18 research outputs found

    Cognitive Interpretation of Everyday Activities - Toward Perceptual Narrative Based Visuo-Spatial Scene Interpretation

    Get PDF
    We position a narrative-centred computational model for high-level knowledge representation and reasoning in the context of a range of assistive technologies concerned with visuo-spatial perception and cognition tasks. Our proposed narrative model encompasses aspects such as space, events, actions, change, and interaction from the viewpoint of commonsense reasoning and learning in large-scale cognitive systems. The broad focus of this paper is on the domain of human-activity interpretation in smart environments, ambient intelligence etc. In the backdrop of a smart meeting cinematography domain, we position the proposed narrative model, preliminary work on perceptual narrativisation, and the immediate outlook on constructing general-purpose open-source tools for perceptual narrativisation

    Geospatial Narratives and their Spatio-Temporal Dynamics: Commonsense Reasoning for High-level Analyses in Geographic Information Systems

    Full text link
    The modelling, analysis, and visualisation of dynamic geospatial phenomena has been identified as a key developmental challenge for next-generation Geographic Information Systems (GIS). In this context, the envisaged paradigmatic extensions to contemporary foundational GIS technology raises fundamental questions concerning the ontological, formal representational, and (analytical) computational methods that would underlie their spatial information theoretic underpinnings. We present the conceptual overview and architecture for the development of high-level semantic and qualitative analytical capabilities for dynamic geospatial domains. Building on formal methods in the areas of commonsense reasoning, qualitative reasoning, spatial and temporal representation and reasoning, reasoning about actions and change, and computational models of narrative, we identify concrete theoretical and practical challenges that accrue in the context of formal reasoning about `space, events, actions, and change'. With this as a basis, and within the backdrop of an illustrated scenario involving the spatio-temporal dynamics of urban narratives, we address specific problems and solutions techniques chiefly involving `qualitative abstraction', `data integration and spatial consistency', and `practical geospatial abduction'. From a broad topical viewpoint, we propose that next-generation dynamic GIS technology demands a transdisciplinary scientific perspective that brings together Geography, Artificial Intelligence, and Cognitive Science. Keywords: artificial intelligence; cognitive systems; human-computer interaction; geographic information systems; spatio-temporal dynamics; computational models of narrative; geospatial analysis; geospatial modelling; ontology; qualitative spatial modelling and reasoning; spatial assistance systemsComment: ISPRS International Journal of Geo-Information (ISSN 2220-9964); Special Issue on: Geospatial Monitoring and Modelling of Environmental Change}. IJGI. Editor: Duccio Rocchini. (pre-print of article in press

    A case study in reasoning about actions and continuous change (extended version)

    Get PDF
    This pap er shows how the Situation Calculus can be extended to deal both with `narratives' and with domains containing real-valued parameters, whose actual values may vary continuously between the occurrences of actions. In particular, a domain is represented where action occurrences may be `triggered' at instants in time when certain parameters reach particular values. Its formalisation requires the integration of several types of default reasoning. Hence Baker's circumscriptive solution to the frame problem is extended to reflect the assumptions that by default a given action does not occur at a given time point, that by default a given set of parameter values does not trigger a given action, and that by default a given action occurrence does not result in a discontinuity for a given parameter. Regarding the minimisation of discontinuities, the example illustrates how circumstances can arise where, at a particular time p oint, discontinuitie s in some parameters can be `traded' for discontinuities in others. It is argued that, in general, in such cases extra domain-specific information will be necessary in order to eliminate anomalous models of the domain

    Structural Analysis of Narratives with the Coq Proof Assistant

    Get PDF
    Abstract. This paper proposes a novel application of Interactive Proof Assistants for studying the formal properties of Narratives, building on recent work demonstrating the suitability of Intuitionistic Linear Logic as a conceptual model. More specifically, we describe a method for modelling narrative resources and actions, together with constraints on the story endings in the form of an ILL sequent. We describe how well-formed narratives can be interpreted from cut-free proof trees of the sequent obtained using Coq. We finally describe how to reason about narratives at the structural level using Coq: by allowing to prove 2nd order properties on the set of all the proofs generated by a sequent, Coq assists the verification of structural narrative properties traversing all possible variants of a given plot

    Naval Integration into Joint Data Strategies and Architectures in JADC2

    Get PDF
    NPS NRP Technical ReportAs Joint capabilities mature and shape into the Joint All Domain C2 Concept, Services, COCOMs and Coalition Partners will need to invest into efforts that would seamlessly integrate into Joint capabilities. The objective for the Navy is to study the options for Navy, including Naval Special Warfare Command under SOCOM, on how to integrate Navy's data strategy and architecture under the unifying JADC2 umbrella. The other objectives are to explore alternatives considered by the SOCOM and the Air Force, which are responsible for JADC2 Information Advantage and Digital Mission Command & Control. A major purpose of Joint, Services/COCOMs, agencies and Coalition Partners capabilities is to provide shared core of integrated canonical services for data, information, and knowledge with representations for vertical interoperability across all command levels and JADC2, lateral interoperability between Naval Service/COCOMs, and any combination of JADC2 constituents, agencies, and coalition partners. Our research plan is to explore available data strategy options by leveraging previous NRP work (NPS-20-N313-A). We will participate in emerging data strategy by Navy JADC2 project Overmatch. By working with MITRE our team will explore Air Force JADC2 data strategy implemented in ABMS DataOne component. Our goal is to find a seamless integration between Naval Data Strategy and data strategies behind JADC2 Information Advantage and Digital Mission Command & Control capabilities. Our plan includes studying Service-to-Service and Service-to-COCOM interoperability options required for Joint operations with a goal to minimize OODA's loop latency across sensing, situation discovery & monitoring, and knowledge understanding-for-planning, deciding, and acting. Our team realizes JADC2 requires virtual model allowing interoperability between subordinate C2 for services, agencies, and partner. Without such flexible 'joint' intersection organizational principal hierarchical structure it would be impossible to define necessary temporal and spatial fidelities for each level of organizational command required for implanting JADC2. Research deliverables will document the results of the exploration of Joint, COCOM, Agency and Partner Data Strategies approaches as JADC2 interoperability options to the emerging JADC2. We strive for standard JADC2 interface. Keywords: JADC2, ABMS, DataOne, Information Advantage, Digital Mission Command, IntegrationN2/N6 - Information WarfareThis research is supported by funding from the Naval Postgraduate School, Naval Research Program (PE 0605853N/2098). https://nps.edu/nrpChief of Naval Operations (CNO)Approved for public release. Distribution is unlimited.

    Situation calculus specifications for event calculus logic programs

    Full text link

    Learning relational event models from video

    Get PDF
    Event models obtained automatically from video can be used in applications ranging from abnormal event detection to content based video retrieval. When multiple agents are involved in the events, characterizing events naturally suggests encoding interactions as relations. Learning event models from this kind of relational spatio-temporal data using relational learning techniques such as Inductive Logic Programming (ILP) hold promise, but have not been successfully applied to very large datasets which result from video data. In this paper, we present a novel framework REMIND (Relational Event Model INDuction) for supervised relational learning of event models from large video datasets using ILP. Efficiency is achieved through the learning from interpretations setting and using a typing system that exploits the type hierarchy of objects in a domain. The use of types also helps prevent over generalization. Furthermore, we also present a type-refining operator and prove that it is optimal. The learned models can be used for recognizing events from previously unseen videos. We also present an extension to the framework by integrating an abduction step that improves the learning performance when there is noise in the input data. The experimental results on several hours of video data from two challenging real world domains (an airport domain and a physical action verbs domain) suggest that the techniques are suitable to real world scenarios
    corecore