571 research outputs found

    Detection of bimanual gestures everywhere: why it matters, what we need and what is missing

    Full text link
    Bimanual gestures are of the utmost importance for the study of motor coordination in humans and in everyday activities. A reliable detection of bimanual gestures in unconstrained environments is fundamental for their clinical study and to assess common activities of daily living. This paper investigates techniques for a reliable, unconstrained detection and classification of bimanual gestures. It assumes the availability of inertial data originating from the two hands/arms, builds upon a previously developed technique for gesture modelling based on Gaussian Mixture Modelling (GMM) and Gaussian Mixture Regression (GMR), and compares different modelling and classification techniques, which are based on a number of assumptions inspired by literature about how bimanual gestures are represented and modelled in the brain. Experiments show results related to 5 everyday bimanual activities, which have been selected on the basis of three main parameters: (not) constraining the two hands by a physical tool, (not) requiring a specific sequence of single-hand gestures, being recursive (or not). In the best performing combination of modeling approach and classification technique, five out of five activities are recognized up to an accuracy of 97%, a precision of 82% and a level of recall of 100%.Comment: Submitted to Robotics and Autonomous Systems (Elsevier

    Inertial Sensor Based Modelling of Human Activity Classes: Feature Extraction and Multi-sensor Data Fusion Using Machine Learning Algorithms

    Get PDF
    Wearable inertial sensors are currently receiving pronounced interest due to applications in unconstrained daily life settings, ambulatory monitoring and pervasive computing systems. This research focuses on human activity recognition problem, in which inputs are multichannel time series signals acquired from a set of body-worn inertial sensors and outputs are automatically classified human activities. A general-purpose framework has been presented for designing and evaluating activity recognition system with six different activities using machine learning algorithms such as support vector machine (SVM) and artificial neural networks (ANN). Several feature selection methods were explored to make the recognition process faster by experimenting on the features extracted from the accelerometer and gyroscope time series data collected from a number of volunteers. In addition, a detailed discussion is presented to explore how different design parameters, for example, the number of features and data fusion from multiple sensor locations - impact on overall recognition performance

    Recognition of Emotions using Energy Based Bimodal Information Fusion and Correlation

    Get PDF
    Multi-sensor information fusion is a rapidly developing research area which forms the backbone of numerous essential technologies such as intelligent robotic control, sensor networks, video and image processing and many more. In this paper, we have developed a novel technique to analyze and correlate human emotions expressed in voice tone & facial expression. Audio and video streams captured to populate audio and video bimodal data sets to sense the expressed emotions in voice tone and facial expression respectively. An energy based mapping is being done to overcome the inherent heterogeneity of the recorded bi-modal signal. The fusion process uses sampled and mapped energy signal of both modalities’s data stream and further recognize the overall emotional component using Support Vector Machine (SVM) classifier with the accuracy 93.06%

    Multimodal human hand motion sensing and analysis - a review

    Get PDF

    ConfLab: A Rich Multimodal Multisensor Dataset of Free-Standing Social Interactions in the Wild

    Full text link
    Recording the dynamics of unscripted human interactions in the wild is challenging due to the delicate trade-offs between several factors: participant privacy, ecological validity, data fidelity, and logistical overheads. To address these, following a 'datasets for the community by the community' ethos, we propose the Conference Living Lab (ConfLab): a new concept for multimodal multisensor data collection of in-the-wild free-standing social conversations. For the first instantiation of ConfLab described here, we organized a real-life professional networking event at a major international conference. Involving 48 conference attendees, the dataset captures a diverse mix of status, acquaintance, and networking motivations. Our capture setup improves upon the data fidelity of prior in-the-wild datasets while retaining privacy sensitivity: 8 videos (1920x1080, 60 fps) from a non-invasive overhead view, and custom wearable sensors with onboard recording of body motion (full 9-axis IMU), privacy-preserving low-frequency audio (1250 Hz), and Bluetooth-based proximity. Additionally, we developed custom solutions for distributed hardware synchronization at acquisition, and time-efficient continuous annotation of body keypoints and actions at high sampling rates. Our benchmarks showcase some of the open research tasks related to in-the-wild privacy-preserving social data analysis: keypoints detection from overhead camera views, skeleton-based no-audio speaker detection, and F-formation detection.Comment: v2 is the version submitted to Neurips 2022 Datasets and Benchmarks Trac

    Towards an intuitive human-robot interaction based on hand gesture recognition and proximity sensors

    Get PDF
    In this paper, we present a multimodal sensor interface that is capable of recognizing hand gestures for human-robot interaction. The proposed system is composed of an array of proximity and gesture sensors, which have been mounted on a 3D printed bracelet. The gesture sensors are employed for data collection from four hand gesture movements (up, down, left and right) performed by the human at a predefined distance from the sensorised bracelet. The hand gesture movements are classified using Artificial Neural Networks. The proposed approach is validated with experiments in offline and real-time modes performed systematically. First, in offline mode, the accuracy for recognition of the four hand gesture movements achieved a mean of 97.86%. Second, the trained model was used for classification in real-time and achieved a mean recognition accuracy of 97.7%. The output from the recognised hand gesture in real-time mode was used to control the movement of a Universal Robot (UR3) arm in the CoppeliaSim simulation environment. Overall, the results from the experiments show that using multimodal sensors, together with computational intelligence methods, have the potential for the development of intuitive and safe human-robot interaction
    corecore