73 research outputs found

    Dynamic real-time hierarchical heuristic search for pathfinding.

    Get PDF
    Movement of Units in Real-Time Strategy (RTS) Games is a non-trivial and challenging task mainly due to three factors which are constraints on CPU and memory usage, dynamicity of the game world, and concurrency. In this paper, we are focusing on finding a novel solution for solving the pathfinding problem in RTS Games for the units which are controlled by the computer. The novel solution combines two AI Planning approaches: Hierarchical Task Network (HTN) and Real-Time Heuristic Search (RHS). In the proposed solution, HTNs are used as a dynamic abstraction of the game map while RHS works as planning engine with interleaving of plan making and action executions. The article provides algorithmic details of the model while the empirical details of the model are obtained by using a real-time strategy game engine called ORTS (Open Real-time Strategy). The implementation of the model and its evaluation methods are in progress however the results of the automatic HTN creation are obtained for a small scale game map

    Trajectory Planning on Grids: Considering Speed Limit Constraints

    Get PDF
    Trajectory (path) planning is a well known and thoroughly studied field of automated planning. It is usually used in computer games, robotics or autonomous agent simulations. Grids are often used for regular discretization of continuous space. Many methods exist for trajectory (path) planning on grids, we address the well known A* algorithm and the state-of-the-art Theta* algorithm. Theta* algorithm, as opposed to A*, provides ‘any-angle‘ paths that look more realistic. In this paper, we provide an extension of both these algorithms to enable support for speed limit constraints.We experimentally evaluate and thoroughly discuss how the extensions affect the planning process showing reasonability and justification of our approach

    Simulation and Comparison of Efficency in Pathfinding algorithms in Games

    Get PDF
    There are several routes to go from point A to point B in many computer games and computer player have to choose the best route. To do this, the pathfinding algorithms is used. Currently, several algorithms have been proposed for routing in games so that the general challenges of them is high consumption of memory and a long Execution time. Due to these problems, the development and introduction of new algorithms will be continued. At the first part of this article, in addition to basic and important used algorithms, the new algorithm BIDDFS is introduced.In the second part, these algorithms in the various modes, are simulated on 2D-Grid, and compared based on their efficency (memory consumption and execution time) , Simulated algorithms include: Dijkstra, Iddfs, Biddfs, Bfs (Breadth), Greedy Best First Search, Ida*, A*, Jump point search, HPA*

    Symmetry-Based Search Space Reduction For Grid Maps

    Full text link
    In this paper we explore a symmetry-based search space reduction technique which can speed up optimal pathfinding on undirected uniform-cost grid maps by up to 38 times. Our technique decomposes grid maps into a set of empty rectangles, removing from each rectangle all interior nodes and possibly some from along the perimeter. We then add a series of macro-edges between selected pairs of remaining perimeter nodes to facilitate provably optimal traversal through each rectangle. We also develop a novel online pruning technique to further speed up search. Our algorithm is fast, memory efficient and retains the same optimality and completeness guarantees as searching on an unmodified grid map

    The FastMap Algorithm for Shortest Path Computations

    Full text link
    We present a new preprocessing algorithm for embedding the nodes of a given edge-weighted undirected graph into a Euclidean space. The Euclidean distance between any two nodes in this space approximates the length of the shortest path between them in the given graph. Later, at runtime, a shortest path between any two nodes can be computed with A* search using the Euclidean distances as heuristic. Our preprocessing algorithm, called FastMap, is inspired by the data mining algorithm of the same name and runs in near-linear time. Hence, FastMap is orders of magnitude faster than competing approaches that produce a Euclidean embedding using Semidefinite Programming. FastMap also produces admissible and consistent heuristics and therefore guarantees the generation of shortest paths. Moreover, FastMap applies to general undirected graphs for which many traditional heuristics, such as the Manhattan Distance heuristic, are not well defined. Empirically, we demonstrate that A* search using the FastMap heuristic is competitive with A* search using other state-of-the-art heuristics, such as the Differential heuristic

    Hierarchical path-finding for Navigation Meshes (HNA*)

    Get PDF
    Path-finding can become an important bottleneck as both the size of the virtual environments and the number of agents navigating them increase. It is important to develop techniques that can be efficiently applied to any environment independently of its abstract representation. In this paper we present a hierarchical NavMesh representation to speed up path-finding. Hierarchical path-finding (HPA*) has been successfully applied to regular grids, but there is a need to extend the benefits of this method to polygonal navigation meshes. As opposed to regular grids, navigation meshes offer representations with higher accuracy regarding the underlying geometry, while containing a smaller number of cells. Therefore, we present a bottom-up method to create a hierarchical representation based on a multilevel k-way partitioning algorithm (MLkP), annotated with sub-paths that can be accessed online by our Hierarchical NavMesh Path-finding algorithm (HNA*). The algorithm benefits from searching in graphs with a much smaller number of cells, thus performing up to 7.7 times faster than traditional A¿ over the initial NavMesh. We present results of HNA* over a variety of scenarios and discuss the benefits of the algorithm together with areas for improvement.Peer ReviewedPostprint (author's final draft

    A simulator for the learning of the HPA* PATHFINDING algorithm

    Get PDF
    El problema de búsqueda de caminos en tiempo real es de suma importancia en los videojuegos. El coste computacional requerido por el algoritmo A*, uno de los más conocidos, aumenta considerablemente cuanto mayor es el espacio de búsqueda, y es por ello que surgen alternativas como el algoritmo HPA* (Hierarchical Path-Finding A*), con el que se reduce el esfuerzo computacional obteniéndose una muy buena aproximación de la solución óptima. Este proyecto consiste en el desarrollo de una aplicación didáctica creada en Java, para simular y mostrar el comportamiento de los algoritmos A* y HPA*. Al mismo tiempo, se han obtenido resultados experimentales para testear el programa y comparar el rendimiento entre ambos algoritmos de pathfinding, llegando a la conclusión de que HPA* supera a A* en cuanto a velocidad y menor cantidad de número de nodos expandidos, con un error mínimo en el resultado. Asimismo, se realiza una comparativa del tiempo consumido en distintas fases que conforman al algoritmo HPA*

    Pathfinding Algorithm Efficiency Analysis in 2D Grid

    Get PDF
    The main goal of this paper is to collect information about pathfinding algorithms A*, BFS, Dijkstra's algorithm, HPA* and LPA*, and compare them on different criteria, including execution time and memory requirements. Work has two parts, the first being theoretical and the second practical. The theoretical part details the comparison of pathfinding algorithms. The practical part includes implementation of specific algorithms and series of experiments using algorithms implemented. Such factors as various size two dimensional grids and choice of heuristics were taken into account while conducting experiments
    corecore