
This is the Accepted Manuscript version of an article 
accepted for publication in Inverse Problems, 32(10), 
104003. 

IOP Publishing Ltd is not responsible for any errors or 
omissions in this version of the manuscript or any 
version derived from it.  The Version of Record is 
available online at:

https://doi.org/10.1088/0266-5611/32/10/104003

© IOP Publishing, 2016

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidad Carlos III de Madrid e-Archivo

https://core.ac.uk/display/395389605?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1088/0266-5611/32/10/104003


Array imaging of localized objects in homogeneous

and heterogeneous media

Anwei Chai1, Miguel Moscoso2 and George Papanicolaou3

1 Institute for Computational and Mathematical Engineering, Stanford University,

Stanford, CA 94305 USA
2 Gregorio Mill�an Institute, Universidad Carlos III de Madrid, Madrid 28911, Spain
3 Department of Mathematics, Stanford University, Stanford, CA 94305 USA

E-mail: anwei@math.stanford.edu, moscoso@math.uc3m.es,

papanico@math.stanford.edu

Abstract. We present a comprehensive study of the resolution and stability

properties of sparse promoting optimization theories applied to narrow band array

imaging of localized scatterers. We consider homogeneous and heterogeneous media,

and multiple and single scattering situations. When the media is homogeneous with

strong multiple scattering between scatterers, we give a non-iterative formulation to

�nd the locations and re
ectivities of the scatterers from a nonlinear inverse problem

in two steps, using either single or multiple illuminations. We further introduce

an approach that uses the top singular vectors of the response matrix as optimal

illuminations, which improves the robustness of sparse promoting optimization with

respect to additive noise. When multiple scattering is negligible, the optimization

problem becomes linear and can be reduced to a hybrid-ℓ1 method when optimal

illuminations are used. When the media is random, and the interaction with the

unknown inhomogeneities can be primarily modeled by wavefront distortions, we

address the statistical stability of these methods. We analyze the 
uctuations of the

images obtained with the hybrid-ℓ1 method, and we show that it is stable with respect

to di�erent realizations of the random medium provided the imaging array is large

enough. We compare the performance of the hybrid-ℓ1 method in random media to

the widely used Kirchho� migration and the multiple signal classi�cation methods.

AMS classi�cation scheme numbers: 34B27, 78A46, 78A48

Keywords: array imaging, multiple scattering, random media, sparse promoting

optimization, robustness, statistical stability

Submitted to: Inverse Problems



Imaging of localized objects 2

1. Introduction

The recent mathematical theory of compressed sensing [18, 19, 20, 11, 12] has been shown

to be very promising in a number of areas as diverse as medicine [29], biomedicine [37],

geophysics [39], radar [3], astronomy [6], or microscopy [40]. Most inverse problems

in these areas are considered to be underdetermined, meaning that we do not have

unique solutions and, therefore, it is apparently impossible to identify which one is

indeed the correct one. What makes compressed sensing at once interesting is that,

often, the sought solution is known to be structured in the sense that it is sparse or

compressible, which means that it depends upon a small number of parameters. This

additional information changes the imaging problem dramatically because we can exploit

the sparsity of the image and look for the simplest one that tends to be the right one.

In this paper, we study narrow-band, active array imaging of a small number

of localized scatterers using both single and multiple illuminations. The goal is to

determine the positions and re
ectivities of the scatterers from the echoes recorded at

an array of sensors when a few narrow band signals are sent to probe the medium.

By localized scatterers we mean scatterers whose diameter is small compared to the

wavelength. Hence, the Foldy-Lax approximation to the wave equation can be used to

model wave propagation in the medium [26, 27, 28]. The number of scatterers is small

because only a small portion of the region of interest is occupied by scatterers and,

thus, the image we wish to recover is sparse. We study the case in which the interaction

between the scatterers is strong so that multiple scattering is important, and the case

in which the interaction is small so that multiple scattering is negligible. We consider

imaging in homogeneous media and imaging in randomly inhomogeneous media with

signi�cant scattering from the inhomogeneities. We restrict this study to the case in

which the full waveform at the array is available for imaging, which means that in the

frequency domain both amplitudes and phases can be measured and recorded. For the

case in which the phases cannot be recorded we refer to [15, 22, 23, 13, 14, 32, 31].

In this work we consider narrow-band array systems and, therefore, the frequency

diversity content of the data measured at the array is very limited. There is an extensive

literature on imaging techniques that deal with this problem. Kirchho� migration [4],

matched �eld imaging [1], and Multiple Signal Classi�cation (MUSIC) [36] are among

the most used techniques. As in narrow-band array imaging the data is scarce, and

hence, there are in�nitely many con�gurations of scatterers that match the data set,

we formulate active array imaging as an optimization problem with constraints [16, 17].

When multiple scattering between the scatterers is important, the resulting problem is

nonlinear, and therefore, it is apparently impossible to solve the optimization problem

non-iteratively [17]. We show, however, that the nonlinearity can be avoided through

a two-step process that e�ectively linearizes the inverse problem. In the �rst step, we

treat the scatterers as equivalent sources and we recover their locations and strengths.

In the second step, once the locations of the scatterers are �xed, we recover their true

re
ectivities using a known relationship between the source strengths and the scatterer
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re
ectivities. This is an explicit relation that comes from the Foldy-Lax equations, given

the scatterer locations and the illumination.

When multiple scattering is signi�cant some scatterers may be obscured due to

screening e�ects. Therefore, not all the scatterers may be recovered from data generated

by a single illumination. Indeed, given an array illumination, multiple scattering may

reduce the e�ective illumination at certain locations due to destructive interferences of

secondary sources coming from all the scatterers. To mitigate this additional problem

of multiple scattering, we will discuss the use of multiple illuminations. The resulting

optimization problem with multiple illuminations will be formulated as a joint sparsity

recovery problem where we seek an unknown matrix whose columns share the same

support. Thus, we seek for solution vectors corresponding to di�erent illuminations

that have a common support but have possibly di�erent nonzero values.

The key point of the proposed two-step approach is the possibility of exact recovery

of the locations of the equivalent sources in the �rst step. We give conditions on the array

imaging setup and the measurement noise level under which the locations of the sources

can be recovered exactly. The uniqueness and stability of the solution are analyzed,

showing that the errors are proportional to the amount of noise in the data with a

proportionality factor that depends on the sparsity of the solution and the mutual

coherence of the sensing matrix [17]. These conditions are given for general imaging

con�gurations. Conditions on the resolution of the images that guarantee exact recovery

in the paraxial regime are derived in [21] for scatterers whose range is known. A more

general paraxial model with scatterers at di�erent ranges from the array is considered

in [10]. The interesting case of imaging scatterers with small o�-grid displacements

are studied in [24, 10]. In [24], a simple perturbation method is proposed to reduce

the gridding error for o�-grid scatterers. The authors in [10] also present a very nice

discussion on how to interpret the results obtained with ℓ1 minimization when modeling

errors due to o�-grid displacements are signi�cant.

For the case in which multiple scattering can be ignored, we introduce a hybrid

approach that combines the use of the singular value decomposition (SVD) of the data

matrix with ℓ1 minimization [16]. We use the top right singular vectors of this matrix

as illumination vectors to collect the data. Then, we project the data onto the subspace

spanned by the top left singular vectors to �lter out the unnecessary data and the noise,

and to reduce the dimension of the linear system. Finally, ℓ1 optimization is applied to

this reduced linear system to obtain the sparsest solution. This hybrid-ℓ1 method turns

out to be very useful when imaging in random media.

Imaging in random media is fundamentally di�erent from imaging in homogeneous

or smoothly varying media. When the medium is inhomogeneous we know, at best,

the large scale, but we cannot known the small scale structure. Hence, when the small

structure of a medium is important we model it as a random spatial process. In these

cases, it is essential to take into consideration the statistical stability of the images, which

refers to the robustness of the imaging methods with respect to di�erent realizations

of the medium. In fact, many of the usual imaging methods used in homogeneous
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(or smoothly varying) media fail, even for broadband signals and large arrays, because

the images become noisy and change unpredictably with the detailed features of the


uctuations of the medium. This is the case, for example, of the images obtained with

Kirchho� migration that depend on the particular realization of the random medium,

and thus, they become unstable. Statistical stability typically holds only in broadband,

we refer to [7, 8, 9] for details. Here, we consider narrow-band array systems. We show

that, in these cases, large arrays are essential to stabilize the images when the medium

is random. In particular, we show that the hybrid-ℓ1 method and MUSIC are e�cient

and robust when the arrays are large enough. We compare, using numerical simulations,

the images obtained with these methods with those obtained with Kirchho� migration.

The numerical simulations show that the hybrid-ℓ1 method becomes stable faster than

MUSIC as the array size increases. Kirchho� migration is, as expected, unstable even

for very large arrays.

The analysis of imaging in random media is done using a relatively simple random

phase model for the e�ects of the random medium. This model characterizes wave

propagation in the high-frequency regime in random media with weak 
uctuations and

small correlation lengths compared to the wavelength. It is widely used, for example, in

adaptive optics to compensate for rapidly changing distortions in the received wavefronts

due to the atmospheric turbulence caused by changing temperature and wind conditions.

The paper is organized as follows. In section 2, we formulate the array imaging

problem in homogeneous media when the multiple scattering is important. In section 3,

we describe the optimization methods that determine the locations and re
ectivities

of scatterers using a two-step non-iterative approach, with and without multiple

illuminations. In section 4, we consider the case where multiple scattering is negligible,

and we give a hybrid-ℓ1 method that improves the resolution of the image. In section 5,

we consider imaging in random media. Using the simple random phase model, we

show that the hybrid-ℓ1 and the MUSIC methods are statistically stable provided the

arrays are large. The e�ectiveness of all the methods is illustrated in various numerical

examples with comparisons to other imaging methods in each of the sections. Section 6

contains our conclusions. The proofs of the theoretical results are given in the appendix.

2. Data model

Probing of the medium can be done with many di�erent types of arrays, transmitters

and recording devices. Also transducers that can both sense and transmit are usually

employed. Besides, the geometric layout of the arrays depend on the application

(acoustics, seismology, radar, ...) and they may be arranged in a transmission or a

backscattering con�guration. To �x ideas, we will consider an active array consisting of

N transducers located at positions xi, i = 1, . . . , N , placed in front of the medium to be

probed (see Fig. 1 (a)). Here, and in the rest of the paper, we use boldface lower case

letters for vectors, capital letters in boldface for matrices, and the correponding letters,

without boldface, for the entries of the matrices. To ensure that the transducers behave
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Figure 1. Schematic. (a) A linear array with N = 8 transducers probe a medium

sending a spherical wave from xs; the illumination vector is bf = [0, 0, 0, 0, 0, bf6, 0, 0].
The medium is either homogeneous or inhomogeneous and the corresponding Green's

function is bG(x,y). (b) There are M = 3 point-like scatterers with re
ectivities αj at

positions ynj
, j = 1, 2, 3. The interaction between them is strong creating e�ective (or

secondary) sources γnj
= αj

bψe
j that depend on all the scatterers' positions and their

re
ectivities. If those are known, the e�ective �elds bψe
j can be computed by solving

the Foldy-Lax equations described in Appendix A. (c) The response received at xr is

the superposition of all the scattered waves bψs
j = αj

bG(ynj
,xr) bψe

j from the scatterers.

like an array of aperture a = (N−1)h, and not like separate entities, they are separated

by a distance h of the order of wavelength λ = 2πc0
ω

of the probing signals, where c0 is

the wave speed in homogeneous medium and ω is the corresponding frequency.

We will assume that the object we wish to image consists of M randomly positioned

point-like scatterers. The medium can be homogeneous or inhomogeneous. Multiple

scattering among the scatterers may or may not be important. All the scatterers, with

unknown re
ectivities αj ∈ C, where C stands for the complex �eld, and positions ynj
,

j = 1, . . . ,M , are within a region of interest called the image window (IW), which is

centered at a distance L from the array. We discretize the IW using a uniform grid of

points yj, j = 1, . . . , K, and we introduce the true re
ectivity vector

�0 = [ρ01, . . . , ρ0K ]
T ∈ C

K ,

such that ρ0k =
PM

j=1 αjδy
nj
y

k
, k = 1, . . . , K, where δ·· is the classical Kronecker delta

and ·T is the transpose only operation, while ·∗ stands for the conjugate transpose.

We further assume that each scatterer is located at one of the K grid points, so

{yn1
, . . . ,ynM

} ⊂ {y1, . . . ,yK}. For a study of o�-grid scatterers we refer to [24, 10].

To write the data received on the array in a compact form, we de�ne the Green's

function vector

bg(y;ω) = [ bG(x1,y;ω), bG(x2,y;ω), . . . , bG(xN ,y;ω)]
T (2.1)

at location y in the IW, where bG(x,y;ω) denotes the free-space Green's function of the

(homogeneous or inhomogeneous) medium that characterizes the propagation of a signal

of angular frequency ω from point y to point x. When the medium is homogeneous,

bG(x,y;ω) = bG0(x,y;ω) =
exp(iκ|x− y|)

4π|x− y|
, κ =

ω

c0
, (2.2)
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and we have the Green's function vector in a homogeneous medium as

bg0(y;ω) = [ bG0(x1,y;ω), bG0(x2,y;ω), . . . , bG0(xN ,y;ω)]
T .

If bf = [ bf1, . . . , bfN ]T is the illumination vector whose entries are the signals sent from

the transmitters in the array, then bg(y;ω) bf gives the �eld at position y in a free-space.

We further introduce the N ×K sensing matrix

G(ω) = [bg(y1;ω) · · · bg(yK ;ω)] (2.3)

that maps a distribution of sources in the IW to the data received on the array. With

this notation, the full response matrix, can be written as

bP = Gdiag(�0)Z
−1(�0)G

T = Gdiag(�0)G
T
FL(�0). (2.4)

Here, and in all that follows, we drop the dependence of waves and measurements on

the frequency ω. In (2.4), Z−1(�0) denotes the inverse of the K ×K Foldy-Lax matrix

(Z(�0))ij =

(
1 i = j

−ρ0j bG(yi,yj) i 6= j
(2.5)

which depends on the unknown re
ectivity vector �0 (see Appendix A). To motivate

(2.4), consider an illumination vector bf = [ bf1, . . . , bfN ]T (see Fig. 1). Then, GT
FL(�0)

bf
gives the total �eld at each grid point of the IW, including multiple scattering between

the scatterers and the interaction with the unknown inhomogeneities of the medium.

The total �eld GT
FL(�0)

bf is re
ected by the scatterers on the grid that have re
ectivities

given by the vector �0, and then it is backpropagated to the array by the matrix G. All

the available information for imaging is contained in the array response matrix (2.4). If

transmitters and receivers are located at the same positions, then (2.4) is symmetric.

For a �xed array con�guration, wave propagation is completely described by the full

response matrix bP (2.4). Indeed, the data received on the array due to an illumination

vector bf is given by

b = bP bf . (2.6)

3. Active array imaging in homogeneous media

In this section, we formulate the inverse problem of active array imaging when the

medium is homogeneous and, therefore, the wavefronts are not distorted. In this case,

the response matrix can be written as

bP = G0diag(�0)Z
−1(�0)G

T
0 = G0diag(�0)G

T
0FL(�0) , (3.1)

where G0 = [bg0(y1) · · · bg0(yK)] denotes the sensing matrix in a homogeneous medium,

and Z−1(�0) is the inverse of the Foldy-Lax matrix (A.6) with bG(yi,yj) = bG0(yi,yj)

(see Appendix A). The object to be imaged is an ensemble of small but strong

scatterers whose mutual interaction cannot be ignored. To determine their positions

and re
ectivities we use the collected data using a single illumination bf in subsection

3.1, and using multiple illuminations bf j
, j = 1, . . . , υ, in subsections 3.2 and 3.3. In

signal processing literature, the corresponding problems are called Single Measurement

Vector (SMV) and Multiple Measurement Vector (MMV) problems, respectively.
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3.1. Imaging using single illumination

For a given illumination vector bf , we de�ne the operator A bf via

A bf [�0]�0 = bP bf ,
which maps the re
ectivity vector �0 to the data (2.6). From (3.1) it follows that

A bf [�] = [bg bf(y1)bg0(y1) · · · bg bf(yK)bg0(yK)], (3.2)

where bg bf (yj) = bgT
FL(yj) bf , j = 1, . . . , K, are scalars meaning the total �eld at the grid

points yj due to the illumination bf , with bgFL(yj) being the jth column of the matrix

G0FL. Using this notation, active array imaging with a single illumination amounts to

�nding the unknown re
ectivity vector �0 ∈ CK from the system of N equations

A bf [�]� = b. (3.3)

In a typical array imaging con�guration, the number of transducers N is much smaller

than the number of the grid points K in the IW and, hence, (3.3) is underdetermined.

Furthermore, due to the multiple scattering, bg bf(yj), j = 1, . . . , K, depend on the

unknown re
ectivity vector �0, which makes (3.3) nonlinear with respect to �. Such

nonlinearity makes us think that non-iterative inversion is inapplicable to solve (3.3).

However, by rearranging the terms in these equations, we can reformulate the problem

to solve for the locations of scatterers directly, without any iteration, and then to recover

the re
ectivities of each scatterer in a second single step, as we explain next.

3.1.1. Support recovery The localization problem is by far much more di�cult than the

estimation of re
ectivities, which is a straightforward inversion if the former is exact.

To localize the scatterers without any iteration, we introduce the e�ective source vector


 bf = diag(�)Z−1(�)GT
0
bf , (3.4)

and seek for its support. Then, according to (3.1) A bf [�]� = G0
 bf , and (3.3) becomes

G0
 bf = b , (3.5)

which is linear for the new unknown 
 bf . Note that in the formulation (3.3) the operator

A bf [�] depends on the illumination bf , whereas in (3.5) the unknown 
 bf is the one which

depends on bf .
It is important to emphasize that due to the existence of multiple scattering,

the solution of (3.5) may not give all the support of �0. This is not a 
aw of the

new formulation, but an implicit problem of array imaging when multiple scattering is

important. Indeed, it is possible that one or several scalars bg bf(yj), j = 1, . . . , K, are very

small or even zero, and hence, the corresponding scatterers become dark. This is the

well-known screening e�ect which makes scatterers undetectable, and that is manifested

in our formulation making some components of the e�ective source vector 
 bf arbitrarily

small.
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Since (3.5) is underdetermined and the e�ective source vector 
 bf is sparse because

M ≪ N ≪ K, we solve the ℓ1 minimization problem

min k
 bfkℓ1 s.t. G0
 bf = b (3.6)

when data is noiseless. When the data is contaminated by a noise vector e with �nite

energy, we then solve the relaxed problem

min k
 bfkℓ1 s.t. kG0
 bf − bkℓ2 < δ , (3.7)

for some given positive constant δ. In (3.6) and (3.7), k
kℓ1 =
PK

i=1 |γi| and

k
kℓ2 =
qPK

i=1 |γi|
2.

The following theorem gives conditions under which (3.6) recovers the positions

and the strengths of the e�ective sources exactly if the data is noiseless.

Theorem 3.1. Assume that the resolution of the IW is such that

max
i6=j

����
bg∗
0(yi)bg0(yj)

kbg0(yi)kℓ2kbg0(yj)kℓ2

���� < ǫ . (3.8)

If the number of e�ective sources M is such that ǫM < 1/2, then 
0 bf =

diag(�0)Z
−1(�0)G

T
0
bf is the unique solution to (3.6) with support fully contained by that

of �0.

Proof. Let T = {nj , 1 ≤ j ≤ M} be the set of indices corresponding to the support

of 
0 bf . Based on (3.8), the submatrix G0T formed by the columns n1, . . . , nM of G0,

satis�es that G∗
0TG0T is full rank and diagonally dominant. According to the KKT

conditions, we need to �nd a Lagrange multiplier vector � such that

�∗aj = sign(
0j) for j ∈ T , (3.9)

and

|�∗aj | < 1 for j 6∈ T . (3.10)

Let � = G0T (G
∗
0TG0T )

−11 where 1 is the vector whose entries are the sign pattern

of 
0. Then (3.9) is automatically satis�ed because G∗
0T� = 1. For (3.10), choosing any

column of G0 not in the submatrix G0T , we have

|a∗
jG0T (G

∗
0TG0T )

−11| ≤ k(G∗
0TG0T )

−1G∗
0Tajk1 ≤ k(G∗

0TG0T )
−1k1kG

∗
0Tajk1 ≤

Mǫ

1−Mǫ
< 1,

where the last inequality is due to the condition ǫM < 1/2.

Remark 3.2. Note that the condition (3.8) has to be satis�ed only on the support of


0 bf . Hence, if the distance between the e�ective sources is known a priori to be large so

(3.8) holds for the set of indices corresponding to its support, then the discretization of

the IW can be as small as desired.

The next theorem provides an important stability result for the problem (3.7), the

proof of which is given by Theorem 4.3 in [17].
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Theorem 3.3. For a given array imaging con�guration, with resolution condition given

by (3.8), the solution 
⋆ bf to (3.7) satis�es

k
⋆ bf − 
0 bfkℓ2 ≤
δp

1− (M − 1)ǫ
, (3.11)

provided δ ≥ kekℓ2

q
1 + M(1−(M−1)ǫ)

(1−2Mǫ+ǫ)2
, where e is the noise vector added to the data.

Moreover, the support of 
⋆ bf is fully contained in that of 
0 bf , and all the components

satisfying

|(
0 bf)j | > δ/
p
1− (M − 1)ǫ (3.12)

are within the support of 
⋆ bf .

3.1.2. Re
ectivity estimation Optimization (3.6) (or (3.7)) gives the e�ective source

vector 
 bf . In a second step, we compute the true re
ectivities from the solution

of this problem at once. Let �⋆ be the support of the recovered solution such that

|�⋆| = M ′ ≤ M , and 
 bf,M ′ be the solution vector on �⋆. From (3.4), we have


 bf,M ′ = diag(Z−1(�M ′)GT
0
bf )�M ′ = diag(bg bf(yn1

), . . . , bg bf(ynM′
))�M ′ ,

where bg bf(ynj
) = bgT

0FL(ynj
) bf . Note that the scalars bg bf(ynj

) are the exciting �elds at

the scatterers' positions, and that the e�ective sources γnj
are the true re
ectivities ρnj

multiplied by the exciting �elds (see Fig. 1 (b)). Hence, using (A.3) we can compute

bg bf(ynj
) explicitly as follows

bg bf(ynj
) = bgT

0 (ynj
) bf +

M ′X

k=1,k 6=j

γk bG0(ynj
,ynk

), j = 1, . . . ,M ′. (3.13)

Then, the true re
ectivities of the scatterers are recovered by

ρnj
= γnj

/bg bf(ynj
), j = 1, . . . ,M ′. (3.14)

When the data contains additive noise, we choose the support �⋆ of the solution

recovered by (3.7) such that all the components of 
 bf,M ′ satisfy (3.12).

3.2. Imaging using multiple arbitrary illuminations

Imaging with a single illumination can be very sensitive to additive noise, especially when

the noise level is high. Moreover, the screening e�ect can cause the failure of recovering

some of the scatterers. Note that, for a �xed imaging con�guration, the screening e�ect

depends on the illumination vector bf and the amount of noise in the data. When the

e�ective source at yj is below the noise level because bg bf(yj) is small, the corresponding

scatterer cannot be detected. This motives us to consider active array imaging with

multiple illuminations. In this case, active array imaging is modeled as a joint sparsity

recovery problem, in which we seek for a matrix solution X whose columns share the

same support. By increasing the diversity of illuminations, we are able to minimize the

screening e�ect and have higher chance of locating all the scatterers more stably.
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3.2.1. Support recovery Instead of simply stacking multiple data vectors bj obtained

from di�erent illuminations bf j
, j = 1, . . . , υ, and solving the corresponding augmented

linear system as in section 3.1, we formulate the problem using the MMV approach

where the unknown vectors 
j corresponding to each illumination bf j
are arranged into

a matrix. More precisely, let B = [b1, . . . , bυ] be the matrix whose columns are the data

vectors generated by all the illuminations, and X = [
1, . . . ,
υ] be the unknown matrix

whose jth column corresponds to the e�ective source vector 
j under illumination bf j
.

Thus, we formulate the problem of active array imaging with multiple measurements as

solving the matrix-matrix equation

G0X = B (3.15)

for X. The sparsity of the matrix variable X is characterized by the number of nonzero

rows. Thus, we de�ne the row-support of a given matrix X by

rowsupp(X) = {i : ∃ j s.t. Xij 6= 0}.

When the matrix X degenerates to a column vector, the row-support reduces to the

support of that vector. Similar to the ℓ1 norm relaxation used in the SMV problem in

section 3.1, the sparsest solution using multiple illuminations is given by the solution to

the convex problem

min�1(X) s.t. G0X = B, (3.16)

where �1 is a convenient convex relaxation of the size of rowsupp(X). As in [17], we

take

�1(X) =

NX

i=1

kXi·kℓ2 , (3.17)

where Xi· is the ith row of the matrix. When the data vectors are contaminated with

additive noise vectors ej, j = 1, . . . , υ, we have the matrix-matrix equation

G0X = B+ E , (3.18)

where E = [e1 · · ·eυ], and we seek a solution to

min�1(X) s.t. kG0X −BkF < δ, (3.19)

for a pre-speci�ed constant δ, where the Frobenius norm is given by

kXkF =

 
NX

i=1

KX

j=1

|Xij|
2

! 1

2

.

Remark 3.4. Similar to Theorems 3.1 and 3.3 for array imaging with a single

illumination, we have results regarding the exact recovery and stability of the solution

to (3.16) and (3.19) for imaging using multiple illuminations. These results are proved

in [17]. We note, however, that these results do not provide a quantitative improvement

when the number of measurements υ increases. Intuitively, this lack of improvement is

justi�able since the measurements obtained from randomly chosen illuminations could
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be rather ine�ective. There is no guarantee that randomly picked illuminations bring

more information useful for imaging. In practive, however, we do observe a general

improvement in the images formed with multiple random illuminations. In section 3.3,

we use selective illuminations, obtained from the SVD of the array response matrix bP
to increase the e�ciency of the MMV approach.

3.2.2. Re
ectivity estimation Once we obtain the matrix X⋆ from (3.16) (or (3.19)),

whose columns are the e�ective sources corresponding to the di�erent illuminations, we

compute in a second step the true re
ectivities as follows. For each component i in the

support such that the stability condition in Theorem 4.3 in [17] is satis�ed, we compute

the re
ectivities ρji corresponding to each illumination j by applying (3.13) and (3.14).

Then, we take the average 1
υ

Pυ
j=1 ρ

j
i as the estimated re
ectivity.

3.3. Imaging using optimal illuminations

To further improve the e�ciency, and especially the robustness of (3.19), we propose

to use selective illuminations as multiple illumination vectors [17]. The optimal set of

illumination vectors can be obtained systematically from the SVD of the full response

matrix bP . If the full array response matrix is not available, they can be obtained from

an iterative time reversal process as discussed in [16]. Let the SVD of bP be

bP = bU� bV ∗
=

~MX

j=1

σj
bU·j

bV ∗
·j ,

where bU·j and bV·j are the left and right singular vectors, respectively, and the nonzero

singular values σj are given in descending order as σ1 ≥ σ2 ≥ · · · ≥ σ ~M > 0, with
~M ≥ M . When there is no noise in the data, ~M = M . Now, let the illumination vectors

be the top right singular vectors, i.e. bf j
= bV·j, j = 1, . . . , υ ≤ ~M . Then, we have

G0XV = Bopt = bP bV ·,1:υ = [σ1
bU·1 · · ·συ

bU·υ] + eE , (3.20)

where the data matrix Bopt contains all the essential information for imaging the

scatterers. The improvement of the e�ciency, when using optimal illuminations, comes

from the fact that illuminations using singular vectors deliver most of the energy around

the scatterers, even when multiple scattering is non-negligible. Therefore, taking a few

top singular vectors is enough to focus around the scatterers that contribute to the data

received on the imaging array.

3.4. Numerical experiments

We now present numerical simulations in two dimensions. In all the simulations

shown below with a single illumination, we use the iterative shrinkage-thresholding

algorithm GelMa proposed in [30] due to its 
exibility with respect to the choice of

the regularization parameter used in the algorithm. In the simulations with multiple

illuminations we use an extension of this algorithm described in [17].
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Figure2showsfivescatterersplacedwithinanIWofsize41λ×41λ,whichisat

adistanceL=100λfromalineararraywith100transducersthatareonewavelength

λapart(thespatialunitsofalltheimagesisλ). Theamplitudesofthereflectivities

ofthescatterers|αj|are2.96,2.76,2.05,1.54and1.35.Theirphasesaresetrandomly

ineachrealization.Notethatforagivenilluminationfandascattererconfiguration

ρ0withfixedamplitudes,theamountofmultiplescatteringdependsontherealization

ofthephasesinρ0.Fortheamplitudesofthereflectivitieschosenhere,theamountof

multiplescatteringoversinglescatteringrangesbetween50%and100%.
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Figure2. Originalconfigurationofthescatterersina41×41imagewindowwith

gridpointsseparatedby1.

Figure3showstheimagesobtainedbyℓ1norm minimizationwith0%(left),

10%(middle),and20%noise(right)whenasingleilluminationprobesthemedium.

Whenthereisnonoiseinthedata, ℓ1normminimizationrecoversthepositionsand

reflectivitiesofthescatterersexactly(thetruelocationsareindicatedwithsmallwhite

dots).However,whenthedataiscorruptedby10%and20%ofadditivenoise(middle

andrightimagesofFigure3),ℓ1normminimizationfails.Someghostsappearinthe

imagesandsomescatterersareobscuredbecauseofscreeningeffect.

When multipleilluminationsareusedweexpectageneralimprovementinthe

images.Figure4showstheresultsoftheMMValgorithmwhen5randomilluminations

areused.Bymultiplerandomilluminationswemeanasetofilluminationscoming,each

one,fromonlyoneofthetransducersonthearrayatatime,i.e.,fp=1andfq=0for

q=p,withpchosenrandomlyatatime.Thesetofrandomilluminationsusedineach
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Figure3.Imagesreconstructedbysolving(3.6)and(3.7)whensingleilluminationis

used.Fromlefttoright,thereis0%,10%,and20%additivenoiseinthedata.
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Figure4. Imagesreconstructedbysolving(3.19)when5randomilluminationsare

used.Fromlefttoright,thereis10%,20%,and50%noiseinthedata.
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Figure5. Imagesreconstructedbysolving(3.19)whenoptimalilluminationsare

used.Fromlefttoright,theimagesarereconstructedbyusing1,2,and3topsingular

vectorsasilluminationvectors.Thereis50%noiseinthedata.

imageofFigure4iskeptthesame,withthelevelofadditivenoisechangingfrom10%

(left),20%(middle),to50%(right). Weobservethattheimagesobtainedwithmultiple

illuminationsaremorestablewithrespecttoadditivenoise.However,westillseesome

missingscatterersintherightimage(50%ofnoise),andtherefore,forthisparticular

setofrandomlychosenilluminations,imagingisstillaffectedbyscreeningeffect.

Figure4showsthenecessityofusing“good”illuminationsthat maximizethe

informationcontentofthedata,especiallywhenthesignal-to-noiseratio(SNR)is

low. Figure5displaystheimagesobtainedwith1(left),2(middle),and3(right),

optimalilluminationsassociatedtothesingularvectorsf
j
=V·j,withj=1,2,3.It

isremarkablethatonlyafewofthem(2or3)areenoughtoobtainverygoodimages,

evenwith50%ofadditivenoiseinthedata.

4.Singlescatteringasaspecialcase:Thehybrid-ℓ1method

Insituationswherethescatterersareweakand/orareveryfarapart,theincidentwave

undergoesonlyonescatteringeventbeforecomingbacktothearray.Inthesecases,the

inverseoftheFoldy-LaxmatrixZ−1(ρ)in(3.1)becomestheidentitymatrix,andthe

arrayresponsematrixunderthesocalledBornapproximationbecomes

Π=G0diag(ρ0)G
T
0.

Then,thedatareceivedonthearraywhenanilluminationvectorfprobesthemedium

isgivenbyb=Πf.Similarto(3.3),wecanmodelthedatabasapplyingtheoperator
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A bf to the unknown re
ectivity vector �0. Because multiple scattering is negligible,

bg bf(yj) = bgT
0 (yj)

bf in (3.2), and thus, (3.3) is now linear in �0, which we denote as A0 bf .

Therefore, array imaging of localized scatterers in homogeneous media when multiple

scattering is negligible amounts to solving the linear optimization problem

min k�kℓ1 s.t. A0 bf� = b. (4.1)

In (4.1) we assume that the data is noiseless. If the data contains noise, we solve

min k�kℓ1 s.t. kA0 bf�− bkℓ2 < δ . (4.2)

Because of the linearity of the equations, a single-step process is su�cient to recover

both the locations and re
ectivities of the scatterers from (4.1) or (4.2). Moreover, when

multiple scattering is negligible, there is no screening e�ect, and hence, solving the set of

equations generated from a single illumination alone can produce reliable images. Note

that Theorems 3.1 and 3.3 can be applied to problems (4.1) and (4.2) as well.

Similarly to the case where multiple scattering was important, we can use multiple

illuminations and the MMV approach to �nd the re
ectivity vector �0. Furthermore,

imaging using optimal illuminations has a simpler form and weaker requirements on the

imaging con�guration when multiple scattering is negligible. Indeed, assume that the

data is noiseless, and let the SVD of array response matrix be b� = bU� bV ∗
, with M

singular values {σj}
M
j=1 greater than 0. Following the MMV formulation in section 3.2,

we have bj = b�bV·j = σj
bU·j for j = 1, . . . ,M . On the other hand, bj = A0bV·j

�0 = G0

j
0,

where 

j
0 = diag(bgbV·j

(yk))�0 is linear in �0, which is the major di�erence from (3.4).

Now consider (3.20) with eE = 0 for symplicity, and project Bopt onto the space spanned

by the top left singular vectors corresponding to the signi�cant singular values. Denoting

U = [bU·1, . . . , bU·M ] and XV = [
1, . . . ,
M ], we get

U∗G0XV =




bU∗
·1G0


1 bU∗
·1G0


2 · · · bU∗
·1G0


M

bU∗
·2G0


1 bU∗
·2G0


2 · · · bU∗
·2G0


M

...
...

...
...

bU∗
·MG0


1 bU∗
·MG0


2 · · · bU∗
·MG0


M




= U∗Bopt = diag(σ1, . . . , σM). (4.3)

In (4.3), there are M unknowns 
1, . . . ,
M , and M2 equations. However, when multiple

scattering is negligible we can associate a nonzero singular value to each scatterer and

the corresponding singular vector is given by

bU·j = bV·j ∝
bg0(yj)

kbg0(yj)kℓ2
, j = 1, . . . ,M, (4.4)

up to an arbitrary complex constant of modulus 1. Therefore, the rank-1 matrices bV·j
bU∗
·i

have a (non-trivial) eigenvalue di�erent from zero only when i = j. That is, only the

diagonal blocks of the matrix U
∗
G0XV contribute in (4.3), and hence, we can simplify

(4.3) further as a set of M equations. Using (4.4) and

bU∗
·iG0


j =
NX

k=1

(bU∗
·ibg0(yk))(bg0(yk)

∗bV·j)ρ0k =
NX

k=1

bg∗
0(yk)(bV·j

bU∗
·i)bg0(yk)ρ0k ,
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we can write (4.3) as a set of M equations linear in �0 such that

B�0 = [σ1, . . . , σM ]T , (4.5)

where

B =




bg∗
0(y1)bU·1bgT

0 (y1)bV·1 · · · bg∗
0(yK)bU·1bgT

0 (yK)bV·1

· · ·
. . . · · ·

bg∗
0(y1)bU·MbgT

0 (y1)bV·M · · · bg∗
0(yK)bU·MbgT

0 (yK)bV·M


 .

Therefore, the hybrid-ℓ1 method is to solve for �0 from the SMV problem

min k�kℓ1 s.t. B� = [σ1, . . . , σM ]T . (4.6)

The advantage of hybrid-ℓ1 method compared to the MMV formulation is its simpler

form and lower dimensionality. Moreover, the hybrid ℓ1 method guarantees exact

recovery, the su�cient condition for which also implies that it can form images with

higher resolution (see [16] for details).

Theorem 4.1. Assume that the scatterers are far part such that (4.4) is satis�ed. Let

E be the submatrix of B formed by normalized columns corresponding to the scatterers'

location and S be the submatrix formed by the remaining normalized columns of B. If

kSk1→1 < 1−kE − Ik1→1, where k · k1→1 is the matrix 1-norm induced by the vector ℓ1
norm, and I is the identity matrix, then �0 is the unique solution to (4.6).

4.1. Numerical experiments

Now we present the results of a numerical experiment that shows the performance of the

hybrid-ℓ1 method compared to those obtained with KM and MUSIC. We consider the

same imaging set-up as in subsection 3.4. KM is a simple and robust imaging method

(with respect to additive noise) which propagates the imaging data received on the

array back to the medium. Under the setup of imaging in section 2, the KM imaging

functional can be written as

�KM = A∗
0 bf
b. (4.7)

MUSIC, on the other hand, is a subspace projection algorithm that uses the SVD of

the array response matrix. The idea of MUSIC is to project the reference illumination

vectors bg0(yj), j = 1, . . . ,M , onto the noise space using the projection operator

Pbg0(y) =

MX

j=1

(bU∗
·jbg0(y))bU·j − bg0(y). (4.8)

Then, according to (4.4), the normalized functional

IMUSIC(yk) =
min1≤j≤K kPbg0(yj)kℓ2

kPbg0(yk)kℓ2
, k = 1, . . . , K, (4.9)

will peak at the search points yk only at locations where there is a scatterer. Imaging

with MUSIC (4.9) only locates of the scatterer's positions. Their re
ectivities are usually

obtained using a separate procedure after the locations are known.



Imaging of localized objects 16

Figure 6 shows the simulation results with 100% of additive noise in the data.

From left to right, we display the reference image, and the images obatined with KM,

MUSIC and the hybrid-ℓ1 method. In the simulations for MUSIC and hybrid-ℓ1 we

assume that the top 5 singular vectors have been obtained. In the simulations for KM

we use 5 random illuminations. It is apparent that the image created by the hybrid-

ℓ1 method is better than the other two. The hybrid-ℓ1 method forms a clear image

with perfect recovery of the location of the scatterers, and accurate estimates of their

re
ectivities. The robustness of the hybrid-ℓ1 method relies on the selection of the top

singular values so that the noise in the subspace formed by singular vectors associated

with small singular values is �ltered out.
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Figure 6. From left to right: original con�guration of the scatterers, KM image (using

5 illuminations), MUSIC image, and hybrid-ℓ1 image. There is 100% noise in the data.

5. Active array imaging in random media

Many natural media vary randomly in space, and therefore, waves propagating in

these media also 
uctuate in space. Thus the data collected on the array inherit the

uncertainty of the 
uctuations of the medium resulting in wave distortion. Because

wave distortion e�ects induced by the inhomogeneities are very di�erent from additive

uncorrelated noise, imaging through random media is very di�erent from that in

homogeneous media. For example, the images obtained by Kirchho� migration become

noisy and change unpredictably with the detailed features of the medium, and thus, are

useless. In this section, we use a simple random phase model to analyze the performance

of the hybrid-ℓ1 and MUSIC methods in random media. Both methods use the SVD of

the response matrix. The random phase model distorts the wavefronts but keeps the

amplitude of the waves unchanged and is valid in the regime of geometrical optics.

5.1. Random phase model

In random media, the Green's function that characterizes the wave propagation from x

to y is given by the wave equation

� bG(x,y) + κ2n2(x) bG(x,y) = δ(x− y), (5.1)

where n(x) = c0
c(x)

is the random index of refraction of the medium with local wave

speed c(x). In a homogeneous medium, we have c(x) ≡ c0 for any location x, and
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hence, bG0(x,y) de�ned in (2.2) is the solution to (5.1). In random media, however,

the wave speed c(x) depends on the position x. In this paper, we consider random


uctuations of the wave speed satisfying the model

1

c2(x)
=

1

c20

�
1 + σµ(

x

l
)
�
, (5.2)

where l is the correlation length of the medium, σ determines the strength of the


ucutation around the constant speed c0, and µ(·) is a stationary random process with

zero mean and normalized autocorrelation function R(|x − x′|) = E(µ(x)µ(x′)), so

R(0) = 1. Here, we only consider weak 
uctuations such that σ ≪ 1.

When the index of refraction n(x) is random, there is no analytic solution to (5.1),

and hence, numerical schemes are often used to obtained an approximated numerical

solution. This can be time consuming, especially for large distances L. Instead, the

random phase model provides an analytical approximation for the Green's function

between two points at a distance of order L ≫ l ≫ λ from each other, given by

bG(x,y) = bG0(x,y) exp

�
iσκ|x− y|

Z 1

0

µ(
x

l
+

s

l
(y − x)) ds

�
. (5.3)

This approximation is valid when (i) the wavelength λ is much smaller than the

correlation length l so the geometric optics approximation holds, (ii) the correlation

length l is much smaller than the propagation distance L so the statistics of the phase

is Gaussian, and (iii) the strength of the 
uctuation σ is small so the amplitude of

the wave is kept unchanged, but large enough to ensure that the perturbations of the

phases are not negligible. The last condition holds when σ2L3

l3
≪ λ2

σ2lL
≤ 1 (for details,

see [38, 35, 9]). Note that although we take weak 
uctuations, the distortion of the

wavefronts by the inhomogeneities of the medium is observable because the wave travels

long distances.

Comparing (5.3) to the homogeneous Green's function (2.2) we see that, in this

regime, only the phase is perturbed by the random medium and the magnitude remains

unchanged. The following result shows that the second order moment of (5.3) is close

to the expected value.

Proposition 5.1. Assume that the autocorrelation function R ∈ L2(R+) is di�erentiable

and its derivative _R satis�es
_R(t)
t

∈ L(R+) with exponential decay. Let y1 and y2 be two

points on the same plane at a distance L from point x, such that λ ≪ |y1 − y2| ≪ L.

Then, for the Green's function (5.3) we have

E

�
bG(x,y1) bG(x,y2)

�
≈ bG0(x,y1) bG0(x,y2)e

−
�2a2e
2L2 |y

1
−y

2
|2, (5.4)

with

ae = σL

 
−1−

2L

3l

Z ∞

0

_R(t)

t
dt

! 1

2

. (5.5)

According to Proposition 5.1, the back-propagated signal in random media is equal

to that in a homogeneous medium times a Gaussian factor with variance L2

κ2a2e
. The
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length ae is an intrinsic property of the random media. It depends on the propagation

distance L and the statistics of the random 
uctuations of the medium. According

to (5.4), as ae increases, the refocused spot size for time reversal in random media is

tighter. Using the moment estimate (5.4), we immediately have the following variance

estimate.

Corollary 5.2. Under the same conditions given in Proposition 5.1, we have for (5.3)

E

��� bG(x,y1) bG(x,y2)− E

�
bG(x,y1) bG(x,y2)

����
2

≈
1

16π2|x− y1|
2|x− y2|

2

�
1− e−

�2a2e
L2 |y

1
−y

2
|2
�
. (5.6)

This property of the Green's function (5.3) is generally referred to as self-averaging,

which means that a time-reversed, back-propagated signal in a randommedium refocuses

near the source independently of the particular realization of the random medium. Self-

averaging properties of back-propagated signals in random media have been shown under

broad-band settings, see for example [25, 5, 2, 33, 34], but are not true, in general, for

narrow-band signals. Corollary 5.2 states that the Green's function corresponding to the

phase random model (5.3) exhibits the same properties, even for narrow-band pulses.

The next result states that a single realization of a back-propagated signal via the

Green's function vector bg(y) (2.1) is stable when the aperture of the imaging array

becomes in�nity, in the sense that its value is close to the back-propagated signal

averaged over multiple realizations.

Proposition 5.3. For a large aperture size a, the signal sent from y1, recorded at the

array, and back-propagated at y2 is statistically stable for (5.3) in the sense that

E|bg∗(y1)bg(y2)− E(bg∗(y1)bg(y2))|
2

Ekbg(y1)k
2Ekbg(y2)k

2
→ 0, a → ∞. (5.7)

Furthermore, as shown in Appendix B, the decay rate of (5.7) is bounded by
�
1− e−

�2

L2 |y1
−y

2
|2a2e

� 
l2

L2 log
�
1 + a2

4L2

�
!

(5.8)

for any aperture size a. Thus, for short distances so L is of order a, the decay rate is

only logarithmic in a. However, when the distance is large such that L ≫ a (e.g. the

remote sensing regime), we can use a linear approximation on the logarithm function

and obtain, up to a constant, the approximated decay rate
�
1− e−

�2

L2 |y1
−y

2
|2a2e

��
l

a

�2

, (5.9)

which implies a quadratic decay rate in a. Such quadratic decay rate in a can also be

justi�ed by using the paraxial approximation when L ≫ a. As it is noted in Remark B.2,

the decay rate in the paraxial approximation is given by (B.8), so the bound in (5.9)

coincides with the paraxial approximation up to oscillations caused by the sinc function.

We emphasize that, although (5.8) indicates little improvement in the refocused

spot size when the physical aperture of the array a is large, Proposition 5.3 implies that
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large arrays stabilize refocusing of narrow-band pulses in random media. The fact that

large arrays improve the quality of imaging in cluttered media has been recognized for

long time in radar and seismic imaging. The theoretical results obtained here using the

random phase model support this empirical observation.

Next, we give a result that is essential for the performance of hybrid-ℓ1 and MUSIC

methods in random media. When imaging in random media, the Green's function

vector bg(y) is random and not known. The best we can do is to use the deterministic

Green's function vector bg0(y) which is, in general, quite di�erent from the random

one. Furthermore, replacement of bg(y) by bg0(y) might give good results for some

realizations of the random medium but not for others. The next result tells us that a

single realization of a narrow-band backpropagated signal bg∗
0(y1)bg(y2), with the Green's

function corresponding to the phase random model, is stable as the aperture of the

array becomes in�nity, which means that its value is close to the back-propagated signal

averaged over multiple realizations.

Proposition 5.4. Let y1 and y2 be two points satisfying λ ≪ |y1 − y2| ≪ L. Then,

for the Green's function (5.3), we asymptotically have

bg∗(y1)bg(y2) → 0 , a → ∞, (5.10)

and for the mixed inner products

bg∗
0(y1)bg(y2) → 0 , a → ∞ , (5.11)

where the limit is under probability measure P induced by µ(·). Moreover, the mixed

inner product is also statistically stable in the sense that

E |bg∗
0(y1)bg(y2)− E(bg∗

0(y1)bg(y2))|
2

kbg0(y1)k
2Ekbg(y2)k

2
→ 0, a → ∞. (5.12)

Proposition 5.4 implies that imaging in random media, i.e., a narrow-band pulse

bg(y2) back-propagated via bg0(y1) in the medium, is statistically stable for large arrays,

and the pulse heading to the point y1 will focus around the correct location y2.

5.2. The hybrid-ℓ1 method

Assume that multiple scattering between the scatterers is negligible, and wave distortion

is well described by the random phase model (5.3). Then, the response matrix has the

form

bP =

MX

j=1

αjbg(ynj
)bgT (ynj

) , (5.13)

with random Green's function vectors bg(y) = [ bG(x1,y), . . . , bG(xN ,y)]
T , where bG(x,y)

is given by (5.3). Because multiple scattering is not important, the transformation

A bf� = b that relates the re
ectivity vector �0 with the data measured at the array

b is linear. However, when the medium contains random inhomogeneities, this linear

transformation is random because the column vectors of the operator A bf are random
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functions. Therefore, to solve for the re
ectivity vector �0, we have to approximate the

unknown Green's function vectors bg(y) by the ones for a homogeneous medium, after

which, A bf becomes the linear operator A0 bf given in section 4. The substitution of bg(y)
by bg0(y) introduces a discrepancy between model and data, and thus, we must solve

the ℓ1 minimization problem (4.2) with an inequality constraint when data from a single

illumination is available. We note that to estimate the error bound of such discrepancy

is nontrivial due to the existing correlation in the measurement noise in random media.

According to Proposition 5.4, when the scatterers are far apart, the random Green's

function vectors bg(ynj
), j = 1, . . . ,M , are approximately orthogonal in probability as

the size of the imaging array becomes large. In this case, we can associate to each of

the M scatterers a nonzero singular value σj = αjkbg(ynj
)k2ℓ2 with singular vectors

bU·j =
bg(ynj

)

kbg(ynj
)kℓ2

, bV·j =
bg(ynj

)

kbg(ynj
)kℓ2

, j = 1, . . . ,M. (5.14)

If the full array response matrix bP (or its SVD) is available, we can use the hybrid-ℓ1
as follows. We use the right singular vectors of bP as the illumination vectors, and we

project the data to the space spanned by the left singular vectors in the same way as

shown in section 4. Thus, we form the same hybrid-ℓ1 optimization given in (4.6) and

there is no need to estimate the error bound of the discrepancy between model and data.

Recall that (ij)th entry of the hybrid-ℓ1 matrix B is related to the singular vectors in

the form of bg∗
0(yj)bU·ibgT

0 (yj)bV·i, and the singular vectors of the response matrix bP are

related to the random Green's function vectors as in (5.14). Hence, each entry is the

mixed inner product (5.11) between bg0(yj) and bg(yi).

Without loss of generality, assume that the M scatterers correspond to the �rst M

columns in B, i.e. nj = j, j = 1, . . . ,M . We can write B in the form of block matrices

as B = [BM×M S], where the columns in S correspond to grid points where there

is no scatterers. Due to Proposition 5.4, the submatrix BM×M is a diagonal matrix

D perturbed by a matrix E with kEk1→1 ≪ 1. The value of kEk1→1 depends on

the minimal distance between any two scatterers, and is close to zero if they are well

separated. Due to the incomplete phase cancellation in the mixed inner products, D

is composed of complex values but, as long as the scatterers are far apart, D + E is

diagonal dominated. Furthermore, because of the statistical stability of the mixed inner

product (5.12), if kD−1Sk1→1 < 1 − kD−1Ek1→1, (4.6) gives the right solution even

though there exists (correlated) noise in the data caused by the random media. This

saves computational time by eliminating the need for di�cult error bounds testing.

5.3. MUSIC

In random media, the exact knowledge of the reference illumination bg(y) is unknown,
and therefore imaging using MUSIC amounts to approximate the unknow illumination

with that in homogeneous context, i.e.

IRM
MUSIC(yk) =

min1≤j≤K kPbg0(yj)kℓ2
kPbg0(yk)kℓ2

, k = 1, . . . , K. (5.15)
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Figure7. Originalconfigurationofthescatterersina41×41imagewindowwith

gridpointsseparatedby1.

Accordingto(5.14)and(5.11),theproxyg0(y)willfocusaroundthescattererswhen

theimagingarrayislargeenough. However,theimageobtainedby(5.15)willhave

lowerresolutioncomparedtotheidealcaseof(4.9),sincetherandomphaseing(y)

cannotbefullycancelledoutusingthehomogenousGreen’sfunctionvectorg0(y).

5.4.Numericalexperiments

Wenowpresentnumericalsimulationsintwodimensionstoillustratetheperformance

oftheMUSICandhybrid-ℓ1imagingmethodsinrandommedia. Weconsiderarandom

mediumwithcorrelationlengthl=20λ,andstandarddeviationofthefluctuations

σ=0.1%. ForcomparisonpurposeswealsoshowimagesobtainedbyKirchhoff

migrationwithasingleilluminationsentfromthecentraltransducerofthearray.

Weconsiderasmallandalargearray,bothconsistingof501transducersuniformily

distributedovertheaperture. Thesmallarrayhasanapertureof25l,andthelarge

arrayanapertureof100l.FourscatterersareplacedwithinanIWofsize41λ×41λ,

whichisatadistanceL=50lfromthelineararray,seeFigure7. WediscretizetheIW

usingauniformgridwithpointsseparatedbyonewavelengthλ(thespatialunitinall

thefiguresisλ).Theamplitudesofthereflectivitiesofthescatterers,|αj|,are0.8,1.0,

0.5,and0.7.Thephasesaresetrandomlyineachrealization. Wecomputethearray

data(5.13)usingtheGreen’sfunctiongivenby(5.3).Thelineintegraloftherandom

fieldin(5.3)isapproximatedbyaquadraturerule.

Asareference,weshowinFigure8theimagesobtainedinahomogeneousmedium

usingKM(leftcolumn),MUSIC(centercolumn),andhybrid-ℓ1methods(rightcolumn)

withnoiselessdata.Thetopandbottomrowsshowtheresultsforthesmallarrayand

thelargearray,respectively. Asexpected,theresolutionoftheKMimagesimproves

greatlyforlargearrays. Ontheotherhand,inahomogeneousmedium, MUSICand

hybrid-ℓ1achieveanexcellentresolution,evenforsmallarrays. Theimagesshownin

Figure8donotchangetoomuchwhenthedataiscorruptedwithupto100%ofadditive

noise[16].

Thesituationchangeswhenthereiscorrelatednoiseinthedatabecausethesignals

propagatethrougharandommediumwithacomplexstructure.Thisisillustratedin

Figure9,whereweshowtheimagesproducedbytheseimagingmethodsusingasmall
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Figure8.Toprow:smallarray.Bottomrow:largearray.KM(leftcolumn),MUSIC

(centercolumn)andhybrid-ℓ1(rightcolumn)imagesinhomogeneousmedia.Thereis

noadditivenoiseinthedata.

array(a=25l).Thethreeimagingmethodsshowdifferentbehaviorsthough.Kirchhoff

migrationcompletelyfailstoimagethescatterers,ascanbeseeninthetoprowthe

figure.Thereisnotonlydegradationintheresolution,butalsolossofstability.Observe

thattheimagesobtainedwithKMaresignificantlydifferentfromonerealizationto

another.

Theimagesobtainedwith MUSIC(middlerowofFigure9)arealsoblurred

comparedtothoseobtainedinahomogeneousmedium.Furthermore,theimageschange

fromonerealizationoftherandommediumtoanotherand,therefore,MUSICisalso

unstableifthearraysizeissmall. Thehybrid-ℓ1methodalsoproducesimagesthat

changefromonerealizationtoanother(bottomrowofFigure9),buttriestokeepa

goodresolutiontoprovideasparsesolution.Observethatthedetectedscatterersdance

alongthecross-rangedirectionaroundthetruelocationsindicatedinthefigurewith

whitedots.Theimagesobtainedwiththehybrid-ℓ1methodalsoshowsomeghosts.

Theseproblemsareovercomewhenthearrayislarge(a=100l),seeFigure10.

Asexpected,theresolutionoftheimagesobtainedbyKMandMUSICimprovealot.

However,KMstillfailstoimageinrandommediaasitproducesclutternoiseinthe

imagesfromwhichitishardorimpossibletoidentifythelocationofthefourscatterers.

Ontheotherhand, MUSICandthehybrid-ℓ1methodareabletorecoverthesparse

solution. Weobserve,though,thattheperformanceofthehybrid-ℓ1methodisbetter.

Thelocationsofthefourscatterersarefoundexactlybythismethod.

6. Conclusions

Wepresentacomprehensivestudyofoptimizationbasedmethodsappliedtonarrow

bandarrayimagingoflocalizedscatterers. Wehaveconsideredhomogeneousand

heterogeneousmedia. Whenthemediaishomogeneousbutmultiplescatteringbetween
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Figure9.Smallarray.KM(toprow),MUSIC(centerrow)andhybrid-ℓ1(bottom

row)imagesinthesamefourrealizationsofarandommedium.
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Figure10.Largearray.KM(toprow),MUSIC(centerrow)andhybrid-ℓ1(bottom

row)imagesinthesamefourrealizationsofarandommedium.

thescatterersisimportant,wegiveanon-iterativeformulationofthenonlinearinverse

problemthatallowsustodeterminethelocationsandreflectivitiesofthescatterers

non-iterativelyusingsparsitypromotingoptimization. Wealsoproposetoapplyoptimal

illuminationstoimprovetherobustnessoftheimagingmethodsandtheresolutionofthe

images. Whenmultiplescatteringisnegligible,theoptimizationproblembecomeslinear.

Inthiscase,ourformulationcanbereducedtoahybrid-ℓ1methodthatusestheoptimal
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illuminations and ℓ1 minimization. This method reduces the dimensionality of the

problem, �lters out the noise, and keeps all the essential properties of ℓ1 minimization.

When the media is random, we study the important concept of statistical stability

which relates to the robustness of the imaging methods with respect to di�erent

realizations of the random media. Provided the imaging array is large enough, we

show that the hybrid-ℓ1 method gives very accurate results and is statistically stable.

We illustrate the theoretical results with various numerical examples and compared

the performance of the proposed optimization based methods to the widely used

Kirchho� migration and the MUSIC methods.
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Appendix

A. Foldy-Lax model

Multiple scattering between point-like scatterers is modeled by means of the Foldy-Lax

equations [26, 27, 28]. Under this framework, the scattered wave received at transducer

xr due to a narrow band signal of angular frequency ω sent from xs can be written as

the superposition of all scattered waves from the M scatterers at {yn1
, . . . ,ynM

} (see

Fig. 1 (c)), so

bP (xr,xs) =
MX

j=1

ψ̂s
j (xr;yn1

, . . . ,ynM
). (A.1)

Here, ψ̂s
j (xr;yn1

, . . . ,ynM
) represents the scattered wave observed at xr due to the

emaniting wave from the scatterer at position ynj
. It depends on the positions of all

the scatterers and is given by

ψ̂s
j (xr;yn1

, . . . ,ynM
) = αj

bG(xr,ynj
)ψ̂e

j (yn1
, . . . ,ynM

), (A.2)

where ψ̂e
j (yn1

, . . . ,ynM
) represents the exciting �eld at the scatterer located at ynj

.

Ignoring the self-interacting �elds, the exciting �eld at ynj
is equal to the sum of the

incident �eld ψ̂inc
j := ψ̂inc(ynj

,xs) at ynj
and the scattered �elds at ynj

due to all

scatterers except for the one at ynj
. Hence, it is given by

ψ̂e
j (yn1

, . . . ,ynM
) = ψ̂inc(ynj

,xs) +
X

k 6=j

αk
bG(ynj

,ynk
)ψ̂e

k(yn1
, . . . ,ynM

), (A.3)

for j = 1, 2, . . . ,M . This is a self-consistent system of M equations for the M unknown

exciting �elds

ψ̂e
1 := ψ̂e

1(yn1
, . . . ,ynM

), . . . , ψ̂e
M := ψ̂e

M (yn1
, . . . ,ynM

).
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We write (A.3) in matrix form as

ZM(�)�e = �inc , (A.4)

where �e = [ψ̂e
1, . . . , ψ̂

e
M ]T and �inc = [ψ̂inc

1 , . . . , ψ̂inc
M ]T are vectors whose components

are the exciting and incident �elds on the M scatterers, respectively, and

(ZM(�))ij =

(
1 i = j

−αj
bG(yni

,ynj
) i 6= j

(A.5)

is the M ×M Foldy-Lax matrix which depends on the re
ectivities � = [α1, . . . , αM ]T ,

and on the positions of the scatterers ynj
. With the solution of (A.4), we use (A.2) and

(A.1) to compute the scattered data received at the array.

We extend the M × M matrix ZM(�), de�ned only for pairwise combinations of

scatterers at ynj
, to a larger K ×K matrix

(Z(�0))ij =

(
1, i = j

−ρ0j bG(yi,yj), i 6= j
(A.6)

which includes all pairwise combinations of the K grid points yj in the IW. Using (A.6)

and (2.3), we can write the response matix as (2.4).

B. Proof of results in Section 5

In order to prove Proposition 5.1, we need to show the following lemma �rst.

Lemma B.1. Assume the autocorrelation function R of the random �eld in L2(R+)

with derivative _R such that
_R(t)
t

∈ L(R+) and both R and _R decay exponentially. Then
Z ∞

0

_R(t)

t
dt < 0.

Proof. Since R ∈ L2(R+), the Fourier transform exists, i.e.

bR(|k|) =

Z

R3

R(|x|)eik·x dx .

Moreover, bR(·) ≥ 0. Using spherical coordinate (r, φ, θ) we obtain

bR(|k|) =

Z 2π

0

Z π

0

Z ∞

0

R(r)r2 sinφ ei|k|r cos φ dr dφ dθ

= 2π

Z ∞

0

R(r)r2
Z π

0

sinφ ei|k|r cosφ dr dφ

= 4π

Z ∞

0

R(r)r
sin |k|r

|k|
dr

Since the correlation function R(·) is de�ned only on [0,+∞), we extend it symmetrically

to the whole real line by R(−·) = R(·) for any value in (−∞, 0). Then, the above integral

becomes

bR(|k|) =
2π

|k|

Z ∞

−∞

R(r)r sin |k|r dr = −
2π

|k|3

Z ∞

−∞

_R(r)(sin |k|r − |k|r cos |k|r) dr,
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where the last equality holds due to integration by parts and the exponential decay of

R(·). Then, with Riemann Lebesgue lemma, the following limit is

lim
K→∞

Z K

0

|k|3 bR(|k|) d|k| = −2π

Z ∞

−∞

_R(r)

r
dr.

The symmetric extension of R(·) implies that _R(r) = − _R(−r) when r < 0. Therefore,
Z ∞

0

r3 bR(r) dr = lim
K→∞

Z K

0

|k|3 bR(|k|) d|k| = −4π

Z ∞

0

_R(r)

r
dr ,

which implies that the integral on the right hand side is not positive. �

Note that the conditions on the autocorrelation function R in Lemma B.1 are not

restrictive. Many autocorrelation functions satisfy those conditions, as for example,

R(|x|) = e−
1

2
|x|2 for a Gaussian random �eld and the power law function R(|x|) =

(1 + |x|)e−|x|. With this lemma, we can now prove Proposition 5.1.

Proof of Proposition 5.1. To simplify the notation, we �rst de�ne the path integral

of the random process function µ(·) as

ν(x,y) =

Z 1

0

µ

�
x

l
+ s

y − x

l

�
ds,

and

ϑ(x,y) = |x− y|ν(x,y).

We need to compute moment estimation

E( bG(x,y1) bG(x,y2)) = bG0(x,y1) bG0(x,y2)E ,

where

E = E
�
e−iκσ(|x−y

1
|ν(x,y

1
)−|x−y

2
|ν(x,y

2
))
�
= e−

1

2
κ2σ2E(ϑ(x,y

1
)−ϑ(x,y

2
))

2

. (B.1)

Because |y1 − y2| ≪ L we can write

|x− y2| = |x− y1|+
(x− y1)

T

|x− y1|
(y2 − y1) + o(|y2 − y1|),

and then

ν(x,y2) = ν(x,y1) +∇T
y

1
ν(x,y1)(y2 − y1) + o(|y2 − y1|).

Dropping terms of order 2 or higher, we estimate the expectation in the exponent as

E

�
ϑ(x,y1)− ϑ(x,y2)

�2

≈ E

�
ν(x,y1)

(x− y1)
T

|x− y1|
(y2 − y1) + |x− y1|∇

T
y

1
ν(x,y1)(y2 − y1)

�2

.

For simplicity, we consider y1 and y2 on the same plane, at a distance L from point

x = (0, 0, 0), so y1 = (0, 0, L) andy2 = (ξ, η, L). Then, (y2 − y1)
T (x− y1) = 0 and the
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variance is reduced to the estimation of

E

�
∇T
yν(x,y)(y

′ − y)
�2

= ξ2E

�
∂

∂y1
ν(x,y)

�2

+ η2E

�
∂

∂y2
ν(x,y)

�2

+ 2ξηE

�
∂

∂y1
ν(x,y)

∂

∂y2
ν(x,y)

�

=

�
ξ2

∂

∂y1

∂

∂y′1
E(ν(x,y)ν(x,y′)) + η2

∂

∂y2

∂

∂y′2
E(ν(x,y)ν(x,y′))

+2ξη
∂

∂y1

∂

∂y′2
E(ν(x,y)ν(x,y′))

�����
y′=y

, (B.2)

where ∂
∂yi

means the derivative with respect to the ith component of vector y.

Denote ~y′ = [ξ, η]T and ~y = [0, 0]T , such that y = [~yT , L]T and y′ = [~y′
T
, L]T , and

let ς =
q

1
l2
|s~y − s′~y′|2 + L2

l2
(s− s′)2. We compute the derivatives of the expectations

E(ν(x,y)ν(x,y′)) =

Z 1

0

Z 1

0

R(ς) ds′ ds

in (B.2) as follows:

∂

∂y1
E(ν(x,y)ν(x,y′)) =

Z 1

0

Z 1

0

_R(ς)
s

ςl2
(sy1 − s′y′1) ds

′ ds ,

∂2

∂y′1∂y1
E(ν(x,y)ν(x,y′))

=

Z 1

0

Z 1

0

�
_R(ς)

ss′(sy1 − s′y′1)
2

ς3l4
− _R(ς)

ss′

ςl2
− •R(ς)

ss′

ς2l4
(sy1 − s′y′1)

2

�
ds′ ds ,

∂2

∂y1∂y′2
E(ν(x,y)ν(x,y′)) =

Z 1

0

Z 1

0

ss′

ς2l4

 
_R(ς)

ς
− •R(ς)

!
(sy1 − s′y′1)(sy2 − s′y′2) ds

′ ds.

Taking y = y′ = (0, 0, L) in the above second order derivatives, we obtain that

E

� ∂

∂y1
ν(x,y)

∂

∂y2
ν(x,y)

�
= 0 ,

so that

E

�
∇T
yν(x,y)(y

′ − y)
�2

= (ξ2 + η2)E
� ∂

∂y1
ν(x,y)

�2

.

Next, we compute

E

�
∂

∂y1
ν(x,y)

�2

= −

Z 1

0

Z 1

0

_R

�
L|s− s′|

l

�
ss′

lL|s− s′|
ds′ ds

=
2l2

3L4

Z L/l

0

sR(s)ds−
2

3lL

Z L/l

0

_R(t)

t
dt +

2

3L2
R

�
L

l

�
−

R(0)

L2

≈
1

L2

 
−1−

2L

3l

Z ∞

0

_R(t)

t
dt

!
,
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where the last approximation is based on the condition l ≪ L and R(·) has exponential

decay with normalization R(0) = 1. Now, let a2e = σ2L4E

�
∂

∂y1
ν(x,y)

�2

. We then have

E(ϑ(x,y1)− ϑ(x,y2))
2 ≈ |x− y1|

2
E(∇T

yν(x,y1)(y2 − y1))
2 ≈

|y1 − y2|
2

σ2L2
a2e , (B.3)

and using (B.1)

E( bG(x,y1) bG(x,y2)) = bG0(x,y1) bG0(x,y2)E ≈ bG0(x,y1) bG0(x,y2)e
−

�2a2e
2L2 |y

1
−y

2
|2,

i.e. the moment estimate (5.4). �

Proof of Corollary 5.2. The result is a direct application of Proposition 5.1. Let

C = 1
(4π|x−y

1
|)2(4π|x−y

2
|)2
. Using (5.4), we have

E

��� bG(x,y1) bG(x,y2)− E

�
bG(x,y1) bG(x,y2)

����
2

≈ E

���� bG0(x,y1) bG0(x,y2)

�
eiκσ(ϑ(x,y

1
)−ϑ(x,y

2
)) − e−

1

2
κ2 a2e

L2 |y1
−y

2
|2
�����

2

= CE(1 + e−
�2a2e
L2

|y
1
−y

2
|2 − e−

�2a2e
2L2

|y
1
−y

2
|2(eiκσ(ϑ(x,y

1
)−ϑ(x,y

2
)) + e−iκσ(ϑ(x,y

1
)−ϑ(x,y

2
))))

= C(1 + e−
�2a2e
L2 |y

1
−y

2
|2 − 2e−

�2a2e
2L2 |y

1
−y

2
|2e−

1

2
κ2σ2E(ϑ(x,y

1
)−ϑ(x,y

2
))2)

≈ C(1− e−κ2 a2e
L2 |y1

−y
2
|2), (B.4)

where we use the estimate (B.3) in the last step. �

Proof of Proposition 5.3. For simplicity, we use the same con�guration as in the

proof of Proposition 5.1, where y1 = [0, 0, L]T and y2 = [ξ, η, L]T . We �rst look at the

denominator of the ratio in (5.7)

kbg(y1)k
2 =

NX

j=1

��� bG(xj ,y1)
���
2

=

NX

j=1

��� bG0(xj,y1)
���
2

= kbg0(y1)k
2. (B.5)

Using the same approach as in the proof in [16], under continuous limit, we have

kbg(y1)k
2 ≈

1

(4πh)2

Z


(x)

dx

|x− y|2
=

1

16πh2
log

�
1 +

a2

4L2

�
.

On the other hand, the numerator can be computed as follows

E |bg∗(y1)bg(y2)− E (bg∗(y1)bg(y2))|
2

= E

�����

NX

j=1

bG0(xj,y1) bG0(xj,y2)

�
eiκσ(ϑ(xj ,y1

)−ϑ(xj ,y2
)) − e−

�2a2e
2L2

|y
1
−y

2
|2
������

2

=

NX

j,j′=1

bG0(xj,y1) bG0(xj,y2) bG0(xj′,y1) bG0(xj′,y2)

×E(eiκσ(ϑ(xj ,y1
)−ϑ(xj ,y2

)−ϑ(xj′ ,y1
)+ϑ(xj′ ,y2

))

−e−
�2a2e
2L2

|y
1
−y

2
|2 e−iκσ(ϑ(xj′ ,y1

)−ϑ(xj′ ,y2
))

−e−
�2a2e
2L2 |y

1
−y

2
|2 e−iκσ(ϑ(xj ,y1

)−ϑ(xj ,y2
)) + e−

�2a2e
L2 |y

1
−y

2
|2)
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=

NX

j,j′=1

bG0(xj,y1) bG0(xj,y2) bG0(xj′,y1) bG0(xj′,y2)

×e−
�2a2e
L2

|y
1
−y

2
|2
�
eκ

2σ2E(ϑ(xj ,y1
)−ϑ(xj ,y2

))(ϑ(xj′ ,y1
)−ϑ(xj′ ,y2

)) − 1
�
.

From the above expression, we can see the variance of bg∗(y1)bg(y2) is close to the

denominator up to the factor

e−
�2a2e
L2

|y
1
−y

2
|2
�
eκ

2σ2E(ϑ(xj ,y1
)−ϑ(xj ,y2

))(ϑ(xj′ ,y1
)−ϑ(xj′ ,y2

)) − 1
�
. (B.6)

The expectation

E(ϑ(xj ,y1)− ϑ(xj ,y2))(ϑ(xj′,y1)− ϑ(xj′,y2))

is nonzero only when there is strong correlation between the path starting from xj and

xj′. This is controlled by the correlation length l of the random medium. When those

paths are within l, the value of (B.6) is reduced to 1 − e−
�2a2e
L2

|y
1
−y

2
|2 , and otherwise

(B.6) is equal to zero. Thus in the continuous limit, the value of numerator can be

approximated by

E |bg∗(y1)bg(y2)− E (bg∗(y1)bg(y2))|
2
≈

1

h4

�
1− e−

�2a2e
L2

|y
1
−y

2
|2
�

(B.7)

×

Z


(x)

bG0(x,y1) bG0(x,y2) dx

Z

B(0,l)

bG0(x′,y1) bG0(x′,y2) dx
′,

where B(0, l) is a ball centered at 0 with radius l within which factor (B.6) is not equal

to zero.

Therefore the ratio on the left handside of (5.7) is bounded by
�����
E |bg∗(y1)bg(y2)− E (bg∗(y1)bg(y2))|

2

kbg(y1)k
2kbg(y2)k

2

�����

≈
256π2

�
1− e−

�2a2e
L2 |y

1
−y

2
|2
�

log2
�
1 + a2

4L2

�
����
Z


(x)

bG0(x,y1) bG0(x,y2) dx

����

×

����
Z

B(0,l)

bG0(x
′,y1) bG0(x′,y2) dx

′

����

≤

�
1− e−

�2a2e
L2

|y
1
−y

2
|2
�

log2
�
1 + a2

4L2

�
Z

B(0,l)

dx

|x− y|2

Z


(x)

dx

|x− y|2

≈
l2
�
1− e−

�2a2e
L2 |y

1
−y

2
|2
�

L2 log
�
1 + a2

4L2

� .

When size of array a increases, we have
E|bg∗

(y
1
)bg(y

2
)−E(bg∗

(y
1
)bg(y

2
))|2

kbg(y
1
)k2kbg(y

2
)k2

goes to 0

logarithmically. �
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Remark B.2. The result in Proposition 5.3 holds for any regime no matter a ≪ L or

L / a. When a ≪ L, i.e. in the paraxial regime, we can use parabolic approximation

to compute the approximate value for the ratio on the lefthand side of (5.7). Let

x = [x1, x2, 0]
T . Then we have

|x− y1| =
q
x2
1 + x2

2 + L2 ≈ L+
x2
1 + x2

2

2L
and

|x− y2| =
p
L2 + (x1 − ξ)2 + (x2 − η)2 = L+

(x1 − ξ)2 + (x2 − η)2

2L
.

Since |y1 − y2| ≤ a ≪ L, we approximate in denominator

|x− y1| ≈ |x− y2| ≈ L,

and for the two integrals in (B.7),
Z


(x)

bG0(x,y1) bG0(x,y2) dx ≈
e−iκ �2+�2

2L

L2

Z


(x)

eiκ
x1�+x2�

L dx

=
e−iκ �2+�2

2L

L2

Z a/2

−a/2

eiκ
x1�

L dx1

Z a/2

−a/2

eiκ
x2�

L dx2

=
a2e−iκ �2+�2

2L

πL2
sinc

� aξ

λL

�
sinc

� aη

λL

�
,

and similarly,
Z

B(0,l)

bG0(x,y1) bG0(x,y2) dx ≈
a2e−iκ �2+�2

2L

πL2
sinc

� lξ

λL

�
sinc

� lη

λL

�
.

Note that when a ≪ L, we can approximate linearly log
�
1 + a2

4L2

�
≈ a2

4L2 . Therefore,

the lefthand side of (5.7) is approximately equal to

E |bg∗(y1)bg(y2)− E (bg∗(y1)bg(y2))|
2

kbg(y1)k
2kbg(y2)k

2

≈
a2l2

�
1− e−

�2a2e
L2 |y

1
−y

2
|2
�
sinc

�
ξa
λL

�
sinc

�
ηa
λL

�
sinc

�
ξl
λL

�
sinc

�
ηl
λL

�

L4π2

256π2

a2

4L2

a2

4L2

≈ 256π2
�
1− e−

�2a2e
L2 |y

1
−y

2
|2
�� l

a

�2

sinc
� ξa

λL

�
sinc

� ηa

λL

�
sinc

� ξl

λL

�
sinc

� ηl

λL

�
. (B.8)

This matches the result of logarithmic decay bound in general.

Proof of Proposition 5.4. We �rst look at (5.10) for back-propagation in the true

random media scenario. It has been shown in Proposition 5.3 that when size of array is

large, the single realization will approach the average value. Therefore, it is enough to

show the average value goes to zero as points y1 and y2 are far apart and the result is

true due to the Chebyshev inequality under probability measure P induced from random

�eld µ(·). Using the moment formula, we have

E(bg∗(y1)bg(y2)) =

NX

j=1

bG0(xj,y1) bG0(xj,y2)e
−

�2a2e
2L2 |y

1
−y

2
|2.



Imaging of localized objects 31

Since the multiplier factor e−
�2a2e
2L2 |y

1
−y

2
|2 < 1 and goes to zero as

|y
1
−y

2
|

λ
increases, we

thus have

E(bg∗(y1)bg(y2)) → 0,
|y1 − y2|

λ
→ ∞

especially when size of array a becomes large. When ae is large in random media,

average value will decay to zero faster than that in homogeneous media. This is why in

random media better resolution can be achieved.

Next, we look at (5.11). First, we compute the expectation of ν2(x,y)

Eν2(x,y) = 2

Z 1

0

Z s

0

R

�
|y − x|

l
(s− s′)

�
ds′ ds =

2l

|y − x|

Z 1

0

Z |y−x|

l
s

0

R(s′) ds′ ds

Under l ≪ L and symmetric extension of R(·) to negative real line, we have

Eν2(x,y) ≈
2l

|y − x|

Z ∞

0

R(s) ds =
l bR(0)

|y − x|
.

Then it is easy to calculate the expectation of mixed inner product as

E(bg∗
0(y1)bg(y2)) =

NX

j=1

bG0(xj ,y1) bG0(xj ,y2)Ee
iκσ|xj−y2

|ν(xj ,y2
)

=
NX

j=1

bG0(xj ,y1) bG0(xj ,y2)e
− 1

2
κ2σ2

0
|xj−y2

|2Eν2(xj ,y2
)

≈
NX

j=1

bG0(xj ,y1) bG0(xj ,y2)e
− 1

2
κ2σ2

0
l bR(0)|xj−y2

|.

Because bR(0) ≥ 0, it implies E(bg∗
0(y1)bg(y2)) is approximately equal to bg∗

0(y1)bg0(y2)

multiplied by a factor less that 1 and therefore

E(bg∗
0(y1)bg(y2)) → 0,

|y1 − y2|

λ
→ ∞.

To show the statistical stability of the mixed inner product, we �rst compute the

bound of the numerator similar to that in the proof of Proposition 5.4.

E

���bg∗
0(y1)bg(y2)− Ebg∗

0(y1)bg(y2)
���
2

≈ E

�����

NX

j=1

bG0(xj ,y1) bG0(xj ,y2)
�
eiκσϑ(xj ,y2

) − e−
1

2
κ2σ2l bR(0)|xj−y2

|
������

2

=

NX

j,j′=1

bG0(xj ,y1) bG0(xj ,y2) bG0(xj′,y1) bG0(xj′,y2)

×e−
1

2
κ2σ2l bR(0)(|xj−y2

|+|xj′−y2
|)
�
eκ

2σ2Eϑ(x,y
2
)ϑ(xj′ ,y2

) − 1
�
.

The correlation term ϑ(xj,y2)ϑ(xj′,y2) is nonzero only when the paths connecting xj ,

xj′ with y2 are within the correlation length l. Also according to Cauchy-Schwartz

inequality,

E(ϑ(xj ,y2)ϑ(xj′,y2)) ≤
1

2

�
Eϑ2(xj,y2) + Eϑ2(xj′,y2)

�
.
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Therefore the numerator is approximately bounded by continuous limit

E

���bg∗
0(y1)bg(y2)− Ebg∗

0(y1)bg(y2)
���
2

/
1

h4

�
1− e−κ2σ2Ll bR(0)

� ����
Z


(x)

bG0(x,y1) bG0(x,y2) dx

����
����
Z

B(0,l)

bG0(x,y1) bG0(x,y2) dx

����

/
1

256π2h4

�
1− e−κ2σ2Ll bR(0)

�
log

�
1 +

a2

4L2

�
log

�
1 +

l2

4L2

�
.

The denominator is norm of the Green function vector which has been calculated in the

proof of Proposition 5.3. Thus the ratio in (5.12) is bounded by

E |bg∗
0(y1)bg(y2)− E(bg∗

0(y1)bg(y2))|
2

kbg0(y1)k
2kbg(y2)k

2
/

�
1− e−κ2σ2Ll bR(0)

� log
�
1 + l2

4L2

�

log
�
1 + a2

4L2

� .

When a → ∞, the right handside goes to zero. The decay rate is again controlled by

the logrithmic factor of a and when a ≪ L, the decay rate is quadratic of a which is

the same as that in Proposition 5.3. Due to the statistical stability, the mixed inner

product satis�es (5.11). �
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