7,305 research outputs found

    Organization of Block Copolymers using NanoImprint Lithography: Comparison of Theory and Experiments

    Full text link
    We present NanoImprint lithography experiments and modeling of thin films of block copolymers (BCP). The NanoImprint lithography is used to align perpendicularly lamellar phases, over distances much larger than the natural lamellar periodicity. The modeling relies on self-consistent field calculations done in two- and three-dimensions. We get a good agreement with the NanoImprint lithography setups. We find that, at thermodynamical equilibrium, the ordered BCP lamellae are much better aligned than when the films are deposited on uniform planar surfaces

    Fabrication of hydrophobic inorganic coatings on natural lotus leaves for nanoimprint stamps

    Full text link
    Hydrophobic inorganic films were obtained by direct deposition of copper or silicon onto natural lotus leaves by ion beam sputtering deposition technique. Scanning electron microscopy observations showed a lotus-leaf-like surface structure of the deposited inorganic films. Hydrophobic nature of the inorganic films on lotus leaves had been improved compared to the inorganic films deposited on flat silicon substrates. Water contact angles measured on the lotus-leaf-like copper and silicon films were 136.3 \pm 8{\deg} and 117.8 \pm 4.4{\deg}, respectively. The hydrophobic lotus-leaf-like inorganic films had been repeated used as nanoimprint stamps. Negative structures of lotus-leaf-like inorganic films were obtained on the polystyrene resist layers.Comment: 14 pages, 6 figure

    Low loss high index contrast nanoimprinted polysiloxane waveguides

    Get PDF
    Nanoimprint lithography is gaining rapid acceptance in fields as diverse as microelectronics and microfluidics due to its simplicity high resolution and low cost. These properties are critically important for the fabrication of photonic devices, where cost is often the major inhibiting deployment factor for high volume applications. We report here on the use of nanoimprint technology to fabricate low loss broadband high index contrast waveguides in a Polysiloxane polymer system for the first time

    Multi-silicon ridge nanofabrication by repeated edge lithography

    Get PDF
    We present a multi-Si nanoridge fabrication scheme and its application in nanoimprint\ud lithography (NIL). Triple Si nanoridges approximately 120 nm high and 40 nm wide separated\ud by 40 nm spacing are fabricated and successfully applied as a stamp in nanoimprint lithography.\ud The fabrication scheme, using a full-wet etching procedure in combination with repeated edge\ud lithography, consists of hot H3PO4 acid SiNx retraction etching, 20% KOH Si etching, 50% HF\ud SiNx retraction etching and LOCal Oxidation of Silicon (LOCOS). Si nanoridges with smooth\ud vertical sidewalls are fabricated by using Si 110 substrates and KOH etching. The presented\ud technology utilizes a conventional photolithography technique, and the fabrication of multi-Si\ud nanoridges on a full wafer scale has been demonstrated

    Integrated 3D Hydrogel Waveguide Out-Coupler by Step-and-Repeat Thermal Nanoimprint Lithography: A Promising Sensor Device for Water and pH

    Get PDF
    Hydrogel materials offer many advantages for chemical and biological sensoring due to their response to a small change in their environment with a related change in volume. Several designs have been outlined in the literature in the specific field of hydrogel-based optical sensors, reporting a large number of steps for their fabrication. In this work we present a three-dimensional, hydrogel-based sensor the structure of which is fabricated in a single step using thermal nanoimprint lithography. The sensor is based on a waveguide with a grating readout section. A specific hydrogel formulation, based on a combination of PEGDMA (Poly(Ethylene Glycol DiMethAcrylate)), NIPAAm (N-IsoPropylAcrylAmide), and AA (Acrylic Acid), was developed. This stimulus-responsive hydrogel is sensitive to pH and to water. Moreover, the hydrogel has been modified to be suitable for fabrication by thermal nanoimprint lithography. Once stimulated, the hydrogel-based sensor changes its topography, which is characterised physically by AFM and SEM, and optically using a specific optical set-up

    Overlay Accuracy Limitations of Soft Stamp UV Nanoimprint Lithography and Circumvention Strategies for Device Applications

    Full text link
    In this work multilevel pattering capabilities of Substrate Conformal Imprint Lithography (SCIL) have been explored. A mix & match approach combining the high throughput of nanoimprint lithography with the excellent overlay accuracy of electron beam lithography (EBL) has been exploited to fabricate nanoscale devices. An EBL system has also been utilized as a benchmarking tool to measure both stamp distortions and alignment precision of this mix & match approach. By aligning the EBL system to 20 mm x 20 mm and 8 mm x 8 mm cells to compensate pattern distortions of order of 3μm3 \mu m over 6 inch wafer area, overlay accuracy better than 1.2μm1.2 \mu m has been demonstrated. This result can partially be attributed to the flexible SCIL stamp which compensates deformations caused by the presence of particles which would otherwise significantly reduce the alignment precision
    corecore