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ABSTRACT

ShelfAware: Accelerating Collaborative Awareness with Shelf CRDT

John Waidhofer

Collaboration has become a key feature of modern software, allowing teams to work

together effectively in real-time while in different locations. In order for a user to

communicate their intention to several distributed peers, computing devices must

exchange high-frequency updates with transient metadata like mouse position, text

range highlights, and temporary comments. Current peer-to-peer awareness solutions

have high time and space complexity due to the ever-expanding logs that each client

must maintain in order to ensure robust collaboration in eventually consistent en-

vironments. This paper proposes an awareness Conflict-Free Replicated Data Type

(CRDT) library that provides the tooling to support an eventually consistent, de-

centralized, and robust multi-user collaborative environment. Our library is tuned

for rapid iterative updates that communicate fine-grained user actions across a net-

work of collaborators. Our approach holds memory constant for subsequent writes to

an existing key on a shared resource and completely prunes stale data from shared

documents. These features allow us to keep the CRDT’s memory footprint small,

making it a feasible solution for memory constrained applications. Results show that

our CRDT implementation is comparable to or exceeds the performance of similar

data structures in high-frequency read/write scenarios.
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Chapter 1

INTRODUCTION

It is challenging to build distributed collaborative software that requires rapid syn-

chronization of replicated states with the standard data structures of modern pro-

gramming languages. While developers may be able to write custom synchronization

code for smaller applications with fewer instances of inter-dependant shared state,

they will likely run into unexpected issues with more significant projects where unex-

pected dependencies and network inconsistencies may lead to synchronization failures.

In large applications, segments of state may sync perfectly well in isolation, but the

emergent properties of their coexistence often leads to unexpected bugs. This results

in a codebase that is difficult to maintain, as new features break the application with

additional merge rules that the developers did not expect.

Conflict-Free Replicated Data Types (CRDT) are data structures that ensure the

correct merging of states in a multi-user environment. CRDT updates are associative,

commutative, and idempotent, which ensures that regardless of the order updates are

received and the number of times the updates are applied for two distinct nodes,

each node will arrive at the same final state [61]. With these properties, CRDTs can

supply the building blocks of multi-user systems. Advantageously, apps developed

with CRDTs can work completely offline while preserving the collaborative guarantees

of the system. Therefore, developers can build software as if it was intended for a

single user and yet confidently ship complex collaborative features using the same

data structures. Since the order of the updates does not matter, users can work

concurrently offline and automatically merge their state when they reconnect to the

network. Therefore, CRDTs allow each user the complete freedom to act individually
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while providing collaborative capabilities for the group. Furthermore, this property

allows bundled updates to be communicated transitively. While the exact number of

message passes to reach consensus differs by implementation, a network of CRDTs

often only need to send a total of N to 2N messages to reach consensus, where N is

the number of clients in the network [2, 55].

Collaboration poses different challenges to the application user, primarily related to

awareness. Awareness is the user’s passive understanding of updates occurring in

the application environment. When multiple users work together in the same envi-

ronment, each user must implicitly understand the intention of the other to perform

effectively together in real-time. This understanding is necessary for peers to make

compatible changes and maintain their focus in constantly evolving virtual environ-

ments. By predicting the subsequent actions of their peers using the prior knowledge

provided by awareness, users can plan out their work in ways to complement the

work of their peers, making awareness an integral part of the collaboration. For ex-

ample, collaborators working concurrently on the same written report will often work

on different sections to avoid conflicting with the work of their peers. Awareness

information about the cursor location of coworkers allows a collaborator to passively

understand what is being handled by others and strategically contribute to unclaimed

sections. A key advantage of awareness is that users communicate and receive it pas-

sively. The awareness sender automatically generates information as they interact

with the application, and the receiving user recognizes the information through non-

intrusive user interface indicators. It provides a low-effort framework to communicate

a shared mindset [51, 47, 56].
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1.1 Problem

Applying general-purpose CRDTs to awareness data leads to systems with high time

and space complexity, which can inhibit the functionality of applications. User aware-

ness information consists of real-time high-frequency updates between multiple peers.

This update environment means data structures modeling awareness state must up-

date quickly and maintain a small memory footprint. However, to support merging

updates from any time in a shared document’s history, CRDTs often store all past

changes [30, 55]. A document’s history or lineage is the ordered data structures that

describe the evolution of the document from its initial state to its current state. In

order to account for all adaptations, deleted items are marked with a “tombstone”

but not erased from the lineage. For large documents with long lineages, storing all

of this historical data can take up a large amount of memory, making it an infeasible

solution for small devices. Even for devices that can handle the additional memory

overhead, storing this information is unnecessary for viewing the latest awareness

data. A smaller and simpler data structure can provide these same eventual consis-

tency guarantees.

Performance is another concern when using CRDTs to track awareness information.

To integrate new information, CRDTs must sift through an abundance of metadata to

find an appropriate location of the new update. While well optimized [34], iterating

through any lineage can be a costly proposition compared to the O(1) operation

of setting a key in a Map data structure. The difference in performance becomes

increasingly apparent with high-frequency updates that are time sensitive since a

slight delay can communicate different intentions to peers. Awareness CRDTs should

not be the performance bottleneck of the application because this informative data

is of secondary importance compared to the user’s ability to act on their intentions.
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Figure 1.1: CRDT Playground
We designed a simple user interface to visually test our CRDT. Here we see several

user cursors in our collaborative CRDT playground.

If the synchronization of awareness information slows an application to an unusable

state, these updates become useless.

To our knowledge, only a couple other CRDTs target this specific niche of information

distribution [25, 45]. Nevertheless, awareness is a commonly expected feature across

many collaborative applications [17, 66, 73]. Therefore we believe that a simplified and

efficient CRDT targeted specifically at awareness information could be an effective

tool for application developers.

1.2 Contributions

We offer a Conflict-free Replicated Data Type tuned to communicate awareness in-

formation with low time and space complexity. Our approach limits update sizes by
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passing delta states between clients and uses type-based partial ordering to merge

new states rapidly. In simulated awareness-related scenarios, our implementation is

competitive with or exceeds other production-grade CRDTs in performance and size.

Our contributions include:

• A content agnostic Shelf CRDT implementation.

• An Awareness data structure built on our Shelf CRDT, with memory optimiza-

tions for sharing information across peers.

• A delta-state update cycle for the Shelf CRDT that decreases the overall update

size for communication between peers.

• A secure update cycle for the Shelf CRDT, ensuring that the CRDT can con-

tinue functioning in a byzantine environment.

• A JSON fuzzer, which generates pseudorandom JSON data structures to test

the validity of our implementation.

• A set of benchmarks to test performance and memory footprint of CRDTs.

5



Chapter 2

RELATED WORK

This chapter will cover the foundational contributions upon which we build our work.

First, we will discuss the decentralized model of distributed networks. Second, we

will cover ordering and consistency in distributed systems. Third, we will discuss

how these orderings are implemented in practice using logical clocks. Fourth, we will

examine the theoretical models of distributed collaboration systems. Since we base

our system on the Conflict-free Replicated Data Type model, our analysis will focus

on several different types of CRDTs and their production implementations. Fifth,

we will discuss techniques to protect CRDTs against attacks from byzantine nodes

in the network. Finally, we will examine the intersection of awareness metadata and

CRDTs.

2.1 Peer-to-Peer Software

Peer to peer software is an application architecture where where the clients are re-

sponsible for data storage and sharing. In contrast to the classic client-server model,

where user devices are only used to interface with a centralized source of truth, peer-

to-peer software clients are responsible for data storage and transmission [50].

This comes with a set of significant advantages. Peer-to-peer networks can be more

robust than centralized networks, due to redundancies in data storage and trans-

mission pathways. That is, if several data-storing nodes in the network crash, online

clients can still transmit and store data on the working nodes in the network. Further-

more, data ownership and management is done locally by each user of the network.
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This opens possibilities for users to silo sensitive data on their own devices and share

important information directly with a peer instead of going through an algorithmic

mediator [3].

However, there are important disadvantages that come with a decentralized peer-to-

peer network. For instance, the performance of data transmission within the network

is directly dependant on the size and power of the compute nodes that make up the

network. If certain regions of users are few in number or lack sufficient compute,

they will experience network delays. Additionally, identity and security are hard to

enforce in a peer-to-peer system. Since there isn’t a central source of truth and data

is often shared transitively between nodes, it is difficult to enforce security rules in

the network [3].

Our awareness CRDT is equipped to operate in peer-to-peer environments. As long

as the network graph is connected, updates will be able to transitively percolate to

all nodes, ensuring eventual consistency of state throughout the system.

2.2 Ordering and Consistency

In concurrent computing environments, it is necessary to understand the ordering of

events taking place within the system to preserve the intention of the operations being

executed. Neglecting this precedence will lead to nondeterminism caused by race

conditions: concurrent operations that sporadically execute in different sequential

orders. Race conditions can cause programs to behave erratically, crash, or return

incorrect results. Based on the needs of the system, there are several consistency

models that require different forms of ordering.
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2.2.1 Partial Ordering

Partial ordering denotes a relationship r where all elements are not all directly compa-

rable, but can be ordered transitively based on valid relationships to another element

in the set:

∀x∃y.(r(x, y) ∨ r(y, x))

Three conditions must be satisfied to claim that a relationship r is a partial order

[21]:

1. reflexive: Each element is related to itself: r(x, x)

2. asymmetric: A relation in one direction prohibits the inverse: r(x, y)⇒ ¬r(y, x)

3. transitive: Relationship logic can be chained: r(x, y) ∧ r(y, z)⇒ r(x, z)

In distributed systems, events are often partially ordered with the happens-before (→)

relationship. In the case that A → B, event B will take priority in the instance of

conflicting information, because event B made those changes with the foreknowledge

of event A. In contrast, when no partial ordering exists between events A and B,

we cannot make assumptions about which action takes precedence without further

information. With this relaxed framework two consistency models emerge: Causal

and Eventual Consistency.

Causal consistency requires that operations be executed in sequential order according

to the happens-before relationship. When operations do not have a partial ordering,

the operations can be safely executed in parallel. Figure 2.1 illustrates that operations

A and B must be executed in sequence, while the branches beginning with C and

F could be executed in parallel. The final operation H requires that both E and

8



Figure 2.1: Causally Consistent System
Example of event ordering in an causally consistent system

G complete before its execution. Causally consistent systems are frequently used

in distributed processing frameworks like Hadoop and Spark. In these frameworks,

jobs create a partially ordered lineage graph, where many of the operations can be

parallelized across several nodes. Due to the lack of total ordering, causally consistent

systems need to keep track of past operations and traverse the ordering to find where

an operation should fit in a sequence of jobs.

Eventual consistency is the weakest form of consistency. Its one guarantee is that all

nodes that execute the same updates will arrive at the same final state. However, un-

like causal consistency, operations could take place in any order. For example, Figure

2.2 shows a communication diagram of a Grow-only Counter (G-Counter) CRDT.

G-Counters allow multiple clients to increment a counter value at the same time.

Note that client A from B and C apply updates from their peers in differing orders,

but arrive at the same final state. A causal system based on logical order would not

9



Figure 2.2: Eventually Consistent Example
Communication diagram of three clients updating a distributed Grow-only Counter

allow this to occur. But an eventually consistent system can apply updates in any

order, allowing clients to update their state as soon as they receive new information.

For software applications, this allows users to make collaborative edits, even if they

are disconnected from their peers. The trade-off is that the clients’ state varies dra-

matically in eventually consistent systems. There are N ! different ways to apply N

updates passed through the system, so consistency cannot be guaranteed in the inter-

mediate states of each client. Our work builds off of the eventually consistent model,

proposing an awareness CRDT that sacrifices consistency in exchange for performance

and availability. We believe that this is a useful compromise for communicating tran-

sient user interactions, but this type of eventually consistent data structure would

not provide strict enough requirements for critical data such as financial information.
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2.2.2 Total Ordering

Total ordering requires all events in the system to have an order in relation to one

another. A system has a total order under relation r if it is partially ordered and

∀x, y.(r(x, y) ∨ r(y, x)) [21].

Relational databases like PostgresSQL and consensus algorithms like Raft and Paxos

keep a total ordering of events that are consistent across every node in the system,

but their consistency models differ slightly.

Relational databases subscribe to a strongly consistent model, in which a mutation

must be acknowledged by every member of the cluster and written to all nodes before

an update is considered complete. This model ensures that all nodes maintain the

same state representation at all times, which is important for use cases where accuracy

of information is of the highest importance.

Consensus algorithms like Raft and Paxos operate under sequential consistency, which

ensures a total ordering of all updates, but allows for certain nodes to have temporarily

inconsistent states. Each node may make local changes or assume roles that do

not effect the global state on the condition that those decisions can be superseded

by operations with a majority consensus. Sequential consistency allows compute

nodes to perform actions with majority approval instead of complete approval. This

is a desirable attribute in unstable network environments, where a node could be

temporarily detached due to a system crash or network failure. Even with such

failures, the distributed network can continue to function as long as the majority of

nodes are online and functioning.
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2.3 Clocks

In distributed networks, time becomes a problematic concept. Even with standardized

universal timestamps across the network, compute nodes are likely to have small clock

skews, ranging between microseconds to seconds. These small offsets are enough to

cause disorder during concurrent operations, since the sequence of operations accord-

ing to the reported timestamps often does not match the true chronological sequence

of operations in the network. To fix this, Leslie Lamport proposed the Logical Clock

[42]. A number of logical clocks have been developed, with differing properties. Our

CRDT uses logical clocks to create a causal order of updates passed between clients.

The following sections outline some of the most common approaches to logical clocks.

2.3.1 Lamport clock

Lamport clocks (Lamport timestamps) are a simple yet powerful method of track-

ing causality in distributed systems. This type of logical clock is a monotonically

increasing integer used for identifying when an update occurred in a partially ordered

sequence of updates. When a node receives an update, it compares the Lamport

timestamp of that update with the last update applied to its state. If the new update

U ′ has a larger timestamp than the previously applied update U , we can assume that

U → U ′. With this information, each node can determine whether updates represent

new data compared to its current state, or their information is no longer causally im-

portant and should be discarded. Each element in our Shelf data structure is marked

with a clock that has a Lamport timestamp component [42].

However, using Lamport timestamps as an identifier can lead to concurrency issues.

Two clients can concurrently increment the timestamp simultaneously and produce
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two different updates at the same logical time. While these logical updates are locally

unique, they share the same logical clock value between the concurrent nodes, which

means they must be differentiated using a different heuristic than the clock value.

We address this by attaching additional client or value information to the Lamport

timestamp to make compound logical clocks that are globally differentiable.

2.3.2 Vector Clock

A vector clock is a collection of Lamport clock representing the known state of each

client during an update. For a system with N clients a vector clock is an N element

mapping from the identifier of the client to a Lamport lock (ci ↪→ N|ci ∈ Clients).

Every client increments the Lamport clock associated with their identifier when they

update any shared state, communicating that their latest update is logically caused

by the updates that came before. When a remote client successfully receives and

applies an update, they merge the vector clock associated with the update with their

local state. Vector clocks are merged by prioritizing the maximum Lamport clock

associated with a client identifier. Comparing vector clocks allow clients to infer the

difference between their current context and the context of the updates issued by

their peers. Assume we have two vector clocks Va and Vb. By comparing the two
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clocks element-wise, we can determine the causality of the associated events:



Va ≡ Vb, if ∀k ∈ keys(Va) ∪ keys(Vb)→ [Va[k] ≡ Vb[k]]

Va → Vb, if keys(Va) ⊆ keys(Vb) ∧ ∀k ∈ keys(Vb)→ [Va[k] ≤ Vb[k]]

Vb → Va, if keys(Vb) ⊆ keys(Va) ∧ ∀k ∈ keys(Va)→ [Vb[k] ≤ Va[k]]

Va ∥ Vb, if ∃k1 ∈ keys(Va) ∩ keys(Vb), k2 ∈ keys(Va) ∩ keys(Vb)→

[(Va[k1] < Vb[k1] ∨ ∃k3 → k3 ∈ Vb ∧ k3 /∈ Va)

∧(Va[k2] > Vb[k2] ∨ ∃k3 → k3 ∈ Va ∧ k3 /∈ Vb)]

Since the logical state of every known client is encapsulated in a vector clock, we can

determine that Va event happened before Vb if Va and Vb are not equal, Vb has all

of the clients in Va, and all of the Lamport clock in Vb have greater than or equal

value to their corresponding element in Va. When some Lamport clock are greater in

value and some are lesser, this indicates that the operations happened concurrently,

and each had contextual information that wasn’t available to the other. In this case,

precedence of operations must be determined using some other mechanism. For our

CRDT, we decided against using vector clocks since their size grows linearly with

the number of clients. Most awareness information is personal, written by a single

user, so conflicting writes to the same location are rare. Furthermore, our CRDT get

and set operations, which do not require the same level of granularity as other data

structures that support sequential inserts.

2.3.3 Hybrid Logical Clocks

Hybrid logical clocks (HLC) are a combination of the Lamport clock and Distributed

Physical Time. HLCs are monotonic and causal, embodying the traits of a logical
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clock with guarantees to remain within a set error range of physical time. With HLCs,

a distributed program can effectively monitor happened-before relationships between

nodes while maintaining a marginally accurate representation of physical time.

The algorithm has a logical clock and a counter. The logical clock is set to the max

of the previous logical clock and the physical time. If the new logical clock is equal

to the previous, the counter is incremented, otherwise it is reset. When a message

is received, a similar process is performed, while taking the message timestamp into

account for the max.

While we did not use HLCs, they could provide useful information for awareness.

A lineage-based awareness system using HLCs could keep track of all updates in a

history page and display their approximate times to users.

2.3.4 Dot Clock

A dot logical clock is represented by a pair of identifiers: a client identifier with a

Lamport clock. Similar to the strategy of a vector clock, pairing the client id with the

Lamport clock ensures that the representation is unique and robust against concurrent

operations, since only a single client can produce updates with a given id/clock pair-

ing. But unlike a vector clock, the space complexity of Dots remain constant as the

number of network clients increase. Additionally, Dots can be efficiently packed into

update messages, allowing clients to share only the clock values that differ between

their states. Dot clocks are ideal for data structures where low memory overhead and

small update sizes are important, which is the criteria for most awareness use cases.

In situations that require causal consistency, dot clocks can be managed by a dot

context, which tracks all updates: those that have been applied and others that are

waiting for their causal predecessor. For example, if we had a distributed vector of
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values where insertions are performed relative to a provided element, any insertion

insert(element: a, before: b) requires that element b exist before the operation can

take place. When a client receives this update, it can check its dot context to deter-

mine if the dot clock for b exists, performing the update if it does, and queuing the

update for later if not.

The structure of dot contexts are designed to communicate the entire causal rela-

tionship of updates with low memory overhead. A dot context is a set of dot clocks

paired with a single vector clock. The vector clock represents a lower bound, below

which all clients have successfully applied all updates. As clients apply more updates,

this bound increases, and any dot clocks in the set that fall below the bound can be

pruned. The dot clock set represents a pool of received updates that are missing

causal dependency. When new updates with established causal dependencies are re-

ceived by a client, the client queries the dot clock set for any deferred operations that

depend upon the new update. If found, the operation can be retrieved and performed,

allowing the client to dequeue its associated dot clock and set the vector clock bound

equal to the dot clock’s value. This strategy allows for causal systems to function

in unstable network environments without passing around redundant states in the

vector clocks of updates. Furthermore, in the best-case scenario where updates are

delivered in causal order, the dot context has the same space and time complexity as

a single vector clock.

We use dot clocks to represent logical time at each node and leaf in our CRDT data

structure. dot clocks enable us to distinguish mutations between clients and over log-

ical time, allowing our message passing algorithm to pass small delta-state updates

between clients. While a dot context would provide more granular information about

the dependencies of concurrent edits, our data structure can ensure convergence with-

out tracking strong causal consistency. To reduce the CRDT’s metadata overhead
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Figure 2.3: Operational Transformation
A central server transforms commands from clients to operate on a shared state [62]

and time complexity, we store individual dot clocks and resolve concurrent conflicts

using the ordering between the update and locally stored values.

2.4 Operational Transformation

Operational Transformation (OT) [62] is a conceptual framework that allows multiple

users to interact concurrently with an application. In practice, OT systems are fully

centralized, and application clients must have an active connection with a server to

interact with the application. Text editing software like Google Docs uses OT to

enable writers to work together on the same document. The OT server acts as the

arbitrator of the application state. When two users update some shared state, the

server compares the current state of their applications, and transforms the newer

update for the older, applies the changes, and sends back a congruent updated state

to both users.

The central algorithm of this technique is the transformation function (tf) which

transforms one operation into the context created by another operation. The semi-

lattice of Figure 2.3 shows how different operations by clients need to be coordinated
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and transformed by a central server to achieve consistency. The closest lower ver-

tex of the cube represents the initial point before three concurrent updates (r, r1,

r2) are applied. The furthest upper vertex represents the convergent point, where

all three updates are merged into a common representation. Each edge of the cube

represents the change to the state made by an update. The figure visually represents

the symmetry of updates, showing that there are six distinct total orders in which the

updates can be applied. The transform function is used to change the origin point of

subsequent concurrent updates, but the direction of each update remains parallel to

the original, showing a preservation of intention and effect. The exact path that the

OT system chooses is irrelevant in practice, under the condition that all paths are

proven to converge at the same final state.

This approach is often applied to collaborative text documents. String editing op-

erations based on character indices need to be transformed based on concurrent op-

erations before being applied to a common document. If two users requested the

following updates: r1 = Add(“x”, 1) and r2 = Delete(2), then the second update

must change with respect to the first. By inserting a character before the deletion,

the original deletion index is one less than expected. The resulting transformation

function is tf(r1, r2) = (Add(“x”, 1),Delete(3)).

The theory behind Operational Transformation is foundational for our work. Our

data structure must also have a convergent semilattice of states regardless of the

order that the updates are applied. However, our system is decentralized in nature.

There is no need for a central server, because we know that upon complete traversal

of the semilattice, regardless of the order, all clients will find the same final state.
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2.5 Replicated Abstract Data Types

Replicated Abstract Data Types (RADT) are a category of data structure similar

to CRDTs. They optimistically change local data and broadcast those mutations

as updates throughout the network. RADTs apply updates using local and remote

algorithms. The former usually mirrors the classical computer science algorithm and

the latter relies on partially ordered operations with higher complexity. RADTs are

eventually consistent, but rely on causal dependencies when managing sequences of

elements like arrays. Three common RADTs explored by Roh et. al. are Replicated

Fixed-size Array (RFA), Replicated Hash Table (RHT) and Replicate Growable Array

(RGA) [63]

The most commonly referenced RADT is the Replicated Growable Array. An RGA

represents a sequence of elements that can be edited with insert, update and remove

operations. Internally, the data structure is a linked list of nodes which consist of

a pointer to a hash table, the stored value, and the next item in a linked list. The

hash table is used for O(1) retrieval of a given node using an identifier vector. The

linked list defines the order of the nodes and allows for easy iteration. The insertion

operation specifies the location of the new item by referencing the element that it will

be placed after. Items that are concurrently inserted are ordered by precedence, with

the highest precedence item being closest to the defined left anchor. Unlike many

CRDTs, RGAs have the ability to prune deleted values, which can save memory. The

primary advantages of RGA are O(1) operation times, dynamic sizing, and prune-

ability [63].

Similarly our CRDT can prune deleted states. Unlike RGAs, our data structures are

not equipped for sequences of elements. Arrays are treated as atomic units, where

concurrent set operations overwrite each other based on a developer-provided partial
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ordering for their specific sequence data type. This tradeoff allows us to simplify the

CRDT to resolve all updates under a framework of eventual consistency instead of

queueing dependent updates in a causal framework. The result is an overall reduction

in CRDT metadata.

2.6 Conflict Free Replicated Data Types (CRDT)

Conflict-free Replicated Data Types are decentralized abstract data types that share

information between collaborators by passing update messages over a network con-

nection. They serve as composeable building blocks for collaborative programs, which

abstracts away the need to manually reconcile states across peers. Simultaneously,

CRDTs work with an optimistic update framework, which means any client can

change shared state locally without needing to confirm with remote peers. As a result,

CRDTs allow users to work as unconstrained individuals, even when collaborating on

shared documents [61, 67].

To enable this flexibility, all CRDTs must uphold a few core traits. The most im-

portant requirement is that a CRDT must be eventually consistent, that is, all nodes

that receive the same update messages from its peers must converge to the same

state. This requirement is important because ultimately CRDTs represent a single

true shared state, though clients may arrive at that final convergence on many dif-

ferent paths. The flexibility in how this state is reached allows CRDTs to operate

in a way that is most convenient for the user, while ensuring all users arrive at the

same conclusions when they ultimately synchronize. Additionally, the application of

updates in the synchronization process must uphold three traits [67]:

1. commutativity: updates can be applied in any order, producing the same final

state.
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2. associativity: updates can be combined in any order, producing the same final

state.

3. idempotency: updates applied several times to a CRDT produce the same final

state.

An additional advantage is that none of these requirements specify a communication

method. As long as the updates eventually reach all clients, it does not matter the

means by which they arrive. Some projects like Ditto [16] leverage a chain of many

communication methods to communicate updates between CRDT nodes.

CRDTs are actively used for a number of enterprises. Apple uses CRDTs to syn-

chronize application state between devices which share iCloud accounts [17]. Text

editors like Atom use CRDTs to enable multiple developers to work on the same

coding document [66]. Databases like Riak [6], DynamoDB [15], and Antidote DB

[58] use CRDTs to enable high availability of rapidly-updating shared states across

partitions.

Our Awareness CRDT allows for the rapid synchronization of client metadata while

keeping the time and space complexity of the data structure low. The synchronization

process upholds communication ambivalence and can piggyback off of the preexisting

network of applications.

2.6.1 Centralized CRDTs

In contrast to Operational Transformation, CRDTs can exchange messages directly

between clients without needing a centralized server to resolve conflicts. However,

for performance and architectural ease, it is sometimes preferable to use CRDTs in

a client-server model. This is often the case when developers use a CRDT for an

21



auxiliary feature atop a centralized application. For example, the UI design company

Figma implemented a collaborative editing mode in their design software using a

CRDT [77]. For performance and consistency, the server is the arbiter of the design

document’s state, which is represented as a tree of UI elements. Each user interface

element has a series of attributes that can be collaboratively update based on the

Last Write Wins (LWW) heuristic. LWW states that the latest updater in a series

of changes overrides the work of the previous editors. When a user edits the docu-

ment, the server use the Last-Write-Wins heuristic to compute the updated state and

distribute the update among the clients. Since all data is orchestrated by a single

server, the collaborative CRDT does not have to store a lineage of past edits, which

reduces its memory footprint and increases its throughput. This is a key advantage

over Operational Transformation, which must keep track of past edits in order to

integrate delayed updates.

2.6.2 State-based CRDTs

State-based CRDTs (CvRDT) are decentralized data types that update with peers

by sharing information instead of transmitting operations performed on the data

type [67]. An example of CvRDTs with collaborative text editing would be clients

sharing their document’s text state with each other instead of sending individual

character insertion operations. CvRDTs come in many forms, but they often keep

track of the age of their attributes with Lamport timestamps, which are monotonically

increasing counters that increment due to a change in the data structure [42]. When

the program updates an attribute, the CvRDT increments the Lamport timestamp

and disseminates the mutated state among the peer network. The receiving peer

can safely overwrite the value if the new state has a timestamp of greater value

than the one is currently has. This makes updates rather quick, since the CvRDT
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simply writes the updated values instead of calculating the resulting data structure

by applying a sequence of operations. For example, if the CvRDT receives an update

with a timestamp of 5, it can safely ignore delayed messages with updates 4, 3, and

2, since update 5 succeeds the others and therefore contains the state of previous

messages. State-based CRDTs are ideal when the total amount of data is small, the

updates are frequent and the operations necessary to calculate the state are expensive.

Conversely, large memory footprints require CvRDTs to send large updates over

the network, slowing down the receiving clients. Delta State CRDTs have aimed

to improve network performance by sending a smaller representation of the state,

instead of shipping the entirety of the CRDT to each client [2]. Each Delta CvRDT

instance uses prior knowledge of what other clients already have in their local state

to only send novel information in their delta updates. Our work leverages the delta-

state technique to reduce the size of data that we send between clients, in light of

time-sensitivity of our Awareness communications.

2.6.3 Operation-based CRDTs

Operational CRDTs (CmRDT) communicate commutative and associative commands

between peers that operate on the CRDT to reach a convergent state. When a pro-

gram updates the CRDT locally, it does so via some function which gets, sets, adds or

removes data in some fashion. To apply a similar change to its peers, Operation-based

CRDTs share the operation that will bring the peer’s current state to the desired fi-

nal state, along with the contextual information necessary to carry out the mutation.

These operations must be commutative and associative, since they could arrive in

any order due to network delays. In order to offer this CmRDT have to specify

their commands such that they can work on clients with completely different versions

of the CRDT state. For example, CRDTs often define sequential data like strings
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Figure 2.4: Sequence-based Conflict-Free Replicated Data Type for text
editing.

as linked lists. Inserting a character into a word by index would be highly context

specific and lead to divergent results, since each client could have strings of differ-

ent length with different characters when they receive the insert operation. Instead,

Operation-based CRDTs specify the neighboring characters of the insert operation.

Even if other operations move around the expected index, the insert operation will be

deterministic and correct, since it is relative to two neighboring nodes. This allows

Operation-based CRDTs to iteratively update and arrive at the same final state [57].

Operation-based CRDTs are highly effective at updating large data structures when

updates are infrequent and the computational complexity of running the commands

is low. Since the update payload describes an operation, it is usually very small and

can be easily passed to peers. However, CmRDTs often must apply all commands in

order to reach a convergent state, which could lead to a high computational load.
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Table 2.1: CRDT Libraries Summary

CRDT Advantages Disadvantages

WOOT eventually consistent text editing,
causally consistent updates

large tombstones, must maintain an
unbounded queue of updates

Yjs JSON data types, compact
tombstones, undo/redo support,
rich text editor support

expensive list traversal, requires
tombstones

Yjs Awareness low memory overhead, efficient
get/set operations

redundant data sent in updates

Automerge general purpose, efficient bloom
filter update comparison, immutable
documents, functional update
system

large lineage memory overhead,
slower operations than other CRDTs
[26]

Peritext preserves authors intent with rich
text

doesn’t support composable data
structures

Shelf CRDT pruneable, simple, performant can’t represent collaborative
sequences

2.6.4 Text Editing CRDTs

CRDTs are particularly useful for building collaborative word editor applications.

Our work is designed to be used in conjunction with text editing CRDTs to provide

information like cursor position and highlight ranges. Due to this complementary

relationship, we will review some of the industry standard CRDTs used to create text

editing software. Table 2.1 provides a summary of the advantages and disadvantage

of commonly used CRDT frameworks.

2.6.4.1 WOOT

WOOT is a CRDT text editing algorithm that ensures distributed convergence be-

tween clients with a single round of message passing [57]. The data structure uses

individual characters as the atomic unit of operation, which is represented by a 5

tuple of (clock, character, tombstone, prev, next). The clock is a Dot Logical Clock

uniquely identifying the character in the text sequence. The character holds the value
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of the character to be displayed to the user, while the tombstone is a boolean marker

that denotes when a character has been deleted. The prev and next fields determine

the relative location of the character in a word by storing pointers to its neighboring

characters. The WOOT CRDT has two operations: insert and delete. Deleted char-

acters are marked by tombstones and not shown to users. Insertion operations are

identified based on the characters adjacent to the character being added. In the case

that a referenced character for inserts don’t exist yet at the source, the algorithm

keeps a pool of non-executable commands and checks the pool after each new update.

Inserts have the additional possible technicality of unexpected characters existing be-

tween the referenced neighboring characters. Given two character nodes Ca and Cb,

insertion conflicts are resolved by the relative ordering:

Ca > Cb ⇐⇒ Ca.prev.index > Cb..prev.index∨

Ca.next.index > Cb..next.index ∨ char(Ca) > char(Cb) (2.1)

WOOT stands as a foundational reference design for text-editing CRDT due to its

preservation of user intention across clients and efficient implementation. However, it

is not optimized for awareness information associated with text documents, such as

cursor position. Our work would be an effective compliment to text editing CRDTs

like WOOT, handling the responsibility of sharing user metadata between peers.

2.6.4.2 Yjs

Yjs is an operational CRDT written in JavaScript. Built on the YATA theoretical

framework [54, 55], it is highly optimized for concurrent drawing and text-editing
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applications. The system is able to reduce its memory footprint significantly by

compacting adjacent CRDTs into a shared representation. Instead of storing every

character as a node in a linked list, Yjs pools adjacent characters written by the same

author into a single node. Deleted characters are also compacted into grouped tomb-

stones and with their contents erased. Furthermore, the library encodes operations

to binary state vectors before communicating updates to peers, which decreases the

overall network load [24]. For common editing benchmarks, Yjs is considered the

best performance CRDT on the web [26]. Our work aims to provide a faster, more

secure awareness API that integrates with the Yrs ecosystem, which is the successor

to Yjs. The current Yjs awareness CRDT is a classic CvRDT, where the entire state

is shared on each subsequent update. This strategy can be costly for small and fre-

quent state updates by clients. While the Yjs updates can be encrypted for security,

it is not provided by the library. Our work uses delta state updates to reduce the size

of updates passed between CRDT instances and proposes a framework for securing

Shelf CRDTs against bad actors intent on corrupting the CRDTs contents.

2.6.4.3 Automerge

Automerge is a tree-based operational CRDT for local-first collaborative applications.

Local-first software stores data on client devices, allowing users to own their data.

Local-first applications with collaboration necessitate that the lone user has the same

capabilities as one actively connected to the group. Automerge’s structure allows for

rapid search and deletion throughout the data structure, leading to a robust CRDT

implementation. As the user interacts with the CRDT, it stores a list of operations,

which it compiles into a batch called a change. This change is shared between clients

in order to synchronize state. However, the sending CRDT does not know which

updates its peer needs in order to reach consensus, so it sends out a hash of its
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internal state. The recipient compares this hash against its own state using a bloom

filter and determines which attributes it is missing. By passing this information back

to the sender, the sender can encode a change set with the missing state and update

the recipient. For text editing, Automerge stores strings as linked lists of multi-

valued character registers. This guarantees that concurrent updates are both stored,

but has strange duplication side effects which can be counter to the intentions of the

document’s authors. An additional issue is its ever-growing data structures, which

leads to large document sizes in memory. For our Awareness API, we use a pruneable

Shelf CRDT. Pruneable data structures can eliminate stale data completely without

storing tombstones. This decouples the memory footprint of the CRDT from the size

of its history, allowing it to undergo a large amount of rapid updates without growing

in size [36].

2.6.4.4 Peritext

Peritext is a modern text editing CRDT that draws its inspiration from Yjs and

Automerge. Its primary goal is to preserve the author’s intention during collaboration,

covering specific edge cases where other CRDTs fall short. Specifically, Peritext allows

authors to collaborate in rich text, which requires the disambiguation of text styling

applied concurrently by multiple users. In previous works [36, 59], overlapping styles

often overwrote each other or led to unexpected effects at their intersection. Peritext

is able to handle these cases due to its novel meta data approach to text document

representation. It stores the document as a linked list of characters, where each

character node stores markers to indicate the start and end of a style. The node

stores beginning and ending marks that dictate the style of a range in two sets:

marks the precede the letter and those that succeed the character. This dictates

whether future inserts adjacent to marked characters adopt the styling and solves the
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issue of the user accidentally deleting hidden style tags. This strategy of tag adhesion

makes the effects of concurrent cooperative editing better reflect the intention of each

individual author [43].

2.6.5 CRDT Security

The relaxed requirements of CRDTs and their decentralized nature makes security

constraints hard to enforce. Clients must rely on each other to pass information

through the network, making man-in-the-middle attacks a prevalent concern. Unlike

client/server models, there is no central authority in the network to enforce authen-

tication and trust standards across the network. Whatever enforcement procedures

are put into place need to work in low-trust environments where malicious actors can

read and write to the CRDT. The goal of CRDT security is to ensure that bad actors

are unable to degrade the eventual consistency guarantees of the CRDT.

2.6.6 CRDT Exploits

Due to their abstract nature, CRDTs can uphold their properties in systems with

ill-defined security roles. However, attackers can invalidate the traits of a CRDT by

maliciously editing the information communicated during updates. The following two

exploits can be leveraged to destroy the eventual consistency guarantee of a CRDT:

• Client Spoofing: A bad actor uses an identifier of another client to publish

malicious messages.

• Duplicate Update Identification: A bad actor communicates two different up-

dates under the same logical clock identifier, causing the CRDT to become

irreparably inconsistent across clients.
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(a) Client spoofing

(b) Duplicate update identification

Figure 2.5: Examples of CRDT exploits

The goal of CRDT security is to prevent actions that corrupt or hinder the functioning

of the distributed update system. Application security is an additional and necessary

concern when using CRDTs in production. However, it differs between cases and

depends on the composition of the shared state. We will primarily focus on ensuring

that malicious actors cannot violate the traits of a correctly functioning CRDT.

2.6.6.1 Operational Hash Graphs

Hash Graphs have been proposed as a framework to secure operation-based CRDTs.

In this system, every local CRDT instance has a hash graph of all updates received.

This directed acyclic graph allows nodes to compare known updates and establish a
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causality relationship between changes. This causality is communicated via a pre-

decessor hash, which encapsulates the identifiers of the updates that immediately

causally precede a change. This system protects user identity by using the hash itself

as an identifier. Bad actors cannot replicate a user’s hash because no identifying

information is communicated. The predecessor hash system also ensures that CRDT

guarantees are maintained, since the hash is directly tied to the contents of the up-

date being communicated. Our work leverages hashes in a similar way, but attaches

them to parts of the CRDT state instead of operations. [32]

2.6.6.2 Merkle Search Trees

A Merkle Search Tree (MST) is a combination of BTrees and Merkle Trees. It is

similar to a BTree in its data structure, storing B elements in each node and upon

overflow splitting its contents into further leaf nodes. Each of these nodes is deter-

ministically ordered and will form the same tree regardless of the order of insertions

and deletions. Hashing the keys recursively up from the leaves forms a Merkle Tree,

where root hashes can be compared in O(1) to check if two trees have the same el-

ements. MSTs can be effectively compared via an anti-entropy update process by

which updates percolate throughout the network at log(n) speed and require a num-

ber of passes equal to the tree depth to come to consensus. Two comparing clients

can walk the differing hashes in the tree down from the root in order to find the leaf

elements that differ. This is much more efficient than comparing the entire tree for

large data structures and preserves bandwidth by only sharing hashes, but it suffers

the cost of recursively rehashing upon every change. Our work has taken inspiration

from MSTs, using hash comparisons in order to ensure that updates are consistently

applied at each remote client. [4]
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2.6.6.3 Secure Universal Composability Framework

The Universal Composability Framework for CRDT security defines two approaches

for implementing secure data structures: (1) encrypt the CRDT updates without

changing the underlying algorithm, or (2) build encryption into the underlying merg-

ing algorithm, using homomorphic encryption to combine states without decrypting

the update’s contents [5].

The first solution works best for CRDTs that require only an equality trait between

stored values. Registers and sets can store encrypted values using deterministic hash-

ing without any knowledge of the decrypted values. The second solution is required

for CRDTs that require mutations to the values that are stored within. Counters

are a good example, since the increment operation must read the previous value and

write back the incremented one. One solution is a homomorphic encryption scheme

that allows the server to perform additions without prior knowledge of the actual

value [1].

Our system verifies that the relationship between the clocks and values in our CRDT

remain intact. This ensures that byzantine nodes cannot pass off corrupted values

as identical to the originally set value during transitive steps in the update process.

While ShelfAware does not provide encryption as a library feature, all of its messages

can be encrypted before transmission with commonly-used cryptography libraries [72]

2.6.7 CRDT Awareness

Collaborative software, like text editors, sync a shared application state between users.

To improve users’ collaborative experience, the application can share and display user

activity information like cursor locations with different identifying colors and names.
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This kind of information is called awareness. Its primary purpose is to give users

hints about others’ intentions and where on the document they are currently working

on or intending to work. Awareness CRDTs require a different set of trade-offs

than standard text-editing CRDTs. Instead of dynamic sequences of text, awareness

state can often be represented by get and set operations in a user state map. For

this reason, awareness CRDTs often sacrifice complexity for memory efficiency and

performance. For example, The Yjs Awareness CRDT operates like a LWW-Register

[67], while the Yjs text editing system uses the more expressive YATA framework.

Our implementation enables more structured data types, allowing for a recursive tree

of values instead of tracking individual client changes in a single register.

2.6.8 Shelf CRDT

The Shelf CRDT is a compact data structure that enables simple conflict resolution

between clients. A Shelf supports all JSON data types; however, it treats sequences

such as arrays and strings as atomic elements. This restriction makes Shelf CRDT

unsuitable to track the shared sequential edits that are commonplace in collaborative

text editors. Nevertheless, many use-cases do not need tracked sequences, like track-

ing user metadata in an application. This makes Shelf CRDT a good fit for sharing

awareness information in applications [45].

The original Shelf CRDT was famously implemented in under 90 lines of JavaScript by

Greg Little [27]. We built upon this algorithm in several ways. ShelfAware updates

peers by passing compressed delta-states, which limits the amount of information

that has to be communicated between clients. We also provide an interface for the

client to update the Shelf directly. This allows us to update portions of the data
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structure instead of recursively wrapping the entire state on every update. Finally,

our implementation has a customizable and more efficient type ordering system.

This paper’s main contribution is to provide an open-source CRDT library that can

handle a high volume of clients and efficiently merge updates. To prove our approach’s

validity, we compare the performance and correctness of our system to similar open-

source libraries. The ShelfAware code and the accompanying experiments can be

found online for replication 1.

1https://github.com/Waidhoferj/thesis
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Chapter 3

METHODS

In this thesis, we present ShelfAware, an Awareness CRDT library for handling high-

frequency updates between clients. In order for peers to collaborate effectively in

a shared environment, each individual must be able to passively communicate their

intentions to their coworkers. This data is often small, time-sensitive, frequently

updated, and of secondary importance to the actual application’s business logic. To

develop a specialized CRDT for such a use case, we set the following system principles:

• Small Updates: Updates should be small so that their network and local pro-

cessing impact remains low.

• Fast Operations: Get, set, and merge operations should have low time complex-

ity. This allows the CRDT to keep up with rapid updates.

• Secure: ShelfAware should continue to function even in the presence of malicious

nodes. Security ensures that user intention is correctly represented.

• Convergent: ShelfAware should converge and uphold the basic principles of

CRDTs. Convergence ensures that all clients move towards a common under-

standing as they gain more information.

• Composeable: ShelfAware should be an effective companion CRDT for other

collaborative systems. Awareness is coupled to other application states, so

ShelfAware must be able to work alongside preexisting state management tools.
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• Flexible: The Shelf implementation should support common JSON data types

out of the box, and provide an extensible interface for user-defined types. Flex-

ibility makes the system adaptable to the needs of the application developer.

This chapter will examine the conceptual framework offered by ShelfAware. This

framework reveals the key advantages ShelfAware offers, and the associated limi-

tations caused by specialization. We will begin with an overview of ShelfAware’s

features. Then the structure of the foundational ShelfAware Shelf CRDT will be dis-

cussed. Next, we will describe the operations that can be performed on the CRDT.

After, we will review security and how ShelfAware can protect against CRDT-related

exploits. Finally, we will critique some of the limitations and trade-offs associated

with our system model.

3.1 Overview

ShelfAware is a library that provides a collaborative Shelf CRDT interface for storing

highly granular information that is frequently updated. The ShelfAware Shelf CRDT

allows users to perform optimistic local updates independently while quickly sharing

this information through a network of peers. In addition, the system is eventually

consistent, ensuring that all clients arrive at the same final state after disseminating

all updates.

Beyond the core guarantees of a CRDT, the library offers features that keep memory

usage low. For example, ShelfAware Shelves are pruneable, meaning stale data can

be removed entirely from the CRDT. Other CRDT implementations with causally-

related updates require preserving deleted values for the CRDT to function. Prune-

ability results in the ShelfAware’s metadata overhead growing with the size of the

stored state, not the total number of updates. This trait allows the system to keep
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a constant memory footprint during in-place updates. A further memory optimiza-

tion exists in ShelfAware’s update passing system. ShelfAware is a Delta CvRDT

that only passes novel information to its peers, reducing the amount of excess data

communicated through the network.

Additionally, ShelfAware provides a secure update and merging system that prevent

bad actors from violating the convergence guarantees of the Shelf CRDT. The secure

interface allows ShelfAware data structures to operate robustly in environments with

byzantine nodes that seek to exploit the logical clock system to spread corrupted

data.

Finally, ShelfAware is a system built on traits, allowing it to be flexibly applied to

various data types and use cases. While we designed this system with awareness in

mind, the Shelf CRDT can be used effectively as a low-overhead collaborative data

store in myriad contexts.

3.2 Structure

Figure 3.1: ShelfAware Shelf CRDT Structure
Both of the clocks and the contained value are generic
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The Shelf CRDT provided by ShelfAware is a structure with two parts: a contained

value and a clock. The value of the Shelf can either be a mapping of keys to Shelves

or some atomic value with an intrinsic partial ordering. The clock is a partially

ordered, monotonically increasing logical counter. The Shelf remains agnostic to the

specific implementation of the clock and the contained value, providing developers

with extensibility. For example, developers can create partially ordered values to

store on the Shelf without changing the system’s structure. Likewise, developers can

specify custom partially ordered clocks for specialized use cases.

While this composability is helpful for developers working with custom data types,

it does provide an additional layer of complexity. For this reason, we supply default

value types and clocks that apply to typical use cases. Application programmers can

begin developing with these standard components and implement their custom logic

for specific use cases if needed.

3.2.1 Provided Values

Figure 3.2: Default Shelf Value Structure

The default implementation of the ShelfAware Shelf wraps a Value type: an enumer-

ation of JSON-like data types (Figure 3.2). We chose to make these types the default
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ShelfAware experience because it promotes compatibility with our JavaScript library

bindings and supports conversion into the commonly used JSON file format.

Like all Shelf contents, the Value type is partially ordered, internal to each type, and

between the enumerated types. The ordering between types is based on the type’s

complexity. The cross-type precedence is Array, String, Integer, Float, Boolean, Null

from highest to lowest. The partial ordering internal to elements of the same type

uses the default ordering of that type.

3.2.2 Provided Clocks

Figure 3.3: Structure of ShelfAware’s three provided clocks

The Lamport Timestamp is a monotonic logical clock that increments when a por-

tion of a Shelf receives an update. Lamport Timestamps are the smallest provided

clock data structure, requiring only a single integer comparison to deliver a partial

order. However, an updating Shelf CRDT cannot differentiate between Lamport

Timestamps set by the same user and two timestamps set concurrently by different

users. This can cause the incorrect pruning of novel information from delta updates

sent between clients. For this reason, we recommend using Lamport Timestamps
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as the clock associated with Shelves that are scoped to a single user, or on Shelf

Maps. The merging algorithm compares Shelf Maps recursively when clock values

equal, accurately combining concurrent updates. Single-user Shelves are suitable for

most awareness applications, authorizing users to write only to their scoped state.

This scoped mutability allows us to represent an awareness client using Lamport

Timestamps.

The dot clock is a tuple clock: (client id, lamport timestamp), which can effectively

distinguish concurrent updates between clients. This clock is an effective tool for

Shelves where clients have read-write access to a shared portion of state. While the

memory footprint of the clock is minimal compared to their associated Shelf Value,

dot clocks are twice as large as the equivalent Lamport Timestamp. In instances

where a Shelf has a single writer or infrequent updates, Lamport Timestamps would

reduce the metadata overhead.

The Secure Clock prevents malicious clients from spoofing client identifiers or passing

different content with the same logical timestamp. The data structure is a tuple

clock (hash, lamport timestamp), where the hash is derived from the Shelf Value

and the associated Lamport timestamp. The Secure Clock can effectively replace the

dot clock for tracking concurrent changes to shared mutable Shelves. However, the

Secure Clock incurs the additional overhead of hashing the associated Shelf Value

during initialization and the merging process.

3.3 Local Operations

The Shelf CRDT has two local operations: get and set. The get operation fetches

a reference to the value stored inside the Shelf. The set operation (Algorithm 3.1)

stores a new value in the Shelf and increments the Shelf’s clock. The algorithm to
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increment a clock is specific to each clock data type, but in all cases it monotonically

increases the value of the internal logical clock. An incremented clock indicates an

update to Shelf Value so that other clients can request the new information during

delta updates.

Algorithm 3.1: SET updates the internal value of a Shelf
function set(shelf, value)

shelf.value← value
shelf.clock ← increment(shelf.clock)
return shelf

end function

3.4 Communicating Delta Updates

ShelfAware uses a two-step delta update process for syncing data between clients.

First, the update requestor sends out a state vector, which is a skeleton of the recursive

Shelf Map structure containing only the clocks of each Shelf. The state vector captures

the logical time of all Shelves in the system, allowing other clients to determine

which elements the update requestor needs. Passing around the clocks without the

associated value reduces the size of update messages, keeping the network overhead

of the Shelf update process low.

Next, the update sender compares the logical time of its Shelf CRDT structure with

that of the received state vector. Any Shelf structures with a clock value that equals

or happens before the corresponding state vector clock holds data that has already

been seen by the update requestor. We can safely prune these stale values from the

delta update without the requestor losing any information. This technique reduces

the overall size of the update. For collaborative environments with localized, high-

frequency updates, the delta state will consist of a small subset of the Shelves within
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Figure 3.4: Sequence diagram of the delta update process

the shared state, drastically reducing the data quantity clients have to serialize and

share with their peers. We compile any data deemed novel by this criteria into a

delta update. Delta updates are Shelf CRDTs that hold some subset of the update

sender’s Shelf state. When the update sender responds with the Delta Shelf, the

recipient merges the novel delta elements with their local Shelf state.
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3.5 Merging Process

Generally, Shelf CRDTs resolve conflicts between updates and their current state by

first comparing clocks and then breaking any ties with an absolute type ordering [45].

As shown in Algorithm 3.2, the data structure resolves conflicts by applying a series

of ordering rules:

1. The item with the highest clock overrides the other.

2. If the items have different types, the item with the highest type order overrides

the other.

3. If both items are Shelf Maps (they hold Shelf data structures) and both clocks

are equal, recursively merge each child.

4. If the items have the same type, the item with greater comparison value over-

rides the other.

Fortunately, these guidelines allow the Shelf to remain ambivalent about the data that

it contains. As long as the Shelf contents are partially ordered, rules three and four

can be abstracted away from the specific structure of the Shelf contents. Similarly,

the Shelf Map can operate on the premise that it holds either an opaque value or more

Shelf Maps. The merging process allows clients to transitively synchronize updates

across the network and arrive at a single convergent state.

3.6 Security

To protect ShelfAware from client spoofing and duplicate update identification at-

tacks, we employ secure clocks, which effectively tie the Shelf’s contents to a specific

43



Algorithm 3.2: Merge algorithm
function merge(shelf, delta)

if shelf.clock > delta.clock then return shelf
else if shelf.clock < delta.clock then return delta
else if is shelf map(shelf) ⊻ is shelf map(delta) then

if is shelf map(shelf) then return shelf
else

return delta
end if

else if is shelf map(shelf) ∧ is shelf map(delta) then
updated map← merge shelf maps(shelf.map, delta.map)

return new Shelf(updated map, shelf.clock)
else

if shelf.value > delta.value then return shelf
else

return delta
end if

end if
end function
function merge shelf maps(shelf map, delta map)

for key in delta map do
if key ∈ shelf map then

shelf map[key]← merge(shelf map[key], delta map[key])
else

shelf map[key] = delta map[key]
end if

end for
return shelf map

end function
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logical time (Algorithm 3.3). The secure clock stores a hash of the Shelf contents

and the Lamport timestamp associated with the state. Since secure clocks are par-

tially ordered based on their Lamport timestamp, the algorithms associated with local

immutable operations and the delta update cycle do not functionally differ.

However, the set and merge operations require an additional hashing and validation

phase.

Setting the value of the Shelf increments this clock and creates a new hash with the

new value clock combination. This step ensures that all mutations are associated with

a hash that represents both the value and the logical time of the operation. When

the Shelf operates in a safe environment, the hash is sufficient to connect the clock

and the associated value. However, byzantine nodes could subvert the set operation

and edit the value in the Shelf directly in memory without updating the clock. While

we cannot ensure that the memory of the Shelf is not tampered with locally, we

can validate new Shelf entries during the remote merging process, ensuring that the

corrupt Shelf does not propagate through the network.

The secure merge process has the same algorithmic foundation as the standard merge,

with an additional validation consideration applied when outside values are added to

the Shelf. When a clock comparison indicates that the remote value should be merged

into a local Shelf instance, the local instance hashes the incoming content with its

associated clock value. If the resulting hash matches the remote secure clock sent

alongside the value, the local instance can integrate it with the assurance that the

clock value pair is unique. The local Shelf can discard the update if the provided

hash does not match the locally produced hash. Integrating a remote Shelf Map

involves this validation process over each key and recursively for each sub-Shelf. The

Shelf Map’s recursive integration filters out corrupt values while integrating all valid

entries.
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Since the hashing algorithm is deterministic, all clients will discard corrupt updates,

which preserves the eventual consistency of the Shelf CRDT. However, we cannot

feasibly prevent bad actors from circumventing our library’s constraints locally and

editing Shelf Values directly in memory. For this reason, corrupted Shelves could

still exist on byzantine nodes that are not reflected in valid nodes across the network.

Therefore, the eventual consistency guarantees only apply to the valid Shelves verified

by hashing constraints. Pragmatically, this allows valid users to safely function within

the collaborative network without incurring corruption from byzantine nodes.

Algorithm 3.3: Secure Shelf Algorithms
Hasher
function verify clock(secure clock, value)

clock ← secure clock.clock
hash← secure clock.hash
hash is valid← Hasher.hash((clock, value)) == hash
return hash is valid

end function
function prune corrupt content(shelf)

if shelf is a Map then
shelf ids← keys(shelf.map)
for shelf id in shelf ids do

sub shelf ← shelf.map.remove(shelf id);
valid shelf ← prune corrupt content(sub shel)
if sub shelf is not NULL then shelf.map.insert(shelf id, sub shelf)
end if

end for
if shelf is empty then return NULL
else

return shelf
end if

else
if verify clock(shelf.clock, shelf.value) then return shelf
else

return NULL
end if

end if
end function
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3.7 Limitations

The ShelfAware library provides a performant, minimalistic, and secure framework

for rapid awareness communications. Still, the design choices that lead to these

advantages have several limitations.

ShelfAware inherits the primary simplification of Shelf CRDTs: collaborative se-

quence types are not supported. Users cannot concurrently insert or update lists

of elements inside a Shelf. When a concurrent update does occur, the change with

the higher lexicographic order will override the other adaptation. More feature-rich

CRDTs like Automerge [29] and Yjs [55] support ordered CRDT arrays in the form

of linked lists where concurrent updates can be merged based on the neighboring ele-

ments that they reference. We forego this feature because awareness updates are often

scoped or completely replace the previous value. Adding this feature would require

managing a queue of causally related array insertions, adding additional performance

and memory overhead to the Shelf data structure. Additionally, most CRDT se-

quence types require preserving deleted values as tombstones, which would increase

the size of ShelfAware during rapid updates. We decided to refrain from implement-

ing this feature to preserve our design principles, allowing developers to use other

industry-standard CRDTs to provide this data type.

ShelfAware keeps a minimal memory footprint by overwriting older values with new

updates. This means that our Shelf CRDT does not have an easily accessible lineage,

like the partially ordered hash graphs provided by Automerge [36]. Consequentially,

ShelfAware can show the current state but not how it was achieved. If this is a desired

feature, developers can store all outgoing delta updates for the duration of interest,

order them based on local timestamps, and merge each delta sequentially to produce

the partial Shelf states at each point in history.
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Additionally, the Shelf data structure is not robust to denial of service attacks which

can prevent users from updating a Shelf Value. For example, bad actors could hijack

the local set operation to produce an update with the logical clock set at the maximum

integer value. Such an attack would prevent all other users from updating the value

since the logical clock of the malicious update would always be higher than the new

updates.

Figure 3.5: Update Limitation Example
Concurrent increments should lead to the result X=3, but this is not communicated

effectively with get and set operations alone
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Finally, ShelfAware Shelves do not have a local update operation to change a value

in place atomically. For example, operation-based CRDTs can effectively handle

concurrent updates, preserving concurrent counter increments across multiple users.

We can approximate these updates with subsequent get and set operations. However,

this operation done on other clients will not result in the correct merging of concurrent

increments (Figure 3.5). Support of custom nested CRDTs would address this issue,

which we will cover in the Future Work section.
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Chapter 4

IMPLEMENTATION

In this chapter, we will apply our methods to a concrete implementation of the

ShelfAware library. First, we will address the decision process behind our host lan-

guage and describe the structure of our core Shelf and Awareness data types. Then

we will examine our WebAssembly (WASM) language bindings and the specialized

data structures that emerge as an extension of our core library.

4.1 Programming Language

We built ShelfAware with the Rust programming language to prioritize correctness

and performance. Rust supports exhaustive compile-time verification, an expressive

trait system, impressive execution times, and compatibility with other programming

languages, which make it ideal for developing CRDTs. Rust’s pattern-matching syn-

tax enforces complete pattern verification at compile time. For complicated oper-

ations like merges, this feature ensures that all merge possibilities are covered as

intended. Rust’s trait system allows us to loosely constrain the components of our

CRDT by their properties instead of requiring adherence to a specific inheritance hi-

erarchy. The native trait definitions for Partial Ordering (PartialEq and PartialOrd),

often implemented for comparison purposes on user types, allow many data types to

work with ShelfAware by default. Alongside these helpful development features, we

chose Rust due to its impressive performance. Rust can produce faster and more

memory-efficient programs for particular tasks than C++, the industry-standard

language for computing heavy applications like gaming and image processing [11].
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Finally, Rust supports many libraries for binding Rust code to other programming

languages. We used these capabilities to compile ShelfAware to WebAssembly and

run it in the browser alongside web applications [28]. Other CRDT libraries have used

these language bindings to port their data structures from Rust to Python [76] and

Ruby [52]. In summary, Rust provides powerful advantages in software architecture,

flexibility, and performance, making it an ideal host language for ShelfAware.

4.2 Shelf

The base data structure of ShelfAware is the Shelf. In its abstract form, the Shelf

holds partially ordered data that can be sequenced by partially ordered clocks. In

code, our Shelf is defined as follows:

Listing 4.1: Shelf structural definition in Rust

pub enum Shelf<T, MapClock, ValueClock>

where

T: PartialEq + PartialOrd,

MapClock: PartialEq + PartialOrd

+ PartialOrd<ValueClock> + PartialEq<ValueClock>,

ValueClock: PartialEq + PartialOrd

+ PartialOrd<MapClock> + PartialEq<MapClock>,

{

Value {

value: T,

clock: ValueClock,

},

Map {
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shelves: HashMap<String, Shelf<T, MapClock, ValueClock>>,

clock: MapClock,

},

}

This enumeration type defines a Shelf as a Map of Shelves or a leaf Value. The

clocks associated with these options can differ, but they must be partially ordered

with respect to each other and themselves. We support differing clocks for each Shelf

subtype because the update process differs between the Value and Map. The merging

algorithm recursively combines concurrently updated Maps, while concurrent Value

updates rely on the content’s type ordering to determine which update overwrites

the other. During the delta update process, we only need to know the Lamport

timestamp associated with Maps. However, we must have uniquely identifying clock

information for the Values to determine whether the communicating clients reference

identical Shelf contents, or if they have produced concurrent updates. Shared values

can be pruned from the delta update, while concurrent changes must be included

in the update payload. These differing requirements lead us to use simple Lamport

timestamps for the Map and dot clocks or secure clocks for the Value subtype. The

contents of Value must be partially ordered to resolve concurrent updates.

During instantiation, the Shelf recursively wraps the key/value mappings of the pro-

vided contents so that each Value is tracked independently. The contents of the Shelf

are only mutably accessed through the set and merge methods, because the clock

value is causally tied to the state of the Shelf contents. However, the contents are ac-

cessible immutably via the get method. Rust enforces immutability at compile time,

so the Shelf contents are protected from unexpected mutations. Developers can still

52



clone the Shelf contents via this reference if they need to manipulate a copy of the

Value.

The immutable operations and delta update process remain generic across all types of

ShelfAware Shelf CRDTs. However, mutable operations require specific logic to incre-

ment each type of clock. We provide a ClockGenerator trait, which abstracts this logic

from the Shelf implementation. ClockGenerators require two methods: new clock()

and next clock(clock), which specify how clocks should be created and updated. We

use this trait to instantiate new Shelves that contain Lamport timestamps and dot

clocks.

4.3 Awareness

The Awareness structure is a specialization of the Shelf data type. It provides user-

scoped read/write access to a Shelf instance and immutable access to the state of

peers. In addition to the standard get and set operations, which default to the

current user’s scope, Awareness provides utilities to iterate over all peer Shelves or

get the Shelf contents of a specific peer. This structure is ideal for sharing client-

specific awareness data like cursor position, text range selection, or reactions. A

typical implementation pattern for mapping awareness data to an application would

be to iterate over all peers in the Awareness structure and map the internal data to

UI components for presentation.

The Awareness structure can take advantage of an additional memory optimization.

Since each Shelf has client-scoped write access, we can guarantee that there will never

be concurrent updates to a Shelf on separate nodes. Therefore, we can use Lamport

timestamps for both the Shelf Maps and Values, reducing the clocks’ memory impact

and comparison overhead.
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Internally, Awareness stores all clients in a single Shelf, which allows it to use the

delta update and merge process from the Shelf implementation.

4.4 WebAssembly Library Support

Building on the foundational library support for Rust development, we created We-

bAssembly bindings allowing ShelfAware to work in the browser for web applications.

We made this extension for several reasons. First, JavaScript is a common host

language for CRDTs. There are more than twice as many CRDT-related repositories

on GitHub written in JavaScript than any other programming language 1. We wanted

ShelfAware to be accessible to the broader developer community in the language of

their choice. Furthermore, we wanted to benchmark ShelfAware against other CRDT

implementations in a consistent environment. Since our competitors are browser-

based CRDTs, we needed to make our system work in the browser in order for it to

function as a suitable companion or substitute library. Lastly, we wanted to verify

that ShelfAware could run effectively on different compile targets.

Our WebAssembly bindings open ShelfAware to a variety of uses. It can be the ac-

companying awareness CRDT alongside popular text-editing CRDTs like Automerge

and Yjs. It can run both in the browser to track client-side interactions or as a

minimalistic information storage system in Node.js server applications.

The following subsections detail the data structures provided by the WebAssembly

library. Since our library is compiled before interacting with the JavaScript runtime,

we collapsed our generic Shelf implementation into several defined classes. These

specialized Shelf structures are the DotShelf, Awareness, and SecureShelf.

1Based on the combined repository results of search queries “CRDT” and “Conflict-free replicated
data type” on github.com on Feb 18, 2023
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4.4.1 Dot Shelf

The DotShelf is a general-purpose Shelf CRDT implementation for collaborative mu-

table access to the entire state of the Shelf. It stores JSON data types, using dot

clocks for its leaf values and Lamport timestamps to track the state of Shelf Maps.

This data structure aims to provide a thin wrapper around a Shelf implementation

that can be leveraged for various applications.

4.4.2 Awareness

The Awareness class wraps the native ShelfAware Awareness structure, exposing

its interface to the JavaScript library. This class would be a drop-in solution for

awareness use cases. Its API structure was inspired by the Yjs Awareness API,

allowing it to be used as a tool in similar environments.

4.4.3 Secure Shelf

The SecureShelf is a specialization of the Shelf structure that uses secure clocks to

track leaf values and Lamport timestamps for Shelf Maps. Secure Shelves are used

to safeguard the operational capacity of the Shelf CRDT in byzantine environments.

Internally it uses hashes to ensure that clock and value pairs remain valid during the

delta update process.

4.5 Testing

We developed a test suite to ensure the ShelfAware library operates as expected. Ver-

ifying the correctness of a CRDT can be challenging due to the number of interacting
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types and nested structures. For foundational compliance, we wrote unit tests to

verify the update, merge, and type ordering mechanisms. However, we suspect that

our fundamental test cases did not cover edge cases that may occur in deeply nested

data structures.

To cover these cases, we designed a JSON fuzzer, which could construct random JSON

trees holding a vast range of values confined by parameterized uniform distributions.

Fuzzers are often used in the design of programming languages to ensure that com-

pilers can accept all types of inputs within a language specification [19]. We adopted

this idea to verify that ShelfAware could accept any valid JSON input.

With this utility, we generated content for thousands of Shelf CRDT instances and

performed a complete update cycle between permutations of these CRDTs. We then

apply a previously integrated cached delta to the merged results. By testing the

equality of these merged Shelf CRDTs, we ensure that our implementation upholds

the core requirements of a CRDT: that it exchanges commutative, associative, and

idempotent updates, converging to a consistent representation. These tests are pub-

licly available in the project repository 2.

2https://github.com/Waidhoferj/thesis/blob/main/shelf-crdt/src/wrap_crdt.rs
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Chapter 5

EXPERIMENTS

In this chapter, we will describe the benchmarks we developed to determine the rela-

tive efficacy of the ShelfAware framework compared to other industry-grade CRDTs.

Our system is optimized for high-frequency read/write environments that require

low-memory overhead for messages and local CRDT storage. Therefore, we created

the memory and performance benchmark suite with these design principles in mind.

Ideally, our system should be able to operate faster with less memory overhead than

the competing CRDTs.

We ran all benchmarks on a 2021 MacBook Pro with an M1 Max chip.

5.1 Hypotheses

We designed these experiments to test the following hypotheses, which are based on

our performance and memory impact design goals:

• The update size of ShelfAware will be smaller than other CRDTs.

• ShelfAware will have a smaller memory footprint than other CRDTs.

• ShelfAware will be able to perform local mutations faster than other CRDTs.

5.2 Competing Frameworks

We chose to benchmark ShelfAware against Automerge and the Yjs Awareness CRDT.
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Automerge is a popular operation-based CRDT for text editing [29]. We wanted to

verify that our implementation performed better for awareness use cases since Au-

tomerge offers a more general-purpose, feature-rich CRDT interface. If our system

outperforms Automerge, we can justify the design trade-offs we made for our special-

ized use case.

The Yjs Awareness CRDT is a simple and effective awareness CRDT designed to

accompany the featureful Yjs library [25]. It is a state-based CRDT that operates

like a Last-Write Wins Register CRDT [61] , scoped to each user. This design keeps

the CRDT overhead low since only a single clock is required per user to track all

awareness data. However, this approach requires users to send their entire awareness

state to their peers for every update. Our delta-state approach is designed to improve

upon this practice, sending only the differences between client states with each up-

date. If our system outperforms the Yjs Awareness CRDT, we demonstrate that the

additional complexity of the delta state update process is a worthwhile optimization.

5.3 Performance Benchmarks

The performance benchmarks measure how quickly each CRDT can perform essential

operations. The performance of these operations is crucial in our awareness use case,

where the application may update and sample awareness data at millisecond frequency

to update the user interface. Slow operations may delay the UI rendering process,

leading to frustrating periods of inactivity for the user.

We measured performance in operations per second. More efficient programs will be

able to perform more operations per second. We developed the following tests to

benchmark each CRDT:
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• Insertion Performance: The speed at which the CRDT can perform nine thou-

sand top-level key-value insertions.

• Merge Performance: The speed at which the CRDT can encode, decode, and

merge a batch of updates. To promote a large delta, we merge values from a

larger randomly generated JSON tree into a smaller tree. We initialize a small-

Fuzzer with a depth range of 2-4 and a branch range of 0-3. The largeFuzzer is

initialized with a depth range of 3-5 and a branch range of 1-5.

To keep the benchmarking environment consistent, we compared our WebAssem-

bly DotShelf implementation to the competing CRDTs in a Node.js runtime using

JavaScript’s standard performance module. We cycled each benchmark three times

as a warm-up round to stabilize cache coherence before recording results. The final

test results are an average of seven simulations to measure expected performance.

Each simulation allows for an initialization phase before measuring the critical code

juncture for performance. Initialization involves setting each CRDT with random

JSON values so that the benchmarks emulate a system in active use. We hold these

initial values constant across each simulation and between CRDTs in the same bench-

mark. The warm-up rounds and simulations occur sequentially within each CRDT to

prevent any influence from uncollected heap allocations marked by other contenders.

5.4 Memory Benchmarks

The memory benchmarks measure the size of the CRDT and its updates during dif-

ferent use case scenarios. Measuring memory usage is essential because developers

integrate CRDTs into local-first software, which means the system needs to work

on many different hardware devices. Mobile devices, for example, are memory con-

strained. These benchmarks provide insight into how efficiently each CRDT uses
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the host’s memory resources. Each benchmark compares the size of the target data

structure in bytes. To determine the size of CRDT update packages, we encode the

update into a byte-array and measure the array size.

To compare the full size of the CRDT, we use the object-sizeof JavaScript utility

library. This library estimates the size of JavaScript data structures by serializing

them into JSON and estimating the size of each data type. Unfortunately, some

structures are untraceable by the library, so we performed the following adaptations

to improve the accuracy of the memory estimation:

• We call the children of JavaScript Maps explicitly with object-sizeof, since the

library ignores them by default. Without this approach, CRDTs appear to be

smaller than the values they contain, which is impossible.

• The size of values stored in WASM are calculated with Rust’s standard data

structure size calculator [64]. Without this approach, WASM-based classes

appear minuscule since JavaScript cannot directly traverse all properties on

WASM data structures.

Table 5.1: JSON Fuzzer Parameters

Parameter Range
Depth 3..5

Branches 1..4
Leaves 300..500

JSON fuzzer parameters used to generate random JSON trees for performance and
memory benchmarks.

We tested the memory usage of each CRDT under the following scenarios:

• Size After Deletion: The size of the CRDT (including metadata and data) and

delta update size after all data has been deleted. Size after deletion shows the
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prunability of the CRDT. Ideally, deleted values should not contribute to the

CRDT’s metadata overhead.

• Random Update Size: The size of the delta update between two randomly

generated CRDTs as an encoded byte array. This test emulates a scenario

where a client requests an update after being disconnected from the network

for an extended period.

• Single Update Size: The size of the delta update between two CRDTs that

differ by only a single value. This benchmark exemplifies the memory impact of

update passing in a low-latency network. Awareness updates are small, rapidly

changing data packages, similar to the updates in this test.

We performed each benchmark for one thousand iterations. At every iteration, the

CRDTs were prepopulated with a randomly generated JSON tree from our JSON

fuzzer. We seeded the fuzzer so that each CRDT was tested with the same randomly-

generated sequence of trees. The fuzzer generates trees by sampling from a provided

range of values to determine the depth, level-wise branching factor and level-wise leaf

count. See Table 5.1 for details about the fuzzer parameterization.
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Chapter 6

RESULTS

In this chapter, we discuss the results of the experiments outlined in the previous

chapter. We will begin by comparing the performance and memory impact of our

DotShelf implementation to Automerge and Yjs Awareness. Then we will run the

same set of benchmarks on each specialized Shelf type in our WebAssembly library

(DotShelf, Awareness and SecureShelf) to determine the trade-offs of using each im-

plementation.

6.1 Memory Benchmark Analysis

This section discusses the results of the memory-related benchmarks. These tests

focused on the size of the CRDT in memory, and the updates passed between the

CRDTs.

Table 6.1: Memory Benchmark Results

CRDT

Benchmark Automerge Yjs Awareness DotShelf (Ours)

Update Size - Single Change (avg B) 122 127491 69

Update Size - Complete Deletion (avg B) 121 6 56

Update Size - Random Merge (avg KB) 74.3 127.4 254.9

CRDT Size - Random JSON (KB) 18873.8 537.3 495.0

CRDT Size - Complete Deletion (KB) 4376.9 48.7 0.034

6.1.1 Update Size

Our Update Size benchmarks tested the byte length of encoded updates from each

CRDT during a complete content deletion, a single change, and a merging to two
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heterogeneous JSON trees. The results of these tests can be found in Table 6.1. We

summarize our findings below:

• ShelfAware had half the delta size as Automerge for the complete deletion and

single change test variants. Due to its feature-rich interface, Automerge updates

require more information for minor updates than our ShelfAware CRDT. For

awareness use cases with rapid, incremental updates, application programmers

can leverage ShelfAware to reduce the total network communication load.

• Yjs Awareness has a lower memory overhead during complete deletion than

ShelfAware. This advantage is likely due to the efficiency of the Yjs update rep-

resentation. ShelfAware deltas include structural information about the CRDT

that is extraneous for complete deletion operations.

• ShelfAware has a fractional single change cost compared to Yjs Awareness.

Since Yjs Awareness uses a classic state CRDT, it must include all stored values

in every update. Therefore, large, frequently updated state trees can drastically

increase the number of network packets that clients need to share. In contrast,

ShelfAware communicates updates as small deltas, which consume far fewer

network resources.

• ShelfAware produces larger updates when merging two mostly divergent CRDTs.

This result stems from several key architectural differences. ShelfAware relies on

deltas to keep the memory impact of its updates small. However, two divergent

Shelves must share most of their state, negating this advantage. Furthermore,

ShelfAware keeps track of each element with a clock, which introduces additional

overhead compared to the single clock system of Yjs awareness. Additionally,

Yjs and Automerge use specialized run-length encoding schemes to reduce the

size of their delta updates. ShelfAware uses a standard binary encoding system
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Figure 6.1: Random Merge
Update size of a merge between two randomly generated CRDTs

without any domain-specific optimizations. A specialized encoding scheme for

ShelfAware could reduce the size of large delta updates.

Reflecting on Hypothesis 1, we can confirm that ShelfAware produces the smallest

single change delta updates. Therefore, in this area, we can accept the hypothesis.

However, Yjs produces smaller complete deletion updates than ShelfAware. Addition-

ally, ShelfAware produces the largest update size while merging heterogeneous states.

Therefore, we must reject the hypothesis in these scenarios. Heterogeneous merging

and complete deletion occur when clients come online and offline. These are one-time

operations that begin and end the user lifecycle, while single change updates fre-

quently occur throughout the user experience. This frequency difference means that

ShelfAware will be the optimal choice for reducing the size of most updates passed

through the network.
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Figure 6.2: Single Update
Size of message between CRDTs after a single change and after a complete content

deletion. Smaller initialization data was used to keep the Yjs update size from
overshadowing the scale difference between Automerge and DotShelf.

6.1.2 CRDT Size

Our CRDT Size benchmarks track the memory footprint of each contender’s data

structures. We examined the size of each contender after initialization with a ran-

domly generated JSON tree and the size after complete content deletion. Table 6.1

details our findings. We provide an analysis below:

• ShelfAware has less metadata overhead than the other CRDTs. Yjs Awareness

works in tandem with a Yjs Document, which adds to the size requirement of

the CRDT. Automerge keeps a record of past updates in a dependency graph,

which makes its metadata overhead grow over time. The primary metadata

cost of a ShelfAware CRDT is the clock associated with each value, which is

approximately the size of two integers.
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• ShelfAware is far smaller after a complete deletion than other CRDTs. Unlike

Automerge, ShelfAware is completely pruneable so the CRDT can erase any

metadata associated with the removed data. As a result, ShelfAware can adjust

its memory usage proportionally to the data it represents instead of the number

of updates it receives.

Based on our findings, we can accept Hypothesis 2. ShelfAware proved to be the most

space-efficient candidate when representing a random JSON tree and the smallest

upon complete deletion of its contents. The sizable difference in memory overhead

between a feature-rich CRDT like Automerge allows ShelfAware to be a low-impact

companion to Automerge for communicating awareness information.

We advise the reader to approach our measurements of the Automerge CRDT size

with skepticism. The memory size we report reflects the analysis from object-sizeof,

a widely used JavaScript memory measurement package. However, we suspect that

cyclic references within the cache structure of Automerge are causing objects to be

counted multiple times during the memory analysis. With this in mind, the actual

CRDT size for Automerge is likely much smaller. Even so, the lineage graph of the

Automerge system necessitates more data storage than our CRDT, which stores only

the latest values for each Shelf.

6.2 Performance Benchmark Analysis

Table 6.2: Performance Benchmark Results

CRDT
Benchmark Automerge Yjs Awareness DotShelf (Ours)

Inserts (ops/sec) 30 74 67132
Merges (ops/sec) 2903 47080 134366
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Figure 6.3: CRDT Size After Deletion
Size difference between Yjs Awareness and our DotShelf after complete deletion of a

large JSON tree of contents. Automerge is excluded due to its large scale.

Figure 6.4: CRDT Size
Size difference between Yjs Awareness and our DotShelf after being initialized with
the same randomly generated JSON tree. Automerge is excluded due to its large

scale.
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Figure 6.5: Merge Benchmark
Performance of merging updates locally between two nodes

In this section, we review the mutation performance of each CRDT, specifically the

merge and set operations. We summarize our findings below:

• ShelfAware was four times faster duringmerge operations than the other CRDTs.

• ShelfAware was orders of magnitude faster during set operations than the other

CRDTs.

Based on these findings, we can confirm Hypothesis 3. ShelfAware provides a faster

interface to update data than the other CRDTs. Several possible causes exist for the

significant performance difference between ShelfAware and the other CRDTs. First,

ShelfAware executes most of the business logic inside the WebAssembly runtime. As

a result, ShelfAware Shelves take advantage of the performance of the Rust program-

ming language, which can be nine to thirteen times faster than pure JavaScript while
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completing computationally expensive operations [40]. Second, ShelfAware operates

in a stricter environment than both other CRDTs. WebAssembly bindings ensure

that ShelfAware takes complete ownership of an object when passed to the CRDT.

After the data has been copied to the WASM runtime, we can pass ownership of that

data between Shelves without a reference counter while ensuring exclusive access.

In contrast, Yjs Awareness holds non-exclusive references to internal data. When

it performs a set operation, Yjs Awareness initializes a new copy of the parent ob-

ject, which requires an O(N) copy of the child references. Adding a new key under

this paradigm can be computationally expensive for large flat objects. Third, the

state delta process necessitates fewer operations during the merge process since only

a subset of the data is sent, deserialized, and compared to the local Shelf.

6.3 ShelfAware Internal Benchmarks

In this section, we will test the three ShelfAware data structures from the WebAssem-

bly library using the performance and memory benchmarks from the previous section.

We will discuss how the optimizations made for each data structure are reflected in

the results.

Table 6.3: Internal ShelfAware Benchmark Results

CRDT

Benchmark Awareness Dot Shelf Secure Shelf

Inserts (ops/sec) 58216 67132 61922

Merges (ops/sec) 91221 134366 67820

CRDT Size - Random JSON (KB) 440 494 604

CRDT Size - Complete Deletion (B) 54 34 34

Update Size - Complete Deletion (avg B) 85 56 56

Update Size - Random Merge (avg KB) 220 254 254

Update Size - Single Change (avg B) 90 69 69
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6.3.1 Performance Benchmarks

The Dot Shelf was the most performant for both merges and insertions. This result

is to be expected because the other data structures are based on the DotShelf with

additional complexities. For example, the Awareness structure tracks client infor-

mation, adding an additional layer of indirection. Even so, the Awareness structure

has a partial advantage in clock comparison since all of its clocks are simple Lam-

port timestamps. The Secure Shelf must hash its contents before merging, adding

additional operations to each integration.

While Awareness outperformed the Secure Shelf in merges, the Secure Shelf had a

faster element insertion speed. This result shows that the additional layer of client

indirection can produce a noticeable difference during rapid insertions on a shallow

Shelf data structure.

Merge performance was the most variable across the Shelves, while the spread of

insertion performance was minimal. A key takeaway is that adding clock hashing to

support the Secure Shelf can cut the merge performance in half. If the deployment

environment is secure, there is a significant performance advantage in choosing the

Dot Shelf over the Secure Shelf.

6.3.2 Memory Benchmarks

The CRDT size benchmarks illustrate the trade-offs of the Awareness structure. For

the Random JSON initialization, Awareness had the smallest memory footprint. This

finding is partly due to the structure’s clock size being half its competitors’ size.

Therefore, Awareness’s overall memory footprint will grow slower than the size of

Shelf data structures with more complex clocks. However, during the CRDT Size
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Complete Deletion test, the additional client overhead of Awareness made the default

size larger than its competitors. Fortunately, this is a fixed memory cost attributed to

the client identifying information stored on each instance. The Secure Shelf performed

identically to the Dot Shelf after content deletion, but the larger hash clocks added

apparent bulk during the Random JSON test. Therefore, a space cost is associated

with using Secure Clocks compared to dot clocks.

The update size benchmarks showed a similar trend. The Awareness structure pro-

duced a smaller update for the larger Random Merge delta, partially due to its smaller

clock size. However, it produced larger delta state updates for Complete Deletion and

Single Merge due to the additional client-related information attached to these up-

dates. Surprisingly, the Dot Shelf and the Secure Shelf had identical update sizes for

all three delta tests. This result is strange, given the apparent difference in clock sizes

in the CRDT Size tests.

In summary, the Awareness structure is the most scalable ShelfAware implementation,

with a small fixed overhead. However, the Secure Shelf has an additional memory cost,

one which does not transfer to its delta updates. The Dot Shelf performs similarly to

the Secure Shelf, with a lower memory impact when it contains smaller values.

6.4 Conclusion

We present ShelfAware as an efficient solution for communicating awareness in col-

laborative applications. Our system prioritizes performance and memory by applying

critical optimizations, including pruning and delta-state updates. In addition, we offer

a standalone open-source library written in Rust for developers to apply these con-

cepts in their applications. Atop the library, we provide WebAssembly bindings that

enable developers to leverage ShelfAware data types in the browser. The ShelfAware
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ecosystem provides a Shelf CRDT implementation with modular value and clock

components. We demonstrate extensions of this data structure with Awareness and

Secure Shelf implementations for specialized use cases. Finally, we present a bench-

mark analysis of these data structures compared to production-grade CRDTs and

demonstrate the advantages of our ShelfAware system.

6.5 Future Work

There are several improvements that we can make to our Shelf CRDT. First, we want

to extend the Shelf implementation to support nested CRDTs through an update and

merge interface. We are interested in how this feature would enable developers to use

the Shelf as a building block for more complex CRDT implementations. We want to

explore a specialized encoding schema using run-length encoding to reduce the size of

our delta updates. Additionally, further testing in a distributed cluster environment

would provide more insight into how this system would behave in a production setting.

The Shelf interface could benefit from different update strategies, including an eager

delta system that records updates as they occur in order to compile delta Shelves

without performing a state vector comparison. Finally, we are interested in exploring

parallelization techniques to improve the performance of the update process.
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