32 research outputs found

    Navigating in a sea of repeats in RNA-seq without drowning

    Full text link
    The main challenge in de novo assembly of NGS data is certainly to deal with repeats that are longer than the reads. This is particularly true for RNA- seq data, since coverage information cannot be used to flag repeated sequences, of which transposable elements are one of the main examples. Most transcriptome assemblers are based on de Bruijn graphs and have no clear and explicit model for repeats in RNA-seq data, relying instead on heuristics to deal with them. The results of this work are twofold. First, we introduce a formal model for repre- senting high copy number repeats in RNA-seq data and exploit its properties for inferring a combinatorial characteristic of repeat-associated subgraphs. We show that the problem of identifying in a de Bruijn graph a subgraph with this charac- teristic is NP-complete. In a second step, we show that in the specific case of a local assembly of alternative splicing (AS) events, we can implicitly avoid such subgraphs. In particular, we designed and implemented an algorithm to efficiently identify AS events that are not included in repeated regions. Finally, we validate our results using synthetic data. We also give an indication of the usefulness of our method on real data

    Exploiting whole-genome sequencing to understand the evolution of corals and their symbionts

    Get PDF
    Jia Zhang's research undertook an in-depth study of Acropora coral population genomics using whole-genome sequencing data. Her focus was the genetic diversity and evolution of these corals in the Great Barrier Reef and Kimberley, northwestern Australia. The study's findings enhance our understanding of coral speciation and provide projections on coral adaptability to future climate changes

    Synthetic Biology

    Get PDF
    Synthetic biology gives us a new hope because it combines various disciplines, such as genetics, chemistry, biology, molecular sciences, and other disciplines, and gives rise to a novel interdisciplinary science. We can foresee the creation of the new world of vegetation, animals, and humans with the interdisciplinary system of biological sciences. These articles are contributed by renowned experts in their fields. The field of synthetic biology is growing exponentially and opening up new avenues in multidisciplinary approaches by bringing together theoretical and applied aspects of science

    Identification, organisation and visualisation of complete proteomes in UniProt throughout all taxonomic ranks :|barchaea, bacteria, eukatyote and virus

    Get PDF
    Users of uniprot.org want to be able to query, retrieve and download proteome sets for an organism of their choice. They expect the data to be easily accessed, complete and up to date based on current available knowledge. UniProt release 2012_01 (25th Jan 2012) contains the proteomes of 2,923 organisms; 50% of which are bacteria, 38% viruses, 8% eukaryota and 4% archaea. Note that the term 'organism' is used in a broad sense to include subspecies, strains and isolates. Each completely sequenced organism is processed as an independent organism, hence the availability of 38 strain-specific proteomes Escherichia coli that are accessible for download. There is a project within UniProt dedicated to the mammoth task of maintaining the “Proteomes database”. This active resource is essential for UniProt to continually provide high quality proteome sets to the users. Accurate identification and incorporation of new, publically available, proteomes as well as the maintenance of existing proteomes permits sustained growth of the proteomes project. This is a huge, complicated and vital task accomplished by the activities of both curators and programmers. This thesis explains the data input and output of the proteomes database: the flow of genome project data from the nucleotide database into the proteomes database, then from each genome how a proteome is identified, augmented and made visible to uniprot.org users. Along this journey of discovery many issues arose, puzzles concerning data gathering, data integrity and also data visualisation. All were resolved and the outcome is a well-documented, actively maintained database that strives to provide optimal proteome information to its users

    Specificity of the innate immune responses to different classes of non-tuberculous mycobacteria

    Get PDF
    Mycobacterium avium is the most common nontuberculous mycobacterium (NTM) species causing infectious disease. Here, we characterized a M. avium infection model in zebrafish larvae, and compared it to M. marinum infection, a model of tuberculosis. M. avium bacteria are efficiently phagocytosed and frequently induce granuloma-like structures in zebrafish larvae. Although macrophages can respond to both mycobacterial infections, their migration speed is faster in infections caused by M. marinum. Tlr2 is conservatively involved in most aspects of the defense against both mycobacterial infections. However, Tlr2 has a function in the migration speed of macrophages and neutrophils to infection sites with M. marinum that is not observed with M. avium. Using RNAseq analysis, we found a distinct transcriptome response in cytokine-cytokine receptor interaction for M. avium and M. marinum infection. In addition, we found differences in gene expression in metabolic pathways, phagosome formation, matrix remodeling, and apoptosis in response to these mycobacterial infections. In conclusion, we characterized a new M. avium infection model in zebrafish that can be further used in studying pathological mechanisms for NTM-caused diseases

    Data mining the serous ovarian tumor transcriptome

    Get PDF
    Ovarian cancer is the most lethal gynecologic cancer in the United States. If caught in early stages, patient survival rate is 94%, late stage survival rates drop to 28%. It is because most cases are caught in late stages that high mortality is seen. Correct diagnosis is dependent on the presence of symptoms: ~90% of diagnosed ovar- ian cancers are symptomatic. These symptoms tend to be unfocused and not acute. The goal of this project is to develop a transcript-level data set measuring ovarian tumor expression and associated paracrine signaling for later biomarker research. To this end, laser capture microdissection was used with exon based oligonucleotide ar- rays to measure the transcriptome of benign and malignant (Type II) serous ovarian surface epithelial-stromal tumors. In addition to profiling tumor, surrounding stro- mal tissue expression was measured to examine potential paracrine signaling. In total, ~270 million measurements were performed using 50 microarrays. An initial analysis was performed to measure quality, and to compare our measurements against known ovarian cancer properties as established in the molecular genetics literature. Using ontological annotation and de novo pathway generation methods, major trends were defined in the data set including the following: apical surface and tight junction ac- tivity, mitotic activity, tumor suppression in benign tumors, epithelial-mesenchymal transitioning, known ovarian tumor oncogene activity, and evidence of paracrine sig- naling. A list of differentially expressed transcripts was defined which may be explored as biomarkers. The potential for meaningful future analysis is diverse. This data set will contribute to the capacity of the cancer genetics community to perform high resolution exploration of serous ovarian epithelial-stromal surface tumors, aiding in developing better diagnostics and therapeutics

    A critical review of the current state of forensic science knowledge and its integration in legal systems

    Get PDF
    Forensic science has a significant historical and contemporary relationship with the criminal justice system. It is a relationship between two disciplines whose origins stem from different backgrounds. It is trite that effective communication assist in resolving underlying problems in any given context. However, a lack of communication continues to characterise the intersection between law and science. As recently as 2019, a six-part symposium on the use of forensic science in the criminal justice system again posed the question on how the justice system could ensure the reliability of forensic science evidence presented during trials. As the law demands finality, science is always evolving and can never be considered finite or final. Legal systems do not always adapt to the nature of scientific knowledge, and are not willing to abandon finality when that scientific knowledge shifts. Advocacy plays an important role in the promotion of forensic science, particularly advocacy to the broader scientific community for financial support, much needed research and more testing. However, despite its important function, advocacy should not be conflated with science. The foundation of advocacy is a cause; whereas the foundation of science is fact. The objective of this research was to conduct a qualitative literature review of the field of forensic science; to identify gaps in the knowledge of forensic science and its integration in the criminal justice system. The literature review will provide researchers within the field of forensic science with suggested research topics requiring further examination and research. To achieve its objective, the study critically analysed the historical development of, and evaluated the use of forensic science evidence in legal systems generally, including its role regarding the admissibility or inadmissibility of the evidence in the courtroom. In conclusion, it was determined that the breadth of forensic scientific knowledge is comprehensive but scattered. The foundational underpinning of the four disciplines, discussed in this dissertation, has been put to the legal test on countless occasions. Some gaps still remain that require further research in order to strengthen the foundation of the disciplines. Human influence will always be present in examinations and interpretations and will lean towards subjective decision making.JurisprudenceD. Phil

    2017 GREAT Day Program

    Get PDF
    SUNY Geneseo’s Eleventh Annual GREAT Day.https://knightscholar.geneseo.edu/program-2007/1011/thumbnail.jp
    corecore