3,936 research outputs found

    The XII century towers, a benchmark of the Rome countryside almost cancelled. The safeguard plan by low cost uav and terrestrial DSM photogrammetry surveying and 3D Web GIS applications

    Get PDF
    “Giving a bird-fly look at the Rome countryside, throughout the Middle Age central period, it would show as if the multiple city towers has been widely spread around the territory” on a radial range of maximum thirty kilometers far from the Capitol Hill center (Carocci and Vendittelli, 2004). This is the consequence of the phenomenon identified with the “Incasalamento” neologism, described in depth in the following paper, intended as the general process of expansion of the urban society interests outside the downtown limits, started from the half of the XII and developed through all the XIII century, slowing down and ending in the following years. From the XIX century till today the architectural finds of this reality have raised the interest of many national and international scientists, which aimed to study and catalog them all to create a complete framework that, cause of its extension, didn’t allow yet attempting any element by element detailed analysis. From the described situation has started our plan of intervention, we will apply integrated survey methods and technologies of terrestrial and UAV near stereo-photogrammetry, by the use of low cost drones, more than action cameras and reflex on extensible rods, integrated and referenced with GPS and topographic survey. In the final project we intend to produce some 3D scaled and textured surface models of any artifact (almost two hundreds were firstly observed still standing), to singularly study the dimensions and structure, to analyze the building materials and details and to formulate an hypothesis about any function, based even on the position along the territory. These models, successively georeferenced, will be imported into a 2D and 3D WebGIS and organized in layers made visible on basemaps of reference, as much as on historical maps

    Mobile support in CSCW applications and groupware development frameworks

    No full text
    Computer Supported Cooperative Work (CSCW) is an established subset of the field of Human Computer Interaction that deals with the how people use computing technology to enhance group interaction and collaboration. Mobile CSCW has emerged as a result of the progression from personal desktop computing to the mobile device platforms that are ubiquitous today. CSCW aims to not only connect people and facilitate communication through using computers; it aims to provide conceptual models coupled with technology to manage, mediate, and assist collaborative processes. Mobile CSCW research looks to fulfil these aims through the adoption of mobile technology and consideration for the mobile user. Facilitating collaboration using mobile devices brings new challenges. Some of these challenges are inherent to the nature of the device hardware, while others focus on the understanding of how to engineer software to maximize effectiveness for the end-users. This paper reviews seminal and state-of-the-art cooperative software applications and development frameworks, and their support for mobile devices

    Collaborative Augmented Reality

    Get PDF
    Over the past number of years augmented reality (AR) has become an increasingly pervasive as a consumer level technology. The principal drivers of its recent development has been the evolution of mobile and handheld devices, in conjunction with algorithms and techniques from fields such as 3D computer vision. Various commercial platforms and SDKs are now available that allow developers to quickly develop mobile AR apps requiring minimal understanding of the underlying technology. Much of the focus to date, both in the research and commercial environment, has been on single user AR applications. Just as collaborative mobile applications have a demonstrated role in the increasing popularity of mobile devices, and we believe collaborative AR systems present a compelling use-case for AR technology. The aim of this thesis is the development a mobile collaborative augmented reality framework. We identify the elements required in the design and implementation stages of collaborative AR applications. Our solution enables developers to easily create multi-user mobile AR applications in which the users can cooperatively interact with the real environment in real time. It increases the sense of collaborative spatial interaction without requiring complex infrastructure. Assuming the given low level communication and AR libraries have modular structures, the proposed approach is also modular and flexible enough to adapt to their requirements without requiring any major changes

    Collaborative Augmented Reality

    Get PDF
    Over the past number of years augmented reality (AR) has become an increasingly pervasive as a consumer level technology. The principal drivers of its recent development has been the evolution of mobile and handheld devices, in conjunction with algorithms and techniques from fields such as 3D computer vision. Various commercial platforms and SDKs are now available that allow developers to quickly develop mobile AR apps requiring minimal understanding of the underlying technology. Much of the focus to date, both in the research and commercial environment, has been on single user AR applications. Just as collaborative mobile applications have a demonstrated role in the increasing popularity of mobile devices, and we believe collaborative AR systems present a compelling use-case for AR technology. The aim of this thesis is the development a mobile collaborative augmented reality framework. We identify the elements required in the design and implementation stages of collaborative AR applications. Our solution enables developers to easily create multi-user mobile AR applications in which the users can cooperatively interact with the real environment in real time. It increases the sense of collaborative spatial interaction without requiring complex infrastructure. Assuming the given low level communication and AR libraries have modular structures, the proposed approach is also modular and flexible enough to adapt to their requirements without requiring any major changes

    Shelfaware: Accelerating Collaborative Awareness with Shelf CRDT

    Get PDF
    Collaboration has become a key feature of modern software, allowing teams to work together effectively in real-time while in different locations. In order for a user to communicate their intention to several distributed peers, computing devices must exchange high-frequency updates with transient metadata like mouse position, text range highlights, and temporary comments. Current peer-to-peer awareness solutions have high time and space complexity due to the ever-expanding logs that each client must maintain in order to ensure robust collaboration in eventually consistent environments. This paper proposes an awareness Conflict-Free Replicated Data Type (CRDT) library that provides the tooling to support an eventually consistent, decentralized, and robust multi-user collaborative environment. Our library is tuned for rapid iterative updates that communicate fine-grained user actions across a network of collaborators. Our approach holds memory constant for subsequent writes to an existing key on a shared resource and completely prunes stale data from shared documents. These features allow us to keep the CRDT\u27s memory footprint small, making it a feasible solution for memory constrained applications. Results show that our CRDT implementation is comparable to or exceeds the performance of similar data structures in high-frequency read/write scenarios
    • …
    corecore