertion path using the

algorithm SelectEntry. Algorithm SelectEntry examines entries in the node to select

an entry that satisfies the SMR-tree properties and the entry's associated

intermediate rectangle can encloses the object rectangle associated with entry NEW.

The SMR-tree uses minimum area as a criterion to select an entry in a node on the

insertion path. The minimum area parameter is superior to the minimum enlargement

parameter for insertion. In the minimum enlargement approach, entries associated

with larger intermediate rectangles have more chance to be selected than entries with

smaller intermediate rectangles from the probability point of view; this effect leads to

uneven growth, in size, of the intermediate rectangles. The minimum area parameter

provides balanced growth among intermediate rectangles in the SMR-tree and as a

result, space utilization is improved. Reducing the area of intermediate rectangles is

critical since the SMR-tree does not allow overlapping intermediate rectangles. If

intermediate rectangles have smaller area, more intermediate rectangles can be placed

in a data space. This may reduce the total number of data spaces for the SMR-tree. If

there is a tie, an intermediate rectangle with fewer sub-rectangles in it is chosen to

increase space utilization and reduce the chance of node overflow. After the entry

NEW is inserted into one of the trees, minimum bounding rectangles of the all entries

along the insertion path are adjusted by using the algorithm Adjust. If a node split

during the insertion process, then a new entry for the split node is created and

98

inserted into the parent node. In the case of root node splitting, a new root node is

created and the root pointer in TREE is updated. If entries are removed during the

node splitting, these entries are re-inserted in one of the subsequent trees. For

example, if an entry is removed from the ith tree, then this entry is re-inserted into the

(i + l)th tree.

Algorithm Insert()
[Output] a new SMR-tree after insertion of NEW.
[Comment] Invoke algorithm SelectTree() to insert an entry NEW. If an entry is

removed during the insertion process, that entry is re-inserted into one
of the subsequent trees.

1. set TREE= TREE_LIST->next; /* TREE is set to the first tree */
2. invoke SelectTree(TREE, NEW, REM);
3. if REM->ent_num > 0 then /* if there is removed entry */

for each entry E in REM,
set NEW= E;
if Eis removed from the ith tree (TREE) then

set TREE= TREE->next;
goto step 2 to re-insert the removed leaf level entry;

Algorithm SelectTree(TREE, NEW, REM)
[Input] TREE- structure TREE_INFO. NEW- entry to be inserted.

REM- store removed entries.
[Output] a new SMR-tree after insertion of NEW.
[Comment] Invoke InsertRect() to insert NEW.
1. let N be the root node of the tree, N= TREE->P;
2. invoke SP= InsertRect(N, NEW, REM), where SP denotes a split node;
3. if insertion of the new object rectangle NEW is successful then

if SP ':t NULL then · I* root node split */
create entries E and E' for node N and SP;
create a new root node R and insert E and E' into R as entries;
reset root node in TREE, TREE->P= R;

else if there is no tree in which NEW can be inserted then
create a root node R and insert NEW into R;
create a TREE and set TREE->P= Rand put TREE in TREE_LIST;

else set TREE= TREE->next; goto step 1;

99

Node Split of the SMR-tree

In the case of a node overflow during the insertion operation, a splitting process

is needed. As mentioned, th~ SMR-tree uses exactly the same split algorithms as the

PML-tree. The split algorithms consists of three sub-algorithms, Split, SelectSpline

and SubSplit (see Chapter III, page 61).

Search and Deletion of the SMR-tree

The search and deletion algorithms of the SMR-tree consist of two sub­

algorithms, respectively. The algorithm Search invokes Search Tree and algorithm

Delete calls DeleteTree for all trees in the SMR-tree. The algorithms SearchTree and

DeleteTree are almost the same as those used for most members of the R-tree family.

Algorithm Search (W)
[Input] W- structure RECT; search range.
[Output] all data objects overlapping W.
[Comment] For each tree in TREE_LIST, invoke SearchTree ().
1. set TREE= TREE_LIST->next;
2. if TREE'# NULL then /* if the tree is not empty */

invoke SearchTree (TREE->P, W);
TREE= TREE->next; goto step 2;

Algorithm SearchTree (N, W)
[Input] N- node. W- structure RECT; search range.
[Output] data objects overlapping W.
[Comment] Traverse tree recursively and save leaf entries overlapping W.
1. save node pointer, P= N;
2. if Pis not a leaf node then, for each entry E in P,

if E->R overlaps W then
set N= E->P and invoke SearchTree (N, W) recursively;

3. if Pis a leaf node then for each entry E in P,
if E->R overlaps W then

save entry pointer;

100

Algorithm Delete (W)
[Input] · W- structure RECT; delete range.
[Output] re-structured PML-tree.
[Comment] For each tree in TREE_LIST, invoke DeleteTree ().
int Flag; /* set to TRUE if at least one leaf entry is removed */
1. set TREE= TREE_LIST->next; set Flag= False;
2. if TREE t:. NULL then /* if the tree is not empty */

invoke DeleteTree (TREE->P, W, Flag);
if TREE->P->ent_num is Othen /*root node empty*/

remove TREE from TREE_LIST;
set TREE= TREE->next; goto step 2;

Algorithm DeleteTree (N, W, Flag)
[Input] N- node. W- structure RECT; delete range. Flag.
[Output] re-structured SMR-tree.
[Comment] Traverse tree recursively. Remove leaf entries overlapping W.
1. save node pointer, P= N;
2. if Pis not a leaf node then for each entry E in P,

if E->R overlaps W then
set N= E->P and invoke DeleteTree (N, W, Flag) recursively;
if Flag then /* there exists at least one removed leaf entry */

if N->ent_num > 0 then /* not empty node */
invoke Adjust (E) to re-adjust boundary of E;

else remove E from P; P->ent_num--;
3. if Pis a leaf node then for each entry E in P,

if E->R overlaps W then
remove entry E from P; P->ent_num--; set Flag= True;

An object rectangle, namely a rectangle at leaf level, in the R+-tree may not be

completely enclosed by its upper level intermediate rectangle(s). Therefore, an object

rectangle may appear in more than one leaf node in the R+-tree and results in

redundancy. If one wants to delete all object rectangles overlapping a given range

(called deletion by range), duplicated entries at the leaf level may not be completely

deleted from the R+-tree with the deletion algorithm provided [95]. In the SMR-tree,

101

there is no such problem, since object rectangles are completely enclosed by upper

level intermediate rectangles.

Performance Comparisons

The SMR-tree's performance is compared with the performance of the R-tree, the

R + -tree and the R *-tree. All four index structures use native space indexing. The R­

tree and the R*-tree employ a non-disjoint space decomposition method. The R+-tree

and the SMR-tree use a disjoint space decomposition method. The R-tree, the R+­

tree and the R*-tree were chosen for comparison to the SMR-tree because of the

following reasons:

1. the original R-tree provides comparatively good space utilization and this factor

makes range queries more efficient as the query size increases,

2. the R *-tree, one of the variants of the R-tree, has good space utilization

because of forced re-insertion,

3. the R+ -tree has good query performance in comparatively small size search

ranges.

It is well known that the performance of serial spatial index structures in query

operations depends on the total number of disk accesses to the secondary storage

(e.g., disk). An efficient spatial index structure requires fewer disk accesses to

process a query. In this chapter, an experimental performance evaluation method is

used to measure the performances of the above four spatial index structures. Two

types of data, system generated data (e.g., uniformly distributed data and randomly

generated data) and real application data (e.g., Tiger/Line™ files for TIGER,

geographic information system, database, VLSI layout data generated by Magic

system), are used with the proposed spatial index structure, the SMR-tree and its

competitors, i.e., the R-tree, the R+-tree and the R*-tree. Let V, T, Rand U represent

102

the VLSI data set, the Tiger/Line TM data set, the randomly distributed data sets and

the uniformly distributed data set respectively. Descriptions of the four data sets and

query types for real application data sets are described in Chapter V (page 76).

Various search areas (e.g., a point to 12% of the data space) were randomly

generated and searched. The average number of disk accesses and actual response

time, for each of the four implemented spatial index structures to process a query, are

recorded. In addition, memory sizes, space (node) utilization and construction time of

the four structures are compared.

Implementations of Spatial Index structures

The SMR-tree is implemented based on the algorithms proposed in this chapter.

The R-tree is implemented with algorithms presented by Guttman [40]. The quadratic

split algorithm is used for the implementation of the R-tree, since it is well known that

the quadratic splitting algorithm has better performance than the linear splitting

algorithm. The minimum node fill factor, m, of the R-tree is set to 40% of the node

capacity to give the best splitting performance. The R + -tree is implemented based on

the algorithms provided in [95] .. As mentioned in Chapter II, the R+-tree's

implementation does not use MBRs (minimum bounding rectangles) for intermediate

rectangles. At each level, say j, of the R+-tree, the data space should be completely

filled with disjoint, level j, intermediate rectangles. The node split process of the R+­

tree may create empty node(s). However, this empty node(s) should be kept in the

R + -tree for later insertions. The R *-tree is implemented based on the algorithms

given in [7]. To give the best performance for this structure, the minimum node fill

factor is set to 40% of the node capacity and the number of entries removed in forced

re-insertion is set to 30% of the node capacity. All programs are written in computer C

language and simulated on two-dimensional data space.

103

Experiment Results

All the programs were run on the Sequent Symmetry SBI with twenty four 803 86

processors running at 20Mhz each. In this experiment, page size is 1 Kbytes.

Size of an entry is 35 bytes (e.g., 7 bytes for each of four coordinates and one

child node pointer). The size of the node is set to multiple of actual page size for

reasons of efficiency. Node capacity is 87 (3 pages) for test data sets T, R and U and

29 (1 page) for the test data set V.

A query rectangle represents the area in a data space that has to be searched for

processing a range query (a point query is included in the category of range queries

with zero area). Range of the query rectangles area sizes is 0% - 12% of the data

space. For each search range (e.g., 4% of a data space) 500 search regions are

randomly selected and searched. The corresponding average number of disk accesses

and the response time for each search range are calculated.

Figures 44, 45, 46 and 47 illustrate the average number of total disk accesses for

the four index structures vs. the size of the query for data sets V, T, R and U. The

SMR-tree requires fewer disk accesses than the R-tree, R+ -tree and R *-tree for most

of search ranges (greater than 2%). For very small search ranges (less than I%), the

R + -tree has the smallest number of disk accesses. For example, in a point query, the

R + -tree only needs its height plus one disk accesses, since all objects overlapping a

given point can be found in one leaf node in the R+-tree. In the structures with a

disjoint space decomposition method, all data objects overlapping a given point in the

data space can be found in a leaf node. As the size of the search range increases,

redundancy in the R+-tree increases the total number of disk accesses. The R-tree

has a redundant search path problem because of non-disjoint space decomposition

method, as mentioned in Chapter II and it increases the number of nodes involved in

redundant search paths as the search range increases. Forced re-insertion of the R *-

104

tree increases the area of overlapping intermediate rectangles, especially in test data

set R, since removed object rectangles are re-inserted into intermediate rectangles

around the intermediate rectangle from which rectangles are removed.

(n= 4,085 d= 0.34)
240

"' • <1.l R "' 180 "' <1.l • R+ u
u
cs::

lli1il R* ~

"' 120 ;a a SMR .
'-
0
<1.l
.0
6 60 ::,
C:

0

0 2 4 6 8 10 12

size of query(%)

Figure 44 average numbers of disk accesses of the R-tree, R +-tree. R *-tree and
SMR-tree vs. the size of query using data set V.

(n= 41,058 d= 0.248)
900

"' <1.l • R "' "' <1.l • R+ u 600 u
cs::
~ lli1il R*
"' ;a a SMR
'-

.
0
....
<1.l 300 .0
6
::,
C:

0 2 4 6 8 IO 12

size of query(%)

Figure 45 average numbers of disk accesses of the R-tree, R + -tree, R *-tree and
SMR-tree vs. the size of query using data set T.

105

(n= 30,000 d= 4.35)
600

"' ll)

"' "' • R
ll)
u
~

.!>(

"'
• R+

11.!1 R*
~ 400 a SMR .
0
ll)
.D
E
::,
i::

0
0 2 4 6 8 10 12

size of query(%)

Figure 46 average numbers of disk accesses of the R-tree, R + -tree, R *-tree and
SMR-tree vs. the size of query using data set R.

(n= 30,000 d= 5.38)
600

"' ll)
V,
V, • R
ll)
u
u
ro

.!>(

• R+

1111 R*
"' ~ 400
'-

El SMR .

0
ll)
.D
E
::,
i::

0
0 2 4 6 8 10 12

size of query(%)

Figure 47 average numbers of disk accesses of the R-tree, R+-tree, R *-tree and
SMR-tree vs. the size of query using data set U.

Figures 48, 49, 50 and 51 illustrate the average response time of the four index

structures vs. the size of the query for the four data sets (V, T, R and U) . In serial

spatial index structures, the query performance of the structures is almost proportional

to the total numbers of disk accesses to process a given query. Time to process

nodes uploaded into main memory does not make a significant difference in the query

106

performance of the spatial index structures, since one node access time from

secondary storage takes much longer than one node processing time in main memory.

(n= 4,085 d= 0.34)
4

,....__
3 u

V • R
~
V

.§ 2
• R+

II R*
V
r/) El SMR
i::
0
P.
r/)

~

0
0 2 4 6 8 10 12

size of query(%)

Figure 48 average response time of the R-tree, R+-tree, R*-tree and SMR-tree
vs. the size of query using data set V.

(n= 41 ,058 d= 0.248)
30

,....__ • R
u • R+ V

20 ~
V llll R*
E

Cl SMR
V
r/)

i::
0 10 P.
r/)

V

0 2 4 6 8 10 12
size of query(%)

Figure 49 average response time of the R-tree, R+-tree , R *-tree and SMR-tree
vs . the size of query using data set T.

The response time of the four spatial index structures in Figures 48, 49, 50 and 51 is

almost proportional to the total numbers of disk accesses in Figures 44, 45 , 46 and 47,

respectively . If two structures have almost the same number of disk accesses, then

107

the structure that has fewer entries in the nodes accessed, is faster. For example, in

Figure 44, the R+ -tree has almost the same number of disk accesses as the R *-tree

for the 10% search range, but in Figure 48, the R + -tree takes more processing time

than the R *-tree for the same search range. Redundant entries in the nodes in the R+-

tree increases query processing time.

(n= 30,000 d= 4.35)

,....._ • R
u
Q)

20 • R+
~
Q) Ill R* .§
Q) El SMR
"' i::
0 10 0..
"' Q)

0 2 4 6 8 10 12
size of query(%)

Figure 50 average response time of the R-tree, R + -tree, R *-tree and SMR-tree
vs. the size of query using data set R.

(n= 30,000 d= 5.38)
20

,....
u
Q)

~

• R

• R+
Q)

.§ 10
Q)

Ill R*

El SMR
"' i::
0
0..
"' Q)

0
0 2 4 6 8 10 12

size of query(%)

Figure 51 average response time of the R-tree, R+-tree, R*-tree and SMR-tree
vs. the size of query using data set U.

108

Let RT_R, RT_R+, RT_R* and RT_SMR denote response time of the R-tree, R+­

tree, R*-tree and SMR-tree, respectively. Let SMR/R, SMRJR+ and SMR/R* denote

the performance gains of the SMR-tree over the R-tree, R+-tree and R *-tree,

respectively. Figures 52, 53, 54 and 55 illustrate the performance gains of the SMR­

tree over the R-tree, R + -tree and R *-tree with the four different data sets. The

performance gain SMR/R is defined as:

. RT R-RT SMR
performance gam SMR/R (%)= - - x 100

RT_SMR

The SMR/R+ and SMR/R* are defined correspondingly. The SMR-tree outperforms

the R-tree, R+ -tree and R *-tree throughout the search ranges, except very small

search ranges.

The performance of the SMR-tree is very stable among the four test data sets.

The R-tree has comparatively low query performance for the data set U compared to

its performance for other data sets. The split algorithm of the R-tree cannot split a

node efficiently when data objects are uniformly distributed. The drawback of the R­

tree's node split for uniformly distributed data objects is discussed in Chapter IV using

Figure 39 (page 88). The split algorithm of the R-tree examines all entries in an

overflowing node, then inserts a selected entry into one of two nodes, the original

node and the split node. With this algorithm, the two nodes can severely or

completely overlap after the node split for uniformly distributed data objects. On the

other hand, for the object distribution in Figure 39(a), the R+ -tree, R *-tree and SMR-

tree can have disjoint intermediate rectangles after a node split, since each of their

split algorithms uses a selected split line on one of the axes. Query performance of

the R *-tree is comparatively low for the data set R compared to its performances for

other data sets due to its forced re-insertion, as mentioned above. The R + -tree has

low query.performance in comparatively large search ranges for all test data sets.

Redundancy of the R+-tree increases when data density is high. For example, even

109

though data set T has very low overall density (D= 0.248), some areas in the data

space have very high densities (e .g., D= 60). Therefore, the R+-tree has low query

performance, especially for data set T.

(n= 4,085 d= 0.34)

,-,

t • SMR/R
C 100 • SMRfR+ ·ca
el)

Cl) 1111 SMR/R* u
C
o::I

E 0 .3
Cl)
0..

0 2 4 6 8 10 12
size of query(%)

Figure 52 performance gains of the SMR-tree over the R-tree, R + -tree and R *­
tree vs. the size of query using data set V.

i
40

.__,
-~ 20
el)

~ 0

m
.... -20
.3
& -40

0 2 4

(n= 41,058 d= 0.248)

6 8 10 12
size of query(%)

• SMR/R

• SMR/R+

1111 SMR/R*

Figure 53 performance gains of the SMR-tree over the R-tree, R+-tree and R*­
tree vs. the size of query using data set T.

110

400

~ 300

C:
"c,l

200 eo
<l)
u
C:
c,:i

100 E ,_
.8 ,_
<l)

0 0.

-100

0 2 4 6

(n= 30,000 d= 4.35)

8 10 12
size of query(%)

• SMR/R

• SMR/R+

II SMR/R*

Figure 54 performance gains of the SMR-tree over the R-tree, R+-tree and R *­
tree vs. the size of query using data set R.

~
-~ 100
eo
<l)
u
C:
c,:i

E ,_
.8 ,_
<l)

C.

0

0 2 4 6

(n= 30,000 d= 5.38)

8 10 12
size of query(%)

• SMR/R

• SMR/R+

II SMR/R*

Figure 55 performance gains of the SMR-tree over the R-tree. R+-tree and R *­
tree vs . the size of query using data set U.

Table 7 illustrates the distribution of the data objects among the trees in the

SMR-tree for the four test data sets. Figure 56 illustrates the size of the memory

spaces required by the four spatial index structures. The R *-tree requires the

smallest memory space and the R + -tree uses the largest memory space . Figure 57

shows space utilization of the four implemented spatial index structures using the

equation given in Chapter IV (page 88). The R*-tree has the highest space utilization

111

and the R + -tree has the lowest space utilization for all data sets. Nodes in the R + -

tree are filled to over 60%, but only the number of distinct entries is considered in the

calculation of space utilization. Figure 58 illustrates construction time for each of the

four spatial index structures. The R-tree has the fastest construction time for all data

sets due to its simple split algorithm. The R *-tree takes the longest construction

times among the four implemented spatial index structures due to entry removals and

re-insertions to resolve node overflowing. The R-tree, R+-tree and SMR-tree require

similar construction times.

T1

T2

T3
T4

T5

V V T T R R u u
obj_num obj_perc obj_num obj_perc obj_num obj_perc obj_num obj_perc

3418 83 .627% 36609 89.164% 20615 68.717% 22068 73 .560%

348 8.519% 4155 10.120% 6442 24.473% 6657 22.190%

212 7.809% 290 0.706% 2334 7.780% 1266 4.220%

0 0% 4 0.009% 569 1.897% 9 0.0309c

0 0% 0 0% 40 0.1333 % 0 0%

Table 7 distribution of the data objects among the trees in the SMR-tree
(obj_num and obj_perc denote the number of objects and the percentage of
the objects in each tree, respectively).

5

,-.. 4 • R ...
-;.. • R+ ..c
~ 3 Ill R* '-' ... m SMR N
·;;; .

..... 2
0
6 ...
6

0
V T R u

data type

Figure 56 actual memory sizes of the R-tree, R + -tree, R *-tree and SMR-tree for
each of the four data sets V, T, Rand U.

112

100

~ 80 • R
C • R+
.9 60 Ill R* ci:i
.::::: fJ SMR .

::, 40
Q.)
u

"' 0.. 20 "'

0
V T R u

data type

Figure 57 space utilization of the R-tree, R + -tree, R *-tree and SMR-tree for
each of the four data sets V, T, Rand U.

40000

,--...

u • R Q.) 30000 !::., • R+
Q.)

E Ill R*
C 20000 fJ SMR .9

.

u
::,
vi
C 10000 0
u

0
V T R u

data type

Figure 58 construction times of the R-tree, R+-tree, R *-tree and SMR-tree for
each of the four data sets V, T, Rand U.

Summary

In this chapter, the SMR-tree has been designed and implemented. A new split

algorithm is proposed with a set of other operational algorithms. The performance of

the SMR-tree has been compared with the R-tree, the R + -tree and the R *-tree using

four test data sets. The comparison results show that the SMR-tree has improved

performance over the R-tree, the R+-tree and the R *-tree in most cases. The R-tree

113

may require redundant paths in search and deletion processes due to its non-disjoint

space decomposition method and its split algorithms are not efficient for uniformly

distributed data set. The R+-tree has redundancy in leaf nodes. This redundancy

provides the fastest processing of a point query and range query with very small

search range (e.g., less than 1 % of the data space), but degrades performance in range

query processing and deletion operations. The performance of the R+ -tree is very low

for data set T, since data set T has very high local densities in some areas of the data

space. The R *-tree takes long construction time and has low query performance for

data set R due to forced re-insertions. By distributing data objects in several data

spaces and using a disjoint space decomposition approach with each intermediate

rectangle completely enclosing its children at lower levels, the SMR-tree structure

improves speed for searching and deletion and avoids leaf node redundancy. As a

result, the SMR-tree provides better query performance than the R-tree and the R *­

tree for most search ranges, except for very small size range searches (e.g., < 1 %) as

shown in Figures 52, 53, 54 and 55. The time complexity of deletion operations with

the SMR-tree is lower than those of the R-tree, the R+-tree and the R*-tree. The

SMR-tree is even more efficient with high density data. The SMR-tree has very

stable query performance for all test data sets, thus, the SMR-tree can be used as an

efficient general purpose index structure for spatial databases.

114

CHAPTER VI

CONCLUSIONS

In this research, a new parallel spatial index structure called the PML-tree, has

been designed and implemented. The PML-tree improves query performance

significantly by introducing parallelism in 1/0 operations with multiple disks. To

distribute data objects evenly among the disks, three object distribution heuristics

(ME, AC and RC) are proposed with a set of other operational algorithms. By

distributing data objects in multiple data spaces and using a disjoint space

decomposition approach with each intermediate rectangle completely enclosing its

children at lower levels, the PML-tree improves query speed and avoids leaf node

redundancy. Three PML-trees (PME-tree, PAC-tree and PRC-tree) for the three

object distribution heuristics are implemented and the performance of these structures

is compared with that of the MXR-tree using various test data sets. All three PML­

trees outperform the MXR-tree for most of search ranges, except for very small size

range queries (e.g., point queries with data sets V and R) as can be observed in

Figures 27 through 38 (pages 91 - 97). The PAC-tree and PRC-tree have very good

space utilization. The PRC-tree has the best query performance among the three

PML-trees, except with data set R. Currently, the PAC-tree and PRC-tree have

longer construction times than the PME-tree and MXR-tree. B.y fully parallelizing the

insertion processes for the PAC-tree and PRC-tree, the construction times for these

structures are expected improve. The PML-trees have very stable query performance

with all test data sets. On the other hand, the MXR-tree has the lowest query

performance for data set U compared to its performance for other data sets due to its

split algorithms. All experiment results indicate that the PML-trees are efficient

general purpose spatial index structures for spatial data bases.

115

REFERENCES

1. Aref, W. G. and Samet, H. Optimization strategies for spatial query processing.
In Proceedings of the 17th-International Conference on Very Large Data Bases.
pp. 81-90, 1991.

2. Banerjee, J. and Kim. W. Supporting VLSI geometry operations in a database
system. In Proceedings of the IEEE 2nd International Conference on Data
Engineering. pp. 409-415, 1986.

3. Bang, K. S. and Lu, Huizhu. A simulation on an index structure for the spatial
object. In Proceedings of the International Simulation Technology Conf.
(SIMTEC'92), November, pp. 178-183, 1992.

4. Bang, K. S. and Lu, Huizhu. An application of the multiple-R tree to the VLSI
circuit layout design. In Proceeding 9th International Conf. on System
Engineering. University of Nevada Las Vegas, pp. 295-299, 1993.

5. Bang, K. S. and Lu, Huizhu. SMR-tree: an efficient index structure for spatial
databases. In Proceeding of the 1995 ACM Symposium on Applied Computing.
Nashville. February, pp. 46-50, 1995.

6. Becker, B., Six, H. W. and Widmayer, P. Spatial priority search: An access
technique for scaleless maps. ACM SIGMOD, pp. 128-137, 1991.

7. Beckmann, N. and Kriegel, H.P. The R*-tree: An efficient and robust access
method for points and rectangles. ACM SIGMOD, pp. 322-331, 1990.

8. Benson, D. and Zick, G. Symbolic and spatial database for structural biology. In
Proceedings of the ACM Object-Oriented Programming Systems. Languages.
and Applications {OOPSLA) Conference. pp. 329-339, 1991.

9. Bentley, J. L. and Finkel, R. K. Quad-trees: A data structure for retrieval on
composite keys. ACTA Informatica 4(1): 1-9, 1974.

10. Bentley, J. L. Multiple-dimensional binary search trees used for associative
searching. Communications of the ACM 18(9): 509-517, 1975.

11. Bentley, J. L. Multiple-dimensional binary search trees in database applications.
IEEE Transactions on Software Engineering. SE-5(4): 333-340, 1979.

12. Bentley, J. L. and Friedman, J. H. Data structures for range searching. ACM
Computing Surveys. 11 (4): 397-409, 1979.

13. Blanken, H., IJbema, A.,Meek, P. and Akker, B. The generalized Grid file:
Description and performance aspects. In Proceedings of the IEEE 6th
International Conference on Data Engineering. pp. 380-388, 1990.

116

14. Brolio, J., Draper, B. A., Beveridge, J. R. and Hanson, A. R. ISR: A database for
symbolic processing in computer vision. IEEE Computer, pp. 22-30, 1989.

15. Bureau of the Census. TIGER/Line Files. 1992 Technical Documentation,
Bureau of the Census, Washington, DC, 1993.

16. Chang, S. K. Pictorial data-base systems. IEEE Computer, November, pp. 13-
21, 1981.

17. Chang, S. K., Yan, C. W., Dimitroff, D. C. and Arndt, T. An intelligent image
database system. IEEE Transactions on Software Engineering, 14(5): 681-688,
1988.

18. Chang, N. S. and Fu, K. S. Picture query lagguages for pictorial data-base
systems. IEEE Computer, November, pp. 23-33, 1981.

19. Charlton, M. E., Openshaw, S. and Wymer, C. Some experiments with an
adaptive data structure in the analysis of space-time data. In Proceeding of the
3rd Spatial Data Handling Conference, pp. 1030-1039, 1990.

20. Chock, M. Cardenas, A. F. and Klinger, A. Manipulating data structures in
pictorial information systems. IEEE Computer, November, pp 43-50, 1981.

21. Csillag, F. and Kummert, A. Spatial complexity and storage requirements of
maps represented by region Quad-trees. In Proceedings of the 3rd Spatial Data
Handling Conference, pp. 928-937, 1990.

22. Faloutsos, C. Sellis, T. and Roussopoulos, N. Analysis of object oriented spatial
access methods. In Proceedings of the ACM SIGMOD Conference,16(3), pp.
426-439, 1987.

23. Faloutsos, C. Gray codes for partial match and range queries. IEEE
Transactions on Software Engineering,14(5): 1381-1393, 1988.

24. Frank, A. U. Properties of geographic data: Requirements for spatial access
methods. Lecture Notes in Computer Science 525, Advances in Spatial
Databases {SSD'91}, pp. 225-234, 1991.

25. Freestone, M. The BANG file: A new kind of Grid file. In Proceedings of the
ACM SIGMOD International Conference on Management of Data, pp. 260-269,
1987.

26. Freestone, M. A well-behaved file structure for the storage of spatial objects.
Symposium on the Implementation of Large Spatial Databases, pp. 287-300,
1989.

27. Freestone, M. The comparative performance of BANG indexing for spatial
objects. In Proceedings of the 5th Spatial Data Handling Conference, 1, pp.
190-199, 1992.

117

28. Fuchs, H., Abram, G.D. and Grant,E. D. Near real-time shaded display of rigid
objects. Computer Graphics, 17(3): 65-72, 1983.

29. Gargantini, I. An efficient way to represent Quad-trees. Communications of the
ACM, 25(12): 905-910, 1982.

30. Gold, C. M. An object-based dynamic spatial model, and its application in the
development of a user-friendly digitizing system. In Proceedings of the 5th
Spatial Data Handling Conference, 2, pp. 495-504, 1992.

31. Goodchild, M. F. and Shiren,·Y. A hierarchical spatial data structure for global
geographic information systems. Graphical Models and Image Processing. 54(1):
31-44, 1992.

32. Grosky, W. I. Image database management. IEEE Computer, December, pp. 7-
8, 1989.

33. Guenther, and Buchmann, A. Research issues in spatial databases. ACM
SIGMOD RECORD, 19(4): 61-68, 1990.

34. Gunther, 0. and Wong, E. A dual space representation for geometric data. In
Proceeding of the 13th Very Large Data Base Conference, pp. 501-506, 1987.

35. Gunther, 0. and Bilmes, J. The implementation of the Cell tree: Design
alternatives and performance evaluation. Technical Report of Coputer Science
Dept. of University of California Santabarbara, TRCS88-23, 1988.

36. Gunther, 0. The Cell tree: An index for geometric databases. Technical Report
of Coputer Science Dept. of University of California Santabarbara, TR-88-002,
1988.

37. Gunther, 0. The design of the Cell tree: An object-oriented index structure for
geometric databases. In Proceedings of the IEEE 5th International Conference
on Data Engineering, pp. 598-605, 1989.

38. Gunther, 0. and Riekert, W. F. Spatial database techniques for remote sensing.
In Proceeding of the 3rd Spatial Data Handling Conference, pp. 961-970, 1990.

39. Gunther, 0. and Lamberts, J. Object-oriented techniques for the management of
geographic and environmental data. The Computer Journal 37(1): 16-25, 1994.

40. Guttman, A. R-trees: A dynamic index structure for spatial searching. In
Proceedings of the ACM SIGMOD, pp. 47-57, 1984.

41. Hinrichs, K. Implementation of the Grid file: Design concepts and experience.
BIT 25, pp. 569-592, 1985.

118

42. Hoel, E., G. and Samet, H. Efficient processing of spatial queries in line segment
databases. Lecture Notes in Computer science 525. Advances in Spatial
Databases (SSD'91}, pp. 237-256, 1991.

43. Hoel, E.G. and Samet, H. A qualitative comparison study of data structures for
large segment databases. ACM SIGMOD, pp. 205-214, 1992.

44. Hutflesz, A., Six, H. W. and Widmayer, P. Globally order preserving
multidimensional linear hashing. In Proceedings of the IEEE 4th International
Conference on Data Engineering, pp. 572-579, 1988.

45. Hutflesz, A., Six, H. W. and Widmayer, P. The R-file: An efficient access
structure for proximity queries. In Proceedings of the IEEE 6th International
Conference on Data Engineering, pp. 372-379, 1990.

46. - Ibbs, T. J. and Stevens, A. Quadtree storage of vector data. International Journal
of Geographical Information Systems. 2(1): 43-56, 1988.

47. Jagadish, H. V. and O'Gorman, L. An object model for image recognition. IEEE
Computer, December, pp. 33-41, 1989.

48. Jagadish, H. V. Linear clustering of objects with multiple attributes. In
Proceedings of the ACM SIGMOD, pp. 332-342, 1990.

49. Jagadish, H. V. Spatial searching with polyhedra. In Proceeding of the 6th Data
Engineering Conference. pp. 311-319, 1990.

50. Joseph, T. and Cardenas, A. PICQUERY: A high level query language for
pictorial database management. IEEE Transaction on Software Engineering,
14(5): 630-638, 1988.

51. Kamel, I. and Faloutsos, C. Parallel R-trees. ACM SIGMOD, pp. 195-204,
1992.

52. Kasturi, R. and Alemany, J. Information extraction from image of paper-based
maps. IEEE Transactions on Software Engineering 14(5): 671-675, 1988.

53. Kasturi, R. Fernandez, R. Amlani, M. L. and Feng, W. C. Map data processing
in geographic information systems. IEEE Computer, December, pp. 10-21, 1989.

54. Kumar, A. G-tree: A new data structure for organizing multidimensional data.
IEEE Transactions on Knowledge and Data Engineering, 6(2): 341-347, 1994.

55. Larson, P. Dynamic hashing. BIT 18: 184-201, 1978.

56. Lee, D. T. and Wong, C. K. Quintary trees: A file structure for multidimensional
database systems. ACM Transactions on Database Systems. 5(3): 339-353,
1980.

119

57. Lee, J. T. and Belford, G. An efficient object-based algorithm for spatial
searching, insertion and deletion. In Proceeding of the IEEE 8th Data
Engineering Conference, pp. 40-47, 1992.

58. Li, J. Rotem, D. and Srivastava, J. Algorithms for loading parallel grid files.
ACM SIGMOD pp. 347-356, 1993.

59. Litwin, W. Linear hashing: A new tool for file and table addressing. In
Proceeding of the 6th IEEE International Conference on Very Large Data Base,
pp. 212-223, 1980.

60. Lomet D. and Salzberg B. A robust multiple-attribute search structures. IEEE
5th International Conference on Data Engineering, pp. 296-304, 1989.

61. Lomet D. and Salzberg B. Access method for multiversion data. ACM
SIGMOD, pp. 315-324, 1989.

62. Lomet, D. and Salzberg, B. The hB-tree: A multiple attribute indexing method
with good guaranteed performance. ACM Transactions on Database Systems
15(4): 625-658, 1990.

63. Lomet, D. Grow and post index trees: Role, techniques and future potential.
Lecture Notes in Computer science 525, Advances in Spatial Databases
CSSD'91}, pp. 183-206, 1991.

64. Lomet, D. A review of recent work on multiple-attribute access methods. ACM
SIGMOD Record 21(3): 56-63, 1992.

65. Mark, D. M. Lauzon, J.P. and Cebrian, J., A. A review of Quad-tree-based
strategies for interfacing coverage data with digital elevation models in grid form.
International Journal of Geographical Information Systems 3(1): 3-14, 1989.

66. Nelson, R. C. and Samet H. A population analysis for hierarchical data
structures. In Proceeding of the ACM SIGMOD Conference, pp. 270-277, 1987.

67. Nievergelt, J. and Hinterberger, H. The Grid file: An adaptable, symmetric
multiple key file structure. ACM Transaction on Database Systems 9(1): 38 -
71, 1984.

68. Ohler, T. The multiclass Grid file: An access structure for multi class range
queries. In Proceedings of the 5th Spatial Data Handling Conference, pp. 260-
271, 1992.

69. Ohsawa, Y. and Sakauchi, M. The BO-tree- A new n-dimensional data structure
with highly efficient dynamic characteristics. Information Processing, pp. 539-
544, 1983.

120

70. Ohsawa, Y. and Sakauchi, M. A new tree type data structure with homogeneous
nodes suitable for a very large spatial database. In Proceedings of the IEEE 6th
international Conference on Data Engineering. pp. 296-303, 1990.

71. Ooi, B. C., Davis, R. S. and McDonell, K. J. Extending a DBMS for geographic
applications. IEEE 5th International Conference on Data Engineering. pp. 590-
597, 1989.

72. Ooi, B. C., Davis, R. S. and McDonell, K. J. Spatial indexing in binary
decomposition and spatial bounding. Information Systems, 16(2): 211-237, 1991.

73. Oosterom, P. V. and Den Bos, J. V. An object-oriented approach to the design of
geographic information systems. Computers & Graphics. 13(4): 409-418, 1989.

74. Oosterom, P. V. and Claassen, E. Orientation insensitive indexing methods for
geometric objects. In proceeding of the 3rd Spatial Data Handling Conference.
pp. 1016-1029, 1990. .

75. Orenstein, J. A.. Spatial query processing in an object-oriented database system.
ACM SIGMOD, pp. 326-336, 1986.

76. Orenstein, J. A. and Manola, F. A. PROBE spatial data modeling and query
processing in an image database application. IEEE Transactions on Software
Engineering. 14(5): 611-629, 1988.

77. Orenstein, J. A. Redundancy in spatial databases, ACM SIGMOD. pp. 294-305,
1989.

78. Orenstein, J. A. A comparison of spatial query processing techniques for native
and parameter spaces. ACM SIGMOD. pp. 343-352, 1990.

79. Otoo, E. J. A multidimensional digital hashing scheme for files with composite
keys. ACM SIGMOD, pp. 214-229, 1985.

80. Otoo, E. J. Linearizing the directory growth in order preserving extendible
hashing. In Proceedings of the IEEE 4th international Conference on Data
Engineering, pp. 580-588, 1988.

81. Otoo, E. J. An adaptive symmetric multidimensional data structure for spatial
searching. In Proceeding of the 3rd Spatial Data Handling Conference, pp. 1003-
1015, 1990.

82. Ousterhout, J. K. Hamachi, G. T.; Mayo, R. N.; Scott, W. S.; and Taylor, G. S.
Magic: a VLSI layout system. IEEE 21st Design Automation Conference. pp.
152-159, 1984.

83. Pizano, A., Klinger, A. and Cardenas, A. Specification of spatial integrity
constraints in pictorial databases. pp. 59-71. 1989.

121

84. Ramamohanrao, K. and Sacks-Davis, R. Recursive linear hashing. ACM
Transactions on Database Systems 9(3): 369-391, 1984.

85. Robinson, J. T. The K-D-B tree: A search structure for large multiple-dimensional
dynamic indexes. In Proceedings of the ACM SIGMOD Conference, pp. 10-18,
1981.

86. Roussopoulos, N. and Leifker, D. Direct spatial search on pictorial database
using Packed R-tree. In Proceedings of the ACM SIGMOD Conference, pp. 17-
31, 1985.

87. Roussopoulos, N. Faloutsos, C. and Sellis, T. An efficient pictorial database
system for PSQL. IEEE Transactions on Software Engineering, 14(5): 639-649,
1988.

88. Sakauchi, M. and Ohsawa, Y. A new interactive geographical information
system based on effective image-type map representation. Information
Processing, pp. 95-100, 1983.

89. Samet, H. The Quadtree and related hierarchical data structures. Computing
Surveys, 16(2): 187-260, 1984.

90. Samet, H. Storing a collection of polygons using quadtrees. ACM Transactions
on Graphics, 4(3): 182-222, 1985.

91. Samet, H. The design and analysis of spatial data structures. Addison-wesley,
Reading, MA, 1990.

92. Samet, H. Application of spatial data structures: Computer graphics, image
processing, and GIS. Addison-wesley, Reading, MA, 1990.

93. Schneider, R. and Kriegel, H. Indexing the spatiotemporal monitoring of a
polygonal object. In Proceeding of the 5th Spatial Data Handling Conference. pp.
200-209, 1992.

94. Sedgewick, R. Algorithms. Addison Wesley. Reading Massachusetts, 1983.

95. Sellis, T. Roussopoulos, T. and Faloutsos, C. R+-tree: A dynamic index for
multiple-dimensional objects. In Proceedings of the 13th VLDB Conference, pp.
507-518, 1987.

96. Shaffer, C. A. Samet, H. and Nelson, R. C. QUILT: A geographic information
system based on quad-trees. International Journal of Geographical Information
Systems 4(2): 103-131, 1990.

97. Shaffer, C. A. Large scale editing and vector to raster conversion via Quad-tree
spatial indexing. In Proceedings of the 5th Spatial Data Handling Conference, 2,
pp. 505-513, 1992.

122

98. Shen, H. Ooi, B. C. and Lu, H. The TP-Index: A dynamic and efficient indexing
mechanism for temporal databases. IEEE 10th International Conference on Data
Engineering, pp. 274-281, 1994.

99. Six, H. W. and Widmayer, P. Spatial searching in geometric databases.
IEEE 4th International Conference on Data Engineering, pp. 496-503, 1988.

100. Smith, T. R. Experimental performance evaluations on spatial access method. In
Proceedings of the 3rd Spatial Data Handling Conference, pp. 991-1002, 1990.

101. Tamminen, M. The extendible cell method for closest point problems. BIT, 22:
27-41, 1981.

102. Tamminen, M. THE EXCELL method for efficient geometric access to data.
ACTA POLYTECHNICA SCANDINA VICA Mathmatics and Computer Science
Series No. 34, 1981.

103. Tanaka, M. and Ichikawa, T. A visual user interface for map information retrieval
based on semantic significance. IEEE Transactions on Software Engineering,
14(5): 666-670, 1988.

104. Unnikrishnan, A. Shankar, P. and Venkatesh, Y. V. Threaded linear hierarchical
Quadtrees for computation of geometric properties of binary images. IEEE
Transactions on Software Engineering, 14(5): 660-665, 1988.

105. Vijlbrief, T. and Oosterom, P. The GEO++ System: An extensible GIS. In
Proceedings of the 5th Spatial Data Handling Conference, pp. 40-50, 1992.

106. Worboys M. F. A unified model for spatial and temporal information. The
Computer Journal, 37(1): 26-34, 1994.

107. Xu, X., Han, J. and Lu, W. RT-tree: An improved R-tree index structure for
spatiotemporal databases. In Proceeding of the 3rd Spatial Data Handling
Conference, pp. 1040-1049, 1990.

108. Zhou, Y., Shekhar, S., and Coyle, M. Disk allocation methods for parallelizing
Grid files. IEEE 10th International Conference on Data Engineering, pp. 243-252,
1994.

109. Zobrist, A. and Nagy, G. Pictorial information processing of landsat data for
geographic analysis. IEEE Computer, November, pp. 34-41, 1981.

123

APPENDIX

TIGER/Line™ files

The TIGER/Line TM files are extracts of selected geographic and cartographic

information from the Census Bureau's TIGER (Topologically Integrated Geographic

Encoding and Referencing) database system [15]. The goal of the TIGER database

system is to provide automated access to and retrieval of relevant geographic

information about the United State and its territories. The TIGER/Line™ files are

organized on a county basis. Fourteen files typically make up the file set for a county.

Each of the fourteen files has a unique code denoting the record type of the file. For

example, in file name TGR40109.F51, 40 denotes the state code (Oklahoma state),

109 denotes the county code (Oklahoma City county) and F51 represents the record

type. The size of the file sets for counties varies from less than 1 Mbytes to over 100

Mbytes. Various geographic features (e.g., roads, railroads, power lines, pipe lines,

transportation features, hydrography, ... etc.) are represented by three types of spatial

objects (e.g., points, lines and polygons) and these spatial objects are inter-related.

The TIGER database uses these spatial objects to provide a disciplined, mathematical

description of the earth's surface features. The spatial objects in the TIGER/Line™

files incorporate both geometry (coordinate location and shape) and topology (the

relationship between points, lines and polygons) [15]. In the Spatial Data Transfer

Standard, nodes represent point objects that identify the start and end positions of

lines and chains representing one-dimensional lines. In the TIGER/Line™ files,

chains are complete chains, since they construct the polygon boundaries, they also

identify the polygon identification numbers and geographic entity codes for these

polygons. The coordinates (longitude and latitude) of all complete chains for each

county are stored in record type 1.

124

Thesis:

VITA

Kap S. Bang

Candidate for the Degree of

Doctor of Philosophy

NEW EFFICIENT SPATIAL INDEX STRUCTURES, PML-TREE and

SMR-TREE, FOR SPATIAL DATABASES

Major Field: Computer Science

Biographical:

Personal Data: Born in Seoul, Korea, on December 6, 1960, the son of

Cheun K. Bang and Chun S. Kang.

Education: Graduated form Sungnam High School, Seoul, Korea in January 1979;

received Bachelor of Science degree in Chemistry from Chung-Ang University

in Seoul, Korea in February 1987; received Master of Science degree in

Computer Science from Oklahoma State University, Stillwater, Oklahoma in

May 1992. Completed the requirements for the Doctor of Philosophy with a

major in Computer Science at Oklahoma State University in December 1995.

Professional Experience: Graduate Assistant, Department of Computer Science,

Oklahoma State University, from August 1989 to December 1995.

