27,992 research outputs found

    DeSyRe: on-Demand System Reliability

    No full text
    The DeSyRe project builds on-demand adaptive and reliable Systems-on-Chips (SoCs). As fabrication technology scales down, chips are becoming less reliable, thereby incurring increased power and performance costs for fault tolerance. To make matters worse, power density is becoming a significant limiting factor in SoC design, in general. In the face of such changes in the technological landscape, current solutions for fault tolerance are expected to introduce excessive overheads in future systems. Moreover, attempting to design and manufacture a totally defect and fault-free system, would impact heavily, even prohibitively, the design, manufacturing, and testing costs, as well as the system performance and power consumption. In this context, DeSyRe delivers a new generation of systems that are reliable by design at well-balanced power, performance, and design costs. In our attempt to reduce the overheads of fault-tolerance, only a small fraction of the chip is built to be fault-free. This fault-free part is then employed to manage the remaining fault-prone resources of the SoC. The DeSyRe framework is applied to two medical systems with high safety requirements (measured using the IEC 61508 functional safety standard) and tight power and performance constraints

    Adaptive laboratory evolution of a genome-reduced Escherichia coli.

    Get PDF
    Synthetic biology aims to design and construct bacterial genomes harboring the minimum number of genes required for self-replicable life. However, the genome-reduced bacteria often show impaired growth under laboratory conditions that cannot be understood based on the removed genes. The unexpected phenotypes highlight our limited understanding of bacterial genomes. Here, we deploy adaptive laboratory evolution (ALE) to re-optimize growth performance of a genome-reduced strain. The basis for suboptimal growth is the imbalanced metabolism that is rewired during ALE. The metabolic rewiring is globally orchestrated by mutations in rpoD altering promoter binding of RNA polymerase. Lastly, the evolved strain has no translational buffering capacity, enabling effective translation of abundant mRNAs. Multi-omic analysis of the evolved strain reveals transcriptome- and translatome-wide remodeling that orchestrate metabolism and growth. These results reveal that failure of prediction may not be associated with understanding individual genes, but rather from insufficient understanding of the strain's systems biology

    TechNews digests: Jan - Nov 2009

    Get PDF
    TechNews is a technology, news and analysis service aimed at anyone in the education sector keen to stay informed about technology developments, trends and issues. TechNews focuses on emerging technologies and other technology news. TechNews service : digests september 2004 till May 2010 Analysis pieces and News combined publish every 2 to 3 month

    Baseband analog front-end and digital back-end for reconfigurable multi-standard terminals

    Get PDF
    Multimedia applications are driving wireless network operators to add high-speed data services such as Edge (E-GPRS), WCDMA (UMTS) and WLAN (IEEE 802.11a,b,g) to the existing GSM network. This creates the need for multi-mode cellular handsets that support a wide range of communication standards, each with a different RF frequency, signal bandwidth, modulation scheme etc. This in turn generates several design challenges for the analog and digital building blocks of the physical layer. In addition to the above-mentioned protocols, mobile devices often include Bluetooth, GPS, FM-radio and TV services that can work concurrently with data and voice communication. Multi-mode, multi-band, and multi-standard mobile terminals must satisfy all these different requirements. Sharing and/or switching transceiver building blocks in these handsets is mandatory in order to extend battery life and/or reduce cost. Only adaptive circuits that are able to reconfigure themselves within the handover time can meet the design requirements of a single receiver or transmitter covering all the different standards while ensuring seamless inter-interoperability. This paper presents analog and digital base-band circuits that are able to support GSM (with Edge), WCDMA (UMTS), WLAN and Bluetooth using reconfigurable building blocks. The blocks can trade off power consumption for performance on the fly, depending on the standard to be supported and the required QoS (Quality of Service) leve

    An Integrated Test Plan for an Advanced Very Large Scale Integrated Circuit Design Group

    Get PDF
    VLSI testing poses a number of problems which includes the selection of test techniques, the determination of acceptable fault coverage levels, and test vector generation. Available device test techniques are examined and compared. Design rules should be employed to assure the design is testable. Logic simulation systems and available test utilities are compared. The various methods of test vector generation are also examined. The selection criteria for test techniques are identified. A table of proposed design rules is included. Testability measurement utilities can be used to statistically predict the test generation effort. Field reject rates and fault coverage are statistically related. Acceptable field reject rates can be achieved with less than full test vector fault coverage. The methods and techniques which are examined form the basis of the recommended integrated test plan. The methods of automatic test vector generation are relatively primitive but are improving

    Nanobiotechnologie: Werkzeuge fĂĽr die Proteomik : molekulare Organisation und Manipulation von Proteinen und Proteinkomplexen in Nanodimensionen

    Get PDF
    First milestone of this Ph.D. thesis was the successful extension of conventional NTA/His-tag technique to self-assembling, multivalent chelator thiols for high-affinity recognition as well as stable and uniform immobilization of His-tagged proteins on chip surfaces. Bis-NTA was linked via an oligoethylene glycol to alkyl thiols by an efficient modular synthesis strategy yielding a novel, multivalent compound for formation of mixed SAMs with anti-adsorptive matrix thiols on gold. Multivalent chelator chips allow a specific, high-affinity, reversible, long-term immobilization of His-tagged proteins. In AFM studies reversibility of the specific protein immobilization process was visualized at single molecule level. The entire control over the orientation of the immobilized protein promotes this chip surface to an optimal platform for studies focusing on research targets at single molecule level and nanobiotechnology. Based on the constructed protein chip platform above and a novel AFM mode (contact oscillation mode, COM) – developed during the current Ph.D. work – protein nanolithography under physiological conditions enabling fabrication of active biomolecular patterns in countless variety has been established. Reversible COM-mediated nanostructuring is exceptionally suitable for multiplexed patterning of protein assemblies in situ. The first selfassembled protein layer acts as a biocompatible and ductile patterning material. Immobilized proteins can be replaced by the AFM tip applying COM, and the generated structures can be erased and refilled with different proteins, which are immobilized in a uniform and functional manner. Multi-protein arrays can be systematically fabricated by iterative erase-and-write processes, and employed for protein-protein interaction analysis. Fabrication of two-dimensionally arranged nanocatalytic centres with biological activity will establish a versatile tool for nanobiotechnology. As an alternative chip fabrication approach, the combined application of methodologies from surface chemistry, semiconductor technology, and chemical biology demonstrated successfully how pre-patterned templates for micro- and nanoarrays for protein chips are fabricated. The surface physical, as well the biophysical experiments, proved the functionality of this technology. The promises of such process technology are fast and economic fabrication of ready-to-use nanostructured biochips at industrial scale. Membrane proteins are complicated in handling and hence require sophisticated solutions for chip technological application. A silicon-on-insulator (SOI) chip substrate with microcavities and nanopores was employed for first technological investigation to construct a protein chip suitable for membrane proteins. The formation of an artificial lipid bilayer using vesicle fusion on oxidized SOI cavity substrates was verified by CLSM. Future AFM experiments will give further insights into the chip architecture and topography. This will provide last evidence of the sealing of the cavity by the lipid bilayer. Transmembrane proteins will be employed for reconstitution experiments on this membrane protein chip platform. Highly integrated microdevices will find application in basic biomedical and pharmaceutical research, whereas robust and portable point-of-care devices will be used in clinical settings.Erster Meilenstein der vorliegenden Arbeit war die erfolgreiche Erweiterung des konventionellen NTA/His-tag-Konzepts auf selbst-assemblierende, multivalente Chelatorthiole für die hochaffine Erkennung und stabile, einheitliche Immobilisierung His-getaggter Proteine auf Chipoberflächen. Mittels einer effizienten, modularen Synthesestrategie wurden Bis-NTA-Module über Oligoethylenglykoleinheiten an Alkylthiole angebunden. Diese Chelatorthiole wurden zusammen mit antiadsorptiven Matrixthiolen zur Ausbildung gemischter selbst-assemblierender Monolagen (SAMs) auf Goldoberflächen eingesetzt. Die multivalenten Chelatorchips erlauben eine spezifische, hochaffine, umkehrbare und langfristige Immobilisierung His-getaggter Proteine. Die Umkehrbarkeit der spezifischen Proteinimmobilisierung wurde in rasterkraftmikroskopischen (AFM) Studien bis zur Einzel-Molekül-Ebene visualisiert. Die vollständige Kontrolle über die Orientierung immobilisierter Proteine qualifiziert diese entwickelte Chipoberfläche zu einer optimalen Plattform für Anwendungsbereiche der Einzelmolekülbiochemie und Nanobiotechnologie. Basierend auf dieser Plattform für Proteinchips und einem – im Rahmen dieser Arbeit – neuentwickelten AFM-Modus (Kontaktoszillationsmodus, COM) wurde die „Protein-Nanolithographie“ etabliert, welche die Fabrikation von aktiven, biomolekularen Strukturen in unzähliger Vielfalt ermöglicht. Die umkehrbare COM-vermittelte Nanolithographie ist insbesondere für die multiplexe Anordnung von Proteinverbänden in situ geeignet. Die erste Schicht immobilisierter Proteine fungiert als ein biokompatibles und verformbares Strukturierungsmaterial. Diese immobilisierten Proteine können nun im Kontaktoszillationsmodus mit der AFM-Spitze lokal entfernt („Löschen“) und gegen andere Proteine – die an die freigelegte Chipoberfläche ebenfalls spezifisch und funktional immobilisieren – ausgetauscht werden („Schreiben“). Arrays, bestehend aus mehreren unterschiedlichen Proteinen können nun systematisch in iterativen Lösch-und-Schreib-Vorgängen fabriziert und für Proteininteraktionsanalysen eingesetzt werden. Die Fabrikation von zwei-dimensional arrangierten nanokatalytischen Zentren mit biologischer Aktivität wird von großem Nutzen für die Nanobiotechnologie sein. Eine alternative Herstellungsmethode aus einer Kombination von Oberflächenchemie, Halbleitertechnologie und chemischer Biologie wurde für die Fabrikation von vorstrukturierten Templaten für Mikro- und Nanoarrays entwickelt. Die Funktionalität dieser Chipplattform wurde anhand oberflächen- und biophysikalischer Experimente erfolgreich gezeigt. Zukünftiges Ziel ist die Anfertigung vorstrukturierter Template in der Dimension weniger Nanometer zur Ausbildung von Bio-Arrays mit einzelnen Molekülen. Ein weiteres Ziel besteht in der kompletten Verlagerung des Herstellungsprozesses in die Gasphase. Eine Produktion in der Gasphase verspricht eine schnelle und wirtschaftliche Erzeugung sofort einsatzbereiter nanostrukturierter Biochips im industriellen Maßstab. Der Umgang mit Membranproteinen verlangt besondere Vorkehrungen im experimentellen Milieu, ebenso speziell sind die Bedürfnisse in den entsprechenden Chip-Anwendungen. Ein Chip mit Mikrokavitäten und Nanoporen, basierend auf der „Silicon-on-Insulator“ (SOI)-Technologie, wurde für erste technologische Studien zum Entwurf eines Proteinchips für Membranproteine eingesetzt. Künstliche Lipidmembranen wurden auf der SOI-Oberfläche mittels Vesikelfusion ausgebildet und mit konfokaler Laser-Scanning-Mikroskopie gezeigt. Zukünftige AFM-Experimente werden weitere Einsichten in die Chiparchitektur und Topographie ermöglichen. Transmembranproteine werden in Rekonstitutionsexperimenten für funktionale Studien der Membranproteinchips eingesetzt. Anwendungsbereiche solcher hochintegrierten Mikrosysteme sind sowohl in der biologischen Grundlagenforschung als auch in mobilen Diagnostikgeräten im klinischen Einsatz zu finden

    The Boston University Photonics Center annual report 2014-2015

    Full text link
    This repository item contains an annual report that summarizes activities of the Boston University Photonics Center in the 2014-2015 academic year. The report provides quantitative and descriptive information regarding photonics programs in education, interdisciplinary research, business innovation, and technology development. The Boston University Photonics Center (BUPC) is an interdisciplinary hub for education, research, scholarship, innovation, and technology development associated with practical uses of light.This has been a good year for the Photonics Center. In the following pages, you will see that the center’s faculty received prodigious honors and awards, generated more than 100 notable scholarly publications in the leading journals in our field, and attracted $18.6M in new research grants/contracts. Faculty and staff also expanded their efforts in education and training, and were awarded two new National Science Foundation– sponsored sites for Research Experiences for Undergraduates and for Teachers. As a community, we hosted a compelling series of distinguished invited speakers, and emphasized the theme of Advanced Materials by Design for the 21st Century at our annual symposium. We continued to support the National Photonics Initiative, and are a part of a New York–based consortium that won the competition for a new photonics- themed node in the National Network of Manufacturing Institutes. Highlights of our research achievements for the year include an ambitious new DoD-sponsored grant for Multi-Scale Multi-Disciplinary Modeling of Electronic Materials led by Professor Enrico Bellotti, continued support of our NIH-sponsored Center for Innovation in Point of Care Technologies for the Future of Cancer Care led by Professor Catherine Klapperich, a new award for Personalized Chemotherapy Through Rapid Monitoring with Wearable Optics led by Assistant Professor Darren Roblyer, and a new award from DARPA to conduct research on Calligraphy to Build Tunable Optical Metamaterials led by Professor Dave Bishop. We were also honored to receive an award from the Massachusetts Life Sciences Center to develop a biophotonics laboratory in our Business Innovation Center
    • …
    corecore