18,118 research outputs found

    Sparse Active Rectangular Array with Few Closely Spaced Elements

    Full text link
    Sparse sensor arrays offer a cost effective alternative to uniform arrays. By utilizing the co-array, a sparse array can match the performance of a filled array, despite having significantly fewer sensors. However, even sparse arrays can have many closely spaced elements, which may deteriorate the array performance in the presence of mutual coupling. This paper proposes a novel sparse planar array configuration with few unit inter-element spacings. This Concentric Rectangular Array (CRA) is designed for active sensing tasks, such as microwave or ultra-sound imaging, in which the same elements are used for both transmission and reception. The properties of the CRA are compared to two well-known sparse geometries: the Boundary Array and the Minimum-Redundancy Array (MRA). Numerical searches reveal that the CRA is the MRA with the fewest unit element displacements for certain array dimensions.Comment: 4+1 pages, 5 figures, 1 tabl

    Mission Concept for the Single Aperture Far-Infrared (SAFIR) Observatory

    Full text link
    The Single Aperture Far-InfraRed (SAFIR) Observatory's science goals are driven by the fact that the earliest stages of almost all phenomena in the universe are shrouded in absorption by and emission from cool dust and gas that emits strongly in the far-infrared and submillimeter. Over the past several years, there has been an increasing recognition of the critical importance of this spectral region to addressing fundamental astrophysical problems, ranging from cosmological questions to understanding how our own Solar System came into being. The development of large, far-infrared telescopes in space has become more feasible with the combination of developments for the James Webb Space Telescope and of enabling breakthroughs in detector technology. We have developed a preliminary but comprehensive mission concept for SAFIR, as a 10 m-class far-infrared and submillimeter observatory that would begin development later in this decade to meet the needs outlined above. Its operating temperature (<4K) and instrument complement would be optimized to reach the natural sky confusion limit in the far-infrared with diffraction-limited peformance down to at least 40 microns. This would provide a point source sensitivity improvement of several orders of magnitude over that of Spitzer or Herschel, with finer angular resolution, enabling imaging and spectroscopic studies of individual galaxies in the early universe. We have considered many aspects of the SAFIR mission, including the telescope technology, detector needs and technologies, cooling method and required technology developments, attitude and pointing, power systems, launch vehicle, and mission operations. The most challenging requirements for this mission are operating temperature and aperture size of the telescope, and the development of detector arrays.Comment: 36 page

    Snapshot coronagraphy with an interferometer in space

    Full text link
    Diluted arrays of many optical apertures will be able to provide h igh-resolution snapshot images if the beams are combined according to the densified-pupil scheme. We show that the same principle can also provide coronagraphic images, for detecting faint sources near a bright unresolved one. Recent refinements of coronagraphic techniques, i.e. the use of a phase mask, active apodization and dark-speckle analysis, are also applicable for enhanced contrast. Implemented in the form of a proposed 50-500m Exo-Earth Discoverer array in space, the principle can serve to detect Earth-like exo-planets in the infra-red. It can also provide images of faint nebulosity near stars, active galactic nuclei and quasars. Calculations indicate that exo-planets are detectable amidst the zodiacal and exo-zodiacal emission faster than with a Bracewell array of equivalent area, a consequence of the spatial selectivity in the image.Comment: 23 pages, 10 figures, to appear in Icaru

    Observing---and Imaging---Active Galactic Nuclei with the Event Horizon Telescope

    Get PDF
    Originally developed to image the shadow region of the central black hole in Sagittarius A* and in the nearby galaxy M87, the Event Horizon Telescope (EHT) provides deep, very high angular resolution data on other AGN sources too. The challenges of working with EHT data have spurred the development of new image reconstruction algorithms. This work briefly reviews the status of the EHT and its utility for observing AGN sources, with emphasis on novel imaging techniques that offer the promise of better reconstructions at 1.3 mm and other wavelengths.Comment: 10 pages, proceedings contribution for Blazars through Sharp Multi-Wavelength Eyes, submitted to Galaxie

    Computational polarimetric microwave imaging

    Get PDF
    We propose a polarimetric microwave imaging technique that exploits recent advances in computational imaging. We utilize a frequency-diverse cavity-backed metasurface, allowing us to demonstrate high-resolution polarimetric imaging using a single transceiver and frequency sweep over the operational microwave bandwidth. The frequency-diverse metasurface imager greatly simplifies the system architecture compared with active arrays and other conventional microwave imaging approaches. We further develop the theoretical framework for computational polarimetric imaging and validate the approach experimentally using a multi-modal leaky cavity. The scalar approximation for the interaction between the radiated waves and the target---often applied in microwave computational imaging schemes---is thus extended to retrieve the susceptibility tensors, and hence providing additional information about the targets. Computational polarimetry has relevance for existing systems in the field that extract polarimetric imagery, and particular for ground observation. A growing number of short-range microwave imaging applications can also notably benefit from computational polarimetry, particularly for imaging objects that are difficult to reconstruct when assuming scalar estimations.Comment: 17 pages, 15 figure

    Array imaging of localized objects in homogeneous and heterogeneous media

    Get PDF
    We present a comprehensive study of the resolution and stability properties of sparse promoting optimization theories applied to narrow band array imaging of localized scatterers. We consider homogeneous and heterogeneous media, and multiple and single scattering situations. When the media is homogeneous with strong multiple scattering between scatterers, we give a non-iterative formulation to find the locations and reflectivities of the scatterers from a nonlinear inverse problem in two steps, using either single or multiple illuminations. We further introduce an approach that uses the top singular vectors of the response matrix as optimal illuminations, which improves the robustness of sparse promoting optimization with respect to additive noise. When multiple scattering is negligible, the optimization problem becomes linear and can be reduced to a hybrid-â„“1\ell_1 method when optimal illuminations are used. When the media is random, and the interaction with the unknown inhomogeneities can be primarily modeled by wavefront distortions, we address the statistical stability of these methods. We analyze the fluctuations of the images obtained with the hybrid-â„“1\ell_1 method, and we show that it is stable with respect to different realizations of the random medium provided the imaging array is large enough. We compare the performance of the hybrid-â„“1\ell_1 method in random media to the widely used Kirchhoff migration and the multiple signal classification methods
    • …
    corecore