1,538 research outputs found

    Classifying types of gesture and inferring intent

    Get PDF
    In order to infer intent from gesture, a rudimentary classification of types of gestures into five main classes is introduced. The classification is intended as a basis for incorporating the understanding of gesture into human-robot interaction (HRI). Some requirements for the operational classification of gesture by a robot interacting with humans are also suggested

    Multi-Modal Human-Machine Communication for Instructing Robot Grasping Tasks

    Full text link
    A major challenge for the realization of intelligent robots is to supply them with cognitive abilities in order to allow ordinary users to program them easily and intuitively. One way of such programming is teaching work tasks by interactive demonstration. To make this effective and convenient for the user, the machine must be capable to establish a common focus of attention and be able to use and integrate spoken instructions, visual perceptions, and non-verbal clues like gestural commands. We report progress in building a hybrid architecture that combines statistical methods, neural networks, and finite state machines into an integrated system for instructing grasping tasks by man-machine interaction. The system combines the GRAVIS-robot for visual attention and gestural instruction with an intelligent interface for speech recognition and linguistic interpretation, and an modality fusion module to allow multi-modal task-oriented man-machine communication with respect to dextrous robot manipulation of objects.Comment: 7 pages, 8 figure

    A real-time human-robot interaction system based on gestures for assistive scenarios

    Get PDF
    Natural and intuitive human interaction with robotic systems is a key point to develop robots assisting people in an easy and effective way. In this paper, a Human Robot Interaction (HRI) system able to recognize gestures usually employed in human non-verbal communication is introduced, and an in-depth study of its usability is performed. The system deals with dynamic gestures such as waving or nodding which are recognized using a Dynamic Time Warping approach based on gesture specific features computed from depth maps. A static gesture consisting in pointing at an object is also recognized. The pointed location is then estimated in order to detect candidate objects the user may refer to. When the pointed object is unclear for the robot, a disambiguation procedure by means of either a verbal or gestural dialogue is performed. This skill would lead to the robot picking an object in behalf of the user, which could present difficulties to do it by itself. The overall system — which is composed by a NAO and Wifibot robots, a KinectTM v2 sensor and two laptops — is firstly evaluated in a structured lab setup. Then, a broad set of user tests has been completed, which allows to assess correct performance in terms of recognition rates, easiness of use and response times.Postprint (author's final draft

    Context-aware gestural interaction in the smart environments of the ubiquitous computing era

    Get PDF
    A thesis submitted to the University of Bedfordshire in partial fulfilment of the requirements for the degree of Doctor of PhilosophyTechnology is becoming pervasive and the current interfaces are not adequate for the interaction with the smart environments of the ubiquitous computing era. Recently, researchers have started to address this issue introducing the concept of natural user interface, which is mainly based on gestural interactions. Many issues are still open in this emerging domain and, in particular, there is a lack of common guidelines for coherent implementation of gestural interfaces. This research investigates gestural interactions between humans and smart environments. It proposes a novel framework for the high-level organization of the context information. The framework is conceived to provide the support for a novel approach using functional gestures to reduce the gesture ambiguity and the number of gestures in taxonomies and improve the usability. In order to validate this framework, a proof-of-concept has been developed. A prototype has been developed by implementing a novel method for the view-invariant recognition of deictic and dynamic gestures. Tests have been conducted to assess the gesture recognition accuracy and the usability of the interfaces developed following the proposed framework. The results show that the method provides optimal gesture recognition from very different view-points whilst the usability tests have yielded high scores. Further investigation on the context information has been performed tackling the problem of user status. It is intended as human activity and a technique based on an innovative application of electromyography is proposed. The tests show that the proposed technique has achieved good activity recognition accuracy. The context is treated also as system status. In ubiquitous computing, the system can adopt different paradigms: wearable, environmental and pervasive. A novel paradigm, called synergistic paradigm, is presented combining the advantages of the wearable and environmental paradigms. Moreover, it augments the interaction possibilities of the user and ensures better gesture recognition accuracy than with the other paradigms

    Interactive spaces for children: gesture elicitation for controlling ground mini-robots

    Full text link
    [EN] Interactive spaces for education are emerging as a mechanism for fostering children's natural ways of learning by means of play and exploration in physical spaces. The advanced interactive modalities and devices for such environments need to be both motivating and intuitive for children. Among the wide variety of interactive mechanisms, robots have been a popular research topic in the context of educational tools due to their attractiveness for children. However, few studies have focused on how children would naturally interact and explore interactive environments with robots. While there is abundant research on full-body interaction and intuitive manipulation of robots by adults, no similar research has been done with children. This paper therefore describes a gesture elicitation study that identified the preferred gestures and body language communication used by children to control ground robots. The results of the elicitation study were used to define a gestural language that covers the different preferences of the gestures by age group and gender, with a good acceptance rate in the 6-12 age range. The study also revealed interactive spaces with robots using body gestures as motivating and promising scenarios for collaborative or remote learning activities.This work is funded by the European Development Regional Fund (EDRF-FEDER) and supported by the Spanish MINECO (TIN2014-60077-R). The work of Patricia Pons is supported by a national grant from the Spanish MECD (FPU13/03831). Special thanks are due to the children and teachers of the Col-legi Public Vicente Gaos for their valuable collaboration and dedication.Pons TomĂĄs, P.; JaĂ©n MartĂ­nez, FJ. (2020). Interactive spaces for children: gesture elicitation for controlling ground mini-robots. Journal of Ambient Intelligence and Humanized Computing. 11(6):2467-2488. https://doi.org/10.1007/s12652-019-01290-6S24672488116Alborzi H, Hammer J, Kruskal A et al (2000) Designing StoryRooms: interactive storytelling spaces for children. In: Proceedings of the conference on designing interactive systems processes, practices, methods, and techniques—DIS’00. ACM Press, New York, pp 95–104Antle AN, Corness G, Droumeva M (2009) What the body knows: exploring the benefits of embodied metaphors in hybrid physical digital environments. Interact Comput 21:66–75. https://doi.org/10.1016/j.intcom.2008.10.005Belpaeme T, Baxter PE, Read R et al (2013) Multimodal child–robot interaction: building social bonds. J Human-Robot Interact 1:33–53. https://doi.org/10.5898/JHRI.1.2.BelpaemeBenko H, Wilson AD, Zannier F, Benko H (2014) Dyadic projected spatial augmented reality. In: Proceedings of the 27th annual ACM symposium on user interface software and technology—UIST’14, pp 645–655Bobick AF, Intille SS, Davis JW et al (1999) The KidsRoom: a perceptually-based interactive and immersive story environment. Presence Teleoper Virtual Environ 8:367–391. https://doi.org/10.1162/105474699566297Bonarini A, Clasadonte F, Garzotto F, Gelsomini M (2015) Blending robots and full-body interaction with large screens for children with intellectual disability. In: Proceedings of the 14th international conference on interaction design and children—IDC’15. ACM Press, New York, pp 351–354Cauchard JR, E JL, Zhai KY, Landay JA (2015) Drone & me: an exploration into natural human–drone interaction. In: Proceedings of the 2015 ACM international joint conference on pervasive and ubiquitous computing—UbiComp’15. ACM Press, New York, pp 361–365Connell S, Kuo P-Y, Liu L, Piper AM (2013) A Wizard-of-Oz elicitation study examining child-defined gestures with a whole-body interface. In: Proceedings of the 12th international conference on interaction design and children—IDC’13. ACM Press, New York, pp 277–280Derboven J, Van Mechelen M, Slegers K (2015) Multimodal analysis in participatory design with children. In: Proceedings of the 33rd annual ACM conference on human factors in computing systems—CHI’15. ACM Press, New York, pp 2825–2828Dong H, Danesh A, Figueroa N, El Saddik A (2015) An elicitation study on gesture preferences and memorability toward a practical hand-gesture vocabulary for smart televisions. IEEE Access 3:543–555. https://doi.org/10.1109/ACCESS.2015.2432679Druin A (1999) Cooperative inquiry: developing new technologies for children with children. In: Proceedings of the SIGCHI conference on human factors computer system CHI is limit—CHI’99, vol 14, pp 592–599. https://doi.org/10.1145/302979.303166Druin A (2002) The role of children in the design of new technology. Behav Inf Technol 21:1–25. https://doi.org/10.1080/01449290110108659Druin A, Bederson B, Boltman A et al (1999) Children as our technology design partners. In: Druin A (ed) The design of children’s technology. Morgan Kaufman, San Francisco, pp 51–72Epps J, Lichman S, Wu M (2006) A study of hand shape use in tabletop gesture interaction. CHI’06 extended abstracts on human factors in computing systems—CHI EA’06. ACM Press, New York, pp 748–753Fender AR, Benko H, Wilson A (2017) MeetAlive : room-scale omni-directional display system for multi-user content and control sharing. In: Proceedings of the 2017 ACM international conference on interactive surfaces and spaces, pp 106–115Fernandez RAS, Sanchez-Lopez JL, Sampedro C et al (2016) Natural user interfaces for human–drone multi-modal interaction. In: 2016 international conference on unmanned aircraft systems (ICUAS). IEEE, New York, pp 1013–1022Garcia-Sanjuan F, Jaen J, Nacher V, Catala A (2015) Design and evaluation of a tangible-mediated robot for kindergarten instruction. In: Proceedings of the 12th international conference on advances in computer entertainment technology—ACE’15. ACM Press, New York, pp 1–11Garcia-Sanjuan F, Jaen J, Jurdi S (2016) Towards encouraging communication in hospitalized children through multi-tablet activities. In: Proceedings of the XVII international conference on human computer interaction, pp 29.1–29.4Gindling J, Ioannidou A, Loh J et al (1995) LEGOsheets: a rule-based programming, simulation and manipulation environment for the LEGO programmable brick. In: Proceedings of symposium on visual languages. IEEE Computer Society Press, New York, pp 172–179Gonzalez B, Borland J, Geraghty K (2009) Whole body interaction for child-centered multimodal language learning. In: Proceedings of the 2nd workshop on child, computer and interaction—WOCCI’09. ACM Press, New York, pp 1–5GrĂžnbĂŠk K, Iversen OS, Kortbek KJ et al (2007) Interactive floor support for kinesthetic interaction in children learning environments. In: Human–computer interaction—INTERACT 2007. Lecture notes in computer science, pp 361–375Guha ML, Druin A, Chipman G et al (2005) Working with young children as technology design partners. Commun ACM 48:39–42. https://doi.org/10.1145/1039539.1039567Hansen JP, Alapetite A, MacKenzie IS, MĂžllenbach E (2014) The use of gaze to control drones. In: Proceedings of the symposium on eye tracking research and applications—ETRA’14. ACM Press, New York, pp 27–34Henkemans OAB, Bierman BPB, Janssen J et al (2017) Design and evaluation of a personal robot playing a self-management education game with children with diabetes type 1. Int J Hum Comput Stud 106:63–76. https://doi.org/10.1016/j.ijhcs.2017.06.001Horn MS, Crouser RJ, Bers MU (2011) Tangible interaction and learning: the case for a hybrid approach. Pers Ubiquitous Comput 16:379–389. https://doi.org/10.1007/s00779-011-0404-2Hourcade JP (2015) Child computer interaction. CreateSpace Independent Publishing Platform, North CharlestonHöysniemi J, HĂ€mĂ€lĂ€inen P, Turkki L (2004) Wizard of Oz prototyping of computer vision based action games for children. Proceeding of the 2004 conference on interaction design and children building a community—IDC’04. ACM Press, New York, pp 27–34Höysniemi J, HĂ€mĂ€lĂ€inen P, Turkki L, Rouvi T (2005) Children’s intuitive gestures in vision-based action games. Commun ACM 48:44–50. https://doi.org/10.1145/1039539.1039568Hsiao H-S, Chen J-C (2016) Using a gesture interactive game-based learning approach to improve preschool children’s learning performance and motor skills. Comput Educ 95:151–162. https://doi.org/10.1016/j.compedu.2016.01.005Jokela T, Rezaei PP, VÀÀnĂ€nen K (2016) Using elicitation studies to generate collocated interaction methods. In: Proceedings of the 18th international conference on human–computer interaction with mobile devices and services adjunct, pp 1129–1133. https://doi.org/10.1145/2957265.2962654Jones B, Benko H, Ofek E, Wilson AD (2013) IllumiRoom: peripheral projected illusions for interactive experiences. In: Proceedings of the SIGCHI conference on human factors in computing systems—CHI’13, pp 869–878Jones B, Shapira L, Sodhi R et al (2014) RoomAlive: magical experiences enabled by scalable, adaptive projector-camera units. In: Proceedings of the 27th annual ACM symposium on user interface software and technology—UIST’14, pp 637–644Kaminski M, Pellino T, Wish J (2002) Play and pets: the physical and emotional impact of child-life and pet therapy on hospitalized children. Child Heal Care 31:321–335. https://doi.org/10.1207/S15326888CHC3104_5Karam M, Schraefel MC (2005) A taxonomy of gestures in human computer interactions. In: Technical report in electronics and computer science, pp 1–45Kistler F, AndrĂ© E (2013) User-defined body gestures for an interactive storytelling scenario. Lect Notes Comput Sci (including subser Lect Notes Artif Intell Lect Notes Bioinform) 8118:264–281. https://doi.org/10.1007/978-3-642-40480-1_17Konda KR, Königs A, Schulz H, Schulz D (2012) Real time interaction with mobile robots using hand gestures. In: Proceedings of the seventh annual ACM/IEEE international conference on human–robot interaction—HRI’12. ACM Press, New York, pp 177–178Kray C, Nesbitt D, Dawson J, Rohs M (2010) User-defined gestures for connecting mobile phones, public displays, and tabletops. In: Proceedings of the 12th international conference on human computer interaction with mobile devices and services—MobileHCI’10. ACM Press, New York, pp 239–248Kurdyukova E, Redlin M, AndrĂ© E (2012) Studying user-defined iPad gestures for interaction in multi-display environment. In: Proceedings of the 2012 ACM international conference on intelligent user interfaces—IUI’12. ACM Press, New York, pp 93–96Lambert V, Coad J, Hicks P, Glacken M (2014) Social spaces for young children in hospital. Child Care Health Dev 40:195–204. https://doi.org/10.1111/cch.12016Lee S-S, Chae J, Kim H et al (2013) Towards more natural digital content manipulation via user freehand gestural interaction in a living room. In: Proceedings of the 2013 ACM international joint conference on pervasive and ubiquitous computing—UbiComp’13. ACM Press, New York, p 617Malinverni L, Mora-Guiard J, Pares N (2016) Towards methods for evaluating and communicating participatory design: a multimodal approach. Int J Hum Comput Stud 94:53–63. https://doi.org/10.1016/j.ijhcs.2016.03.004Mann HB, Whitney DR (1947) On a test of whether one of two random variables is stochastically larger than the other. Ann Math Stat 18:50–60. https://doi.org/10.1214/aoms/1177730491Marco J, Cerezo E, Baldassarri S et al (2009) Bringing tabletop technologies to kindergarten children. In: Proceedings of the 23rd British HCI Group annual conference on people and computers: celebrating people and technology, pp 103–111Michaud F, Caron S (2002) Roball, the rolling robot. Auton Robots 12:211–222. https://doi.org/10.1023/A:1014005728519Micire M, Desai M, Courtemanche A et al (2009) Analysis of natural gestures for controlling robot teams on multi-touch tabletop surfaces. In: Proceedings of the ACM international conference on interactive tabletops and surfaces—ITS’09. ACM Press, New York, pp 41–48Mora-Guiard J, Crowell C, Pares N, Heaton P (2016) Lands of fog: helping children with autism in social interaction through a full-body interactive experience. In: Proceedings of the 15th international conference on interaction design and children—IDC’16. ACM Press, New York, pp 262–274Morris MR (2012) Web on the wall: insights from a multimodal interaction elicitation study. In: Proceedings of the 2012 ACM international conference on interactive tabletops and surfaces. ACM Press, New York, pp 95–104Morris MR, Wobbrock JO, Wilson AD (2010) Understanding users’ preferences for surface gestures. Proc Graph Interface 2010:261–268Nacher V, Garcia-Sanjuan F, Jaen J (2016) Evaluating the usability of a tangible-mediated robot for kindergarten children instruction. In: 2016 IEEE 16th international conference on advanced learning technologies (ICALT). IEEE, New York, pp 130–132Nahapetyan VE, Khachumov VM (2015) Gesture recognition in the problem of contactless control of an unmanned aerial vehicle. Optoelectron Instrum Data Process 51:192–197. https://doi.org/10.3103/S8756699015020132Obaid M, HĂ€ring M, Kistler F et al (2012) User-defined body gestures for navigational control of a humanoid robot. In: Lecture notes in computer science (including subseries lecture notes in artificial intelligence and lecture notes in bioinformatics), pp 367–377Obaid M, Kistler F, HĂ€ring M et al (2014) A framework for user-defined body gestures to control a humanoid robot. Int J Soc Robot 6:383–396. https://doi.org/10.1007/s12369-014-0233-3Obaid M, Kistler F, KasparavičiĆ«tė G, et al (2016) How would you gesture navigate a drone?: a user-centered approach to control a drone. In: Proceedings of the 20th international academic Mindtrek conference—AcademicMindtrek’16. ACM Press, New York, pp 113–121Pares N, Soler M, Sanjurjo À et al (2005) Promotion of creative activity in children with severe autism through visuals in an interactive multisensory environment. In: Proceeding of the 2005 conference on interaction design and children—IDC’05. ACM Press, New York, pp 110–116Pfeil K, Koh SL, LaViola J (2013) Exploring 3D gesture metaphors for interaction with unmanned aerial vehicles. In: Proceedings of the 2013 international conference on intelligent user interfaces—IUI’13, pp 257–266. https://doi.org/10.1145/2449396.2449429Piaget J (1956) The child’s conception of space. Norton, New YorkPiaget J (1973) The child and reality: problems of genetic psychology. Grossman, New YorkPiumsomboon T, Clark A, Billinghurst M, Cockburn A (2013) User-defined gestures for augmented reality. CHI’13 extended abstracts on human factors in computing systems—CHI EA’13. ACM Press, New York, pp 955–960Pons P, CarriĂłn A, Jaen J (2018) Remote interspecies interactions: improving humans and animals’ wellbeing through mobile playful spaces. Pervasive Mob Comput. https://doi.org/10.1016/j.pmcj.2018.12.003Puranam MB (2005) Towards full-body gesture analysis and recognition. University of Kentucky, LexingtonPyryeskin D, Hancock M, Hoey J (2012) Comparing elicited gestures to designer-created gestures for selection above a multitouch surface. In: Proceedings of the 2012 ACM international conference on interactive tabletops and surfaces—ITS’12. ACM Press, New York, pp 1–10Raffle HS, Parkes AJ, Ishii H (2004) Topobo: a constructive assembly system with kinetic memory. System 6:647–654. https://doi.org/10.1145/985692.985774Read JC, Markopoulos P (2013) Child–computer interaction. Int J Child-Comput Interact 1:2–6. https://doi.org/10.1016/j.ijcci.2012.09.001Read JC, Macfarlane S, Casey C (2002) Endurability, engagement and expectations: measuring children’s fun. In: Interaction design and children, pp 189–198Read JC, Markopoulos P, ParĂ©s N et al (2008) Child computer interaction. In: Proceeding of the 26th annual CHI conference extended abstracts on human factors in computing systems—CHI’08. ACM Press, New York, pp 2419–2422Robins B, Dautenhahn K (2014) Tactile interactions with a humanoid robot: novel play scenario implementations with children with autism. Int J Soc Robot 6:397–415. https://doi.org/10.1007/s12369-014-0228-0Robins B, Dautenhahn K, Te Boekhorst R, Nehaniv CL (2008) Behaviour delay and robot expressiveness in child–robot interactions: a user study on interaction kinesics. In: Proceedings of the 3rd ACMIEEE international conference on human robot interaction, pp 17–24. https://doi.org/10.1145/1349822.1349826Ruiz J, Li Y, Lank E (2011) User-defined motion gestures for mobile interaction. In: Proceedings of the 2011 annual conference on human factors in computing systems—CHI’11. ACM Press, New York, p 197Rust K, Malu M, Anthony L, Findlater L (2014) Understanding childdefined gestures and children’s mental models for touchscreen tabletop interaction. In: Proceedings of the 2014 conference on interaction design and children—IDC’14. ACM Press, New York, pp 201–204Salter T, Dautenhahn K, Te Boekhorst R (2006) Learning about natural human-robot interaction styles. Robot Auton Syst 54:127–134. https://doi.org/10.1016/j.robot.2005.09.022Sanghvi J, Castellano G, Leite I et al (2011) Automatic analysis of affective postures and body motion to detect engagement with a game companion. In: Proceedings of the 6th international conference on human–robot interaction—HRI’11. ACM Press, New York, pp 305–311Sanna A, Lamberti F, Paravati G, Manuri F (2013) A Kinect-based natural interface for quadrotor control. Entertain Comput 4:179–186. https://doi.org/10.1016/j.entcom.2013.01.001Sato E, Yamaguchi T, Harashima F (2007) Natural interface using pointing behavior for human–robot gestural interaction. IEEE Trans Ind Electron 54:1105–1112. https://doi.org/10.1109/TIE.2007.892728Schaper M-M, Pares N (2016) Making sense of body and space through full-body interaction design. In: Proceedings of the 15th international conference on interaction design and children—IDC’16. ACM Press, New York, pp 613–618Schaper M-M, Malinverni L, Pares N (2015) Sketching through the body: child-generated gestures in full-body interaction design. In: Proceedings of the 14th international conference on interaction design and children—IDC’15. ACM Press, New York, pp 255–258Seyed T, Burns C, Costa Sousa M et al (2012) Eliciting usable gestures for multi-display environments. In: Proceedings of the 2012 ACM international conference on interactive tabletops and surfaces—ITS’12. ACM Press, New York, p 41Shimon SSA, Morrison-Smith S, John N et al (2015) Exploring user-defined back-of-device gestures for mobile devices. In: Proceedings of the 17th international conference on human–computer interaction with mobile devices and services—MobileHCI’15. ACM Press, New York, pp 227–232Sipitakiat A, Nusen N (2012) Robo-blocks: a tangible programming system with debugging for children. In: Proceedings of the 11th international conference on interaction design and children—IDC’12. ACM Press, New York, p 98Soler-Adillon J, Ferrer J, Pares N (2009) A novel approach to interactive playgrounds: the interactive slide project. In: Proceedings of the 8th international conference on interaction design and children—IDC’09. ACM Press, New York, pp 131–139Stiefelhagen R, Fogen C, Gieselmann P et al (2004) Natural human–robot interaction using speech, head pose and gestures. In: 2004 IEEE/RSJ international conference on intelligent robots and systems (IROS) (IEEE Cat. No. 04CH37566). IEEE, New York, pp 2422–2427Subrahmanyam K, Greenfield PM (1994) Effect of video game practice on spatial skills in girls and boys. J Appl Dev Psychol 15:13–32. https://doi.org/10.1016/0193-3973(94)90004-3Sugiyama J, Tsetserukou D, Miura J (2011) NAVIgoid: robot navigation with haptic vision. In: SIGGRAPH Asia 2011 emerging technologies SA’11, vol 15, p 4503. https://doi.org/10.1145/2073370.2073378Takahashi T, Morita M, Tanaka F (2012) Evaluation of a tricycle-style teleoperational interface for children: a comparative experiment with a video game controller. In: 2012 IEEE RO-MAN: the 21st IEEE international symposium on robot and human interactive communication. IEEE, New York, pp 334–338Tanaka F, Takahashi T (2012) A tricycle-style teleoperational interface that remotely controls a robot for classroom children. In: Proceedings of the seventh annual ACM/IEEE international conference on human–robot interaction—HRI’12. ACM Press, New York, pp 255–256Tjaden L, Tong A, Henning P et al (2012) Children’s experiences of dialysis: a systematic review of qualitative studies. Arch Dis Child 97:395–402. https://doi.org/10.1136/archdischild-2011-300639Vatavu R-D (2012) User-defined gestures for free-hand TV control. In: Proceedings of the 10th European conference on interactive TV and video—EuroiTV’12. ACM Press, New York, pp 45–48Vatavu R-D (2017) Smart-Pockets: body-deictic gestures for fast access to personal data during ambient interactions. Int J Hum Comput Stud 103:1–21. https://doi.org/10.1016/j.ijhcs.2017.01.005Vatavu R-D, Wobbrock JO (2015) Formalizing agreement analysis for elicitation studies: new measures, significance test, and toolkit. In: Proceedings of the 33rd annual ACM conference on human factors in computing systems—CHI’15. ACM Press, New York, pp 1325–1334Vatavu R-D, Wobbrock JO (2016) Between-subjects elicitation studies: formalization and tool support. In: Proceedings of the 2016 CHI conference on human factors in computing systems—CHI’16. ACM Press, New York, pp 3390–3402Voyer D, Voyer S, Bryden MP (1995) Magnitude of sex differences in spatial abilities: a meta-analysis and consideration of critical variables. Psychol Bull 117:250–270. https://doi.org/10.1037/0033-2909.117.2.250Wainer J, Robins B, Amirabdollahian F, Dautenhahn K (2014) Using the humanoid robot KASPAR to autonomously play triadic games and facilitate collaborative play among children with autism. IEEE Trans Auton Ment Dev 6:183–199. https://doi.org/10.1109/TAMD.2014.2303116Wang Y, Zhang L (2015) A track-based gesture recognition algorithm for Kinect. Appl Mech Mater 738–7399:334–338. https://doi.org/10.4028/www.scientific.net/AMM.738-739.334

    An Exploration Of Unmanned Aerial Vehicle Direct Manipulation Through 3d Spatial Interaction

    Get PDF
    We present an exploration that surveys the strengths and weaknesses of various 3D spatial interaction techniques, in the context of directly manipulating an Unmanned Aerial Vehicle (UAV). Particularly, a study of touch- and device- free interfaces in this domain is provided. 3D spatial interaction can be achieved using hand-held motion control devices such as the Nintendo Wiimote, but computer vision systems offer a different and perhaps more natural method. In general, 3D user interfaces (3DUI) enable a user to interact with a system on a more robust and potentially more meaningful scale. We discuss the design and development of various 3D interaction techniques using commercially available computer vision systems, and provide an exploration of the effects that these techniques have on an overall user experience in the UAV domain. Specific qualities of the user experience are targeted, including the perceived intuition, ease of use, comfort, and others. We present a complete user study for upper-body gestures, and preliminary reactions towards 3DUI using hand-and-finger gestures are also discussed. The results provide evidence that supports the use of 3DUI in this domain, as well as the use of certain styles of techniques over others

    Towards gestural understanding for intelligent robots

    Get PDF
    Fritsch JN. Towards gestural understanding for intelligent robots. Bielefeld: UniversitĂ€t Bielefeld; 2012.A strong driving force of scientific progress in the technical sciences is the quest for systems that assist humans in their daily life and make their life easier and more enjoyable. Nowadays smartphones are probably the most typical instances of such systems. Another class of systems that is getting increasing attention are intelligent robots. Instead of offering a smartphone touch screen to select actions, these systems are intended to offer a more natural human-machine interface to their users. Out of the large range of actions performed by humans, gestures performed with the hands play a very important role especially when humans interact with their direct surrounding like, e.g., pointing to an object or manipulating it. Consequently, a robot has to understand such gestures to offer an intuitive interface. Gestural understanding is, therefore, a key capability on the way to intelligent robots. This book deals with vision-based approaches for gestural understanding. Over the past two decades, this has been an intensive field of research which has resulted in a variety of algorithms to analyze human hand motions. Following a categorization of different gesture types and a review of other sensing techniques, the design of vision systems that achieve hand gesture understanding for intelligent robots is analyzed. For each of the individual algorithmic steps – hand detection, hand tracking, and trajectory-based gesture recognition – a separate Chapter introduces common techniques and algorithms and provides example methods. The resulting recognition algorithms are considering gestures in isolation and are often not sufficient for interacting with a robot who can only understand such gestures when incorporating the context like, e.g., what object was pointed at or manipulated. Going beyond a purely trajectory-based gesture recognition by incorporating context is an important prerequisite to achieve gesture understanding and is addressed explicitly in a separate Chapter of this book. Two types of context, user-provided context and situational context, are reviewed and existing approaches to incorporate context for gestural understanding are reviewed. Example approaches for both context types provide a deeper algorithmic insight into this field of research. An overview of recent robots capable of gesture recognition and understanding summarizes the currently realized human-robot interaction quality. The approaches for gesture understanding covered in this book are manually designed while humans learn to recognize gestures automatically during growing up. Promising research targeted at analyzing developmental learning in children in order to mimic this capability in technical systems is highlighted in the last Chapter completing this book as this research direction may be highly influential for creating future gesture understanding systems
    • 

    corecore