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Towards an intuitive human-robot interaction
based on hand gesture recognition and proximity sensors

Gorkem Anil Al, Pedro Estrela and Uriel Martinez-Hernandez

Abstract— In this paper, we present a multimodal sensor
interface that is capable of recognizing hand gestures for
human-robot interaction. The proposed system is composed of
an array of proximity and gesture sensors, which have been
mounted on a 3D printed bracelet. The gesture sensors are
employed for data collection from four hand gesture movements
(up, down, left and right) performed by the human at a prede-
fined distance from the sensorised bracelet. The hand gesture
movements are classified using Artificial Neural Networks. The
proposed approach is validated with experiments in offline
and real-time modes performed systematically. First, in offline
mode, the accuracy for recognition of the four hand gesture
movements achieved a mean of 97.86%. Second, the trained
model was used for classification in real-time and achieved
a mean recognition accuracy of 97.7%. The output from
the recognised hand gesture in real-time mode was used to
control the movement of a Universal Robot (UR3) arm in the
CoppeliaSim simulation environment. Overall, the results from
the experiments show that using multimodal sensors, together
with computational intelligence methods, have the potential for
the development of intuitive and safe human-robot interaction.

I. INTRODUCTION

Robotics is expected to play a crucial role for the transition
from traditional to flexible manufacturing, where robots are
capable of moving autonomously, safely interacting with
humans and easily programmable by non-experts to perform
multiple tasks [1]. In human-robot collaborative tasks, the
design of intuitive interfaces is crucial to benefit the robot
from the human experience and skills to perform complex
tasks. These interfaces should be intuitive and easy to use for
humans to interact with robots without any concern, while
making them feel comfortable to work on their tasks [2].

For efficient and safe human-robot collaboration, the end-
users (operators) need to be able to control the robots in an
intuitive way, while the robot accurately perceives the human
actions and commands. These processes require the use of
multiple sensing modalities and computational intelligence
methods, and different strategies have been studied in pre-
vious works for human-robot interaction and collaboration,
e.g., voice, touch, vision and user interfaces [3], [4], [5].

Voice recognition has been used to command industrial
robots for pick-and-place and welding operations [6]. Al-
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Fig. 1. Multimodal sensor array mounted on a 3D printed bracelet for
controlling the movements of the UR robot based on the recognition of
hand gestures performed by the human.

though verbal communication channels are useful for human-
robot interaction, this method is not appropriate for industrial
environments given the noise levels that affect the recogni-
tion of voice commands [2].

Vision-based techniques with depth cameras have been
used for the study of the interaction between humans and
robots based on tracking the human operator body and hand
gestures [7], [8], [9]. Stereo cameras have also been em-
ployed for the recognition of hand gestures such as number
and pointing [5], [10]. These works are constrained to fixed
places due to the required set of cameras. The combination
of voice and gesture sensing has been investigated to allow
the robot to have a better understanding of the human
movements, and thus, control the robot position [11], [12].

Non-vision and wearable systems have been used to iden-
tify sets of body movements for robot control in human-robot
interaction [13]. Static and dynamic human hand behaviours,
captured with the Nintendo Wii Remote controller, have
been employed for robot programming [14]. However, the
Wii controller can be cumbersome and interfere with the
hands of users in industrial applications. Haptic technology,
with tactile and force sensors, has been used to control the
compliance of robots while interacting with humans in home
and industrial environments [15], [16], [17]. This approach
offers dynamic interaction features with robots compared
with vision-based gesture interaction, which requires differ-
ent setup based on changes in the work environment.
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Fig. 2. Multimodal sensorised bracelet. (A) Time of Flight and gesture sensors labelled as 1, 3, 5 and 2 and 4, respectively. LEDs mounted for visual
inspection of the data collection and recognition processes. (B) The sensors are mounted at a distance of 30◦ from each other. (C) Experimental setup
composed of the sensorised bracelet and 3D printed table designed for systematic data collection and hand gesture recognition experiments.

In this work, a multimodal sensor interface for safe
human-robot interaction using proximity and gesture sen-
sors is presented. This approach uses a contactless hand
gesture recognition technology that have not been applied
in the literature to provide accurate and safe human-robot
interaction. The multimodal sensor interface is responsible
for the recognition of hand gestures (up, down, left, right)
in real-time and control the movement of a robot platform
(Figure 1). This approach allows the human to interact and
control the robot platform without touching it or physically
contacting it while performing a task in a shared workspace.
The multimodal sensors are mounted on a 3D printed bracelet
designed for the Universal Robot (UR3). A computational
method based on an Artificial Neural Network (ANN) is used
for the recognition of human hand gestures. The validation
of this work is performed with experiments in off-line and
real-time mode. In off-line mode, the recognition accuracy
of hand gestures is tested with ANNs and multimodal sensor
data. In real-time mode, hand gestures are recognised using
multimodal sensor data in real-time to control the UR3 robot
in a simulation environment. Overall, these experiments
demonstrate the capability of multimodal interfaces, together
with computational intelligence, for safe and intuitive robot
control in human-robot interaction tasks.

II. METHODS

A. Design of the multimodal sensorised bracelet

The multimodal sensor interface for human-robot inter-
action is composed of a 3D printed bracelet and an array
ToF and gesture sensors. The 3D printed bracelet has been
designed to be mounted on the end-effector of the UR3
robot (Figure 1). The ToF sensor VL6180x, composed of IR
emitter, range and ambient modules, is employed to detect
the proximity of the human to the robot platform between
150 mm and 250 mm. The sensor is capable of measuring
up to 600 mm distance and 290 mm diameter with 27.2◦

viewing cone. The gesture sensor APDS-9960 is used for
data collection from the hand movements performed by the
human located in front of the bracelet for interaction with the

robot. The APDS-9960 sensor also provides proximity infor-
mation, however, it has lower sensitivity than the VL6180x
sensor. The APDS-9960 sensor uses four photodiodes to
collect data from hand movements. The reflected IR energy,
sourced by integrated LEDs, is converted from motion to
digital information. A set of red, yellow and green LEDs are
mounted on the 3D printed bracelet for testing purposes to
visually indicate the state of the robot, whether the human
is at the correct distance for data collection and whether
the data collected is ready for the recognition process. This
multimodal sensor interface, arrangement and position of the
sensors are shown in Figures 2A and 2B.

The multimodal sensor data is transmitted to a workstation
for data analysis using an Arduino microcontroller, which
communicates to the sensors via I2C and using the multi-
plexer TCA9548 from Texas Instruments. This multiplexer
board includes eight channels and can be connected to a
programming card using one I2C bus. The experimental setup
composed of the multimodal 3D printed bracelet and the
circuitry for communication is shown in Figure 2C.

B. Data acquisition

The data collection task was performed by one user using
the experimental setup showed in Figure 2C. The set of hand
gestures employed for data collection is composed of up,
down, left and right hand movements. The raw data from the
hand gestures performed by the human was obtained from
the four photodiodes internally located in the APDS-9960
sensor. The values of this data are in the range of 0 and 255
according to the distance from the human hand to the sensor.
The length of raw data collected from the sensors depends on
the speed of the hand gesture movement. The data collected
from the four hand gesture movements has been normalised
and examples of the data collected are shown in Figure 3.

Gesture data was collected by moving the hand in front
of the sensorised bracelet in a distance between 150 mm
and 190 mm. This distance was defined according to the
gesture sensor operating range which is between 100 mm and
200 mm. This was used to define the appropriate range of
distances, between 150 mm and 190 mm, for data collection.
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Fig. 3. Example of raw data collected from one gesture sensor from four hand gestures movements.

The set of steps for data collection from a hand gesture
is as follows. First, the hand moves towards the bracelet,
when the hand is in the range of 200 mm to 250 mm the
yellow LED turns on to visually indicate that the hand is
moving toward the bracelet. Second, when the hand is close
to the bracelet in the range of 150 mm to 190 mm, the green
LED turns on to indicate that the system is ready and that
a hand gesture (up, down, left or right) can be performed
to start the data collection process. The red LED is used
only during the hand gesture recognition process to inform
the operator whether the recognition has been successful or
not. The data collection process was repeated 100 times for
each hand gesture, generating datasets to train and test the
model for the recognition of hand gestures. In the current
approach, the 3D printed bracelet uses two gesture sensors
to collect data for the recognition process. Additionally, 100
data samples obtained from one gesture sensor only were
labelled as error trials.

C. Artificial Neural Network for hand gesture recognition

Computational intelligence has demonstrated its potential
for recognition processes in a variety of robotic applica-
tions [18], [19], [20]. In this work, a supervised learning
approach using an Artificial Neural Network (ANN) is
employed for the recognition of hand gesture movements.
This ANN receives as input the raw data obtained from the
two gesture sensors embedded in the 3D printed bracelet.
Then, the ANN provides as output one of the four hand
movements performed by the human. The length of the raw
data obtained from the sensorised bracelet changes from a
minimum and maximum number of data points of 26 and 496
per sensor, respectively, depending on the speed of the hand
movement. Therefore, multiple lengths of the raw data, with
increments of 20 data points, were used to train the ANN and

identify the optimal data length for the recognition process.
Thus, the ANN was trained with input datasets of dimensions
of 500×52 (100 samples per gesture and 52 data points from
2 sensors) to 500×992 with increments of 20 data points.

Three different ANNs, composed of one hidden layer
with 5, 10 and 15 neurons, were implemented to analyse
the accuracy for the recognition process. These ANNs were
implemented with the conjugate gradient optimisation algo-
rithm for the training phase. The input data was segmented
into 70% for training, 15% for validation and 15% for testing
each ANN. The ANNs were trained and tested five times
with each dataset in order to calculate the mean recognition
accuracy over the five iterations. The training and testing
phases of the ANNs for the recognition of hand gestures
with multimodal data were implemented in MATLAB.

III. RESULTS

The proposed multimodal sensor interface for human-
robot interaction has been validated with experiments in
offline mode using MATLAB, and real-time mode using real
sensor data and the UR robot in a simulation environment.

A. Offline recognition of hand gestures

The experiments in offline mode were performed to anal-
yse the accuracy for recognition of hand gestures using
the real data from the sensorised bracelet with different
configuration of ANNs in MATLAB. Figure 4 shows the
flowchart with the processing steps to receive the sensor data
and prepare it for the ANN. The raw data of the two gesture
sensors from Arduino are read as char format, and converted
to number format. In MATLAB, the raw data is divided
into sensorv1 and sensorv2 vectors that contain the data
from gesture sensor 1 and gesture sensor 2, respectively. The
length of raw data is built with 26 samples from each sensor.



If the length of the collected data from any gesture sensor
is less than 26 samples, then the data is padded with zero
values. If the length of raw data is larger than 26 samples,
then only the first 26 data samples are used. This process
ensures that the training and testing dataset have the correct
length. Next, the data from both sensors is concatenated to
form the input vector of 1×52 dimension for the ANN.

The mean recognition accuracy over the four hand gestures
(up, down, left, right) was evaluated using ANNs with 5, 10
and 15 neurons in the hidden layer. The results in Table I
show that the ANN with 5 hidden neurons and 500×52 input
data size achieved the highest mean recognition accuracy of
97.86%. The lowest accuracy of 96% was achieved with the
ANN composed of 15 hidden neurons and an input data of
dimensions 500×132. The performance from the training,
validation and testing phases over the four hand gestures
with the ANN with 5 neurons, and input data of 500×52
are shown in Figure 5A. The accuracy for recognition of
individual hand gestures is presented with the confusion
matrix in Figure 5B. These results in offline mode validate
the potential of multimodal sensor arrays for the recognition
of hand gestures, which can be used for robot control.

B. Real-time recognition of hand gestures for robot control

The recognition of hand gestures in real-time mode was
performed using real-time data, the ANN with 5 hidden
neurons and 25 repetitions of each hand gesture direction

Fig. 4. Diagram with the steps performed to transfer the sensor data from
Arduino to MATLAB, and to prepare the data for recognition by the ANN.

TABLE I
MEAN ACCURACY RECOGNITION OF HAND GESTURES WITH

MULTIMODAL SENSOR DATA AND THREE DIFFERENT ANNS

5 Neurons 10 Neurons 15 Neurons
Data Size 500x52 500x372 500x132

Confusion Matrix Accuracy 97.86% 97.06% 96%

(up, down, left and right). The ANN with 5 hidden neurons
was selected based on the highest accuracy achieved in the
offline mode experiment. The results from the recognition of
individual hand gestures in real-time mode are presented in
the confusion matrix shown in Figure 5C. These results show
that the right and down hand gestures were recognised with a
mean accuracy of 100%, while the up and left hand gestures
achieved mean accuracies of 95.7%, and 94.7%, respectively.

The real-time experiment was also performed in a scenario
where the human commands a robot arm to move using hand
gestures during an assembly task in a simulation environment
(see Figure 6). This experiment permitted to evaluate the
potential of the proposed approach for human-robot interac-
tion in industrial environments. For this experiment, real data
was collected from the multimodal sensor interface and the
recognition output from the ANN was used to control the
UR3 robot arm in the CoppeliaSim simulation environment.
Each of the four hand gestures up, down, left and right were
mapped to the centre of the orange, blue, green and yellow
areas, respectively, shown in Figure 6A. For example, when
the operator needs a tool from the orange area, then, the
operator can command the robot to move to the orange area
by performing the up hand gesture movement. The same
process is followed for the other hand gestures.

Safety should be guaranteed given that the robot and
the operator work in the same environment. Therefore, the
recognition process and the robot respond to the hand gesture
when the human operator is in a distance to the robot
between 150 mm and 190 mm. When the distance between
robot and the operator is in the range of 200 mm and
250 mm, the robot stops and waits for the next command
from the operator. The panel of LEDs mounted on the
sensorised bracelet have been included for testing purposes
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Fig. 5. Results from the hand gesture recognition experiments in offline mode. (A) Training, validation and testing performance with the ANN implemented
with 5 neurons in the hidden layer. (B) Confusion matrix with the recognition accuracy of each individual hand gesture. (C) Confusion matrix with the
accuracy for recognition results of individual hand gestures performed in real-time mode by the ANN.



(A) (B) (C) (D) (E)
Fig. 6. Human and robot interaction based on hand gestures in simulation environment. (A) The robot at home position waiting for hand gesture. (B-D)
The robot moves to the orange, blue, orange green and yellow areas when the human performs the up, down, left and right hand gesture, respectively.

and indicate the state of the interaction process. This is
another safety feature that allows the human operator to
visually know whether the robot arm is ready to perform
another action. The yellow LED turns on when the distance
between the operator and the robot is between 200 mm and
250 mm. When the operator moves his/her hand closer to
the sensorised bracelet in a distance between 150 mm and
190 mm, the green LED turns on, indicating that the system
is ready for data collection from the hand gesture. The red
LED turns on when the hand gesture performed by the
human has been recognised correctly, then the output is send
to the simulation environment to control the movement of the
UR3 robot arm. This interaction process between the human
and robot is as follows:

• The robot is in home position with the sensorised
bracelet facing towards the human and waiting for the
hand gesture command

• The robot recognises the command and executes the
action to move towards the corresponding area of the
working environment (e.g., take a tool for the operator)

• The robot moves back to home position (e.g., give the
tool to the human) and waits for the next hand gesture
command from the operator

Fig. 7. Framework of the real-time experiments. Bracelet layer; sensors
used to read the data from hand gestures. MATLAB layer; data processing
for recognition of hand gestures using ANNs in MATLAB. CoppeliaSim
layer; UR3 robot controlled by hand gestures in the simulation environment.

The flowchart in Figure 7 shows the processes imple-
mented for the human-robot interaction scenario. The raw
data from the gesture sensors are sent from Arduino to MAT-
LAB via serial communication. In MATLAB, the size of the
data is processed for the ANN. The joint angles of the robot
were set to movement towards each of the coloured areas,
according to each hand gesture, using forward kinematics.

Table II shows the comparison between the proposed
multimodal sensor interface and different technologies that
detect human motion for human-robot interaction. The cam-
era technology can recognise a large set of gesture, however,
this approach is limited by occlusion, fixed setup and high
computational cost aspects. Voice commands offer a safe
interaction, but the recognition process is affected by the
noise in industrial environments. Haptic/tactile devices offer
an alternative for robot control, but some of these devices
require the operator to hold the controllers at all times.
Attaching the presented interface on a robot can offer in-
teraction capability from different positions without limiting
the motion of the operator, flexibility and less effort to set
up the robot when defining new tasks in different work
environment. Also, contactless touch can be beneficial for
the users when robots are guided to the specific tasks and
positions where humans and robots perform collaboration
scenarios sequentially.

Overall, the experiments in offline and real-time modes,
together with a robotic platform in a simulation environ-
ment, have shown the potential of the proposed method for
multimodal recognition of hand gestures with applications to
human-robot interaction tasks.

IV. CONCLUSIONS

This work presented a method for human-robot interaction
using an array of gesture and time of flight sensors to control
a robot, based on a set of hand gestures performed by a
human operator. This array of sensors was mounted on a
3D printed bracelet designed for the Universal Robot (UR3)
as an interface for interaction with humans. The proposed
method was tested using four hand gesture movements (up,
down, left or right), which were accurately recognised using
an Artificial Neural Network. Multiple experiments were
performed in offline and real-time mode for validation of
the multimodal hand recognition approach for human-robot
interaction. The experiments in offline mode were capable



TABLE II
COMPARISON OF DIFFERENT HRI TECHNOLOGIES

HRI Technology Advantages Limitations
Voice Recogni-
tion [6]

Does not restrict opera-
tor’s mobility, safe con-
tactless interaction

Limited voice diffusion
in noisy manufacturing
environment

Stereo camera [5],
[10]

Capability of detecting
different range of ges-
tures, safe contactless
interaction

Prone to occlusion, re-
stricted detection area,
affected negatively from
poor lighting condition,
fixed setup

Depth sensing cam-
era [8], [9]

Capability detecting dif-
ferent range of gestures,
safe contactless interac-
tion

Prone to occlusion, re-
stricted detection area,
affected negatively from
poor lighting condition,
fixed setup

Remote
controller [14]

No occlusion, no depen-
dency on lighting and
environmental factors

Restricts mobility, time-
consuming setup

Haptic/tactile
devices [15], [16],
[17]

Dynamic setup on the
robot, cost effective, no
occlusion

Complex computation to
recognize contact ges-
ture, complex robot con-
trol needed

Proposed
multimodal sensor
approach (Gesture-
proximity sensors)

Computationally effec-
tive, safe for dynamic
human motion, safe con-
tactless interaction, dy-
namic setup on robot,
does not restrict the hu-
man motion

Gesture recognition can
be affected by changes
in the light conditions

of achieving a mean hand gesture recognition accuracy of
97.86%. This analysis was performed using ANNs with
different number of neurons in the hidden layer, and the
configuration that achieved the highest accuracy was used for
the experiment in real-time mode. For the experiment in real-
time mode, sensor data from the four hand gestures was col-
lected and recognised with a mean accuracy of 97.7%. Then,
the output from the recognition process in real-time mode
was employed to control the movements of a robotic platform
in a simulation environment. This validation was performed
to evaluate the potential of the proposed multimodal sensor
interface for human-robot interaction using hand gestures in
an industrial environment.

Overall, the proposed initial multimodal sensor interface,
together with computational intelligence methods, showed
the potential for the accurate recognition of hand gestures
that can be employed for the development of safe and
intuitive for human-robot interaction tasks. In the future
work, different sensing modalities will be added, and the
interface design will be improved to allow the interaction
between the human and robot from longer distances. Beside
this, complex hand gestures will be identified on the new
design. Additionally, this future work will also be tested on
real robot applications.
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