75 research outputs found

    Reconfiguration and tool path planning of hexapod machine tools

    Get PDF
    Hexapod machine tools have the potential to achieve increased accuracy, speed, acceleration and rigidity over conventional machines, and are regarded by many researchers as the machine tools of the next generation. However, their small and complex workspace often limits the range of tasks they can perform, and their parallel structure raises many new issues preventing the direct use of conventional tool path planning methods. This dissertation presents an investigation of new reconfiguration and tool path planning methods for enhancing the ability of hexapods to adapt to workspace changes and assisting them in being integrated into the current manufacturing environments. A reconfiguration method which includes the consideration of foot-placement space (FPS) determination and placement parameter identification has been developed. Based on the desired workspace of a hexapod and the motion range of its leg modules, the FPS of a hexapod machine is defined and a construction method of the FPS is presented. An implementation algorithm for the construction method is developed. The equations for identifying the position and orientation of the base joints for the hexapod at a new location are formulated. For the position identification problem, an algorithm based on Dialytic Elimination is derived. Through examples, it is shown that the FPS determination method can provide feasible locations for the feet of the legs to realize the required workspace. It is also shown that these identification equations can be solved through a numerical approach or through Dialytic Elimination using symbolic manipulation. Three dissimilarities between hexapods and five-axis machines are identified and studied to enhance the basic understanding of tool path planning for hexapods. The first significant difference is the existence of an extra degree of freedom (γ angle). The second dissimilarity is that a hexapod has a widely varying inverse Jacobian over the workspace. This leads to the result that a hexapod usually has a nonlinear path when following a straight-line segment over two sampled poses. These factors indicate that the traditional path planning methods should not be used for hexapods without modification. A kinematics-based tool path planning method for hexapod machine tools is proposed to guide the part placement and the determination of γ angle. The algorithms to search for the feasible part locations and γ sets are presented. Three local planning methods for the γ angle are described. It is demonstrated that the method is feasible and is effective in enhancing the performance of the hexapod machine. As the nonlinear error is computationally expensive to evaluate in real time, the measurement of total leg length error is proposed. This measure is proved to be effective in controlling the nonlinear error

    Postprocesamiento CAM-ROBOTICA orientado al prototipado y mecanizado en células robotizadas complejas

    Full text link
    The main interest of this thesis consists of the study and implementation of postprocessors to adapt the toolpath generated by a Computer Aided Manufacturing (CAM) system to a complex robotic workcell of eight joints, devoted to the rapid prototyping of 3D CAD-defined products. It consists of a 6R industrial manipulator mounted on a linear track and synchronized with a rotary table. To accomplish this main objective, previous work is required. Each task carried out entails a methodology, objective and partial results that complement each other, namely: - It is described the architecture of the workcell in depth, at both displacement and joint-rate levels, for both direct and inverse resolutions. The conditioning of the Jacobian matrix is described as kinetostatic performance index to evaluate the vicinity to singular postures. These ones are analysed from a geometric point of view. - Prior to any machining, the additional external joints require a calibration done in situ, usually in an industrial environment. A novel Non-contact Planar Constraint Calibration method is developed to estimate the external joints configuration parameters by means of a laser displacement sensor. - A first control is originally done by means of a fuzzy inference engine at the displacement level, which is integrated within the postprocessor of the CAM software. - Several Redundancy Resolution Schemes (RRS) at the joint-rate level are compared for the configuration of the postprocessor, dealing not only with the additional joints (intrinsic redundancy) but also with the redundancy due to the symmetry on the milling tool (functional redundancy). - The use of these schemes is optimized by adjusting two performance criterion vectors related to both singularity avoidance and maintenance of a preferred reference posture, as secondary tasks to be done during the path tracking. Two innovative fuzzy inference engines actively adjust the weight of each joint in these tasks.Andrés De La Esperanza, FJ. (2011). Postprocesamiento CAM-ROBOTICA orientado al prototipado y mecanizado en células robotizadas complejas [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/10627Palanci

    Advances in Robot Kinematics : Proceedings of the 15th international conference on Advances in Robot Kinematics

    Get PDF
    International audienceThe motion of mechanisms, kinematics, is one of the most fundamental aspect of robot design, analysis and control but is also relevant to other scientific domains such as biome- chanics, molecular biology, . . . . The series of books on Advances in Robot Kinematics (ARK) report the latest achievement in this field. ARK has a long history as the first book was published in 1991 and since then new issues have been published every 2 years. Each book is the follow-up of a single-track symposium in which the participants exchange their results and opinions in a meeting that bring together the best of world’s researchers and scientists together with young students. Since 1992 the ARK symposia have come under the patronage of the International Federation for the Promotion of Machine Science-IFToMM.This book is the 13th in the series and is the result of peer-review process intended to select the newest and most original achievements in this field. For the first time the articles of this symposium will be published in a green open-access archive to favor free dissemination of the results. However the book will also be o↵ered as a on-demand printed book.The papers proposed in this book show that robot kinematics is an exciting domain with an immense number of research challenges that go well beyond the field of robotics.The last symposium related with this book was organized by the French National Re- search Institute in Computer Science and Control Theory (INRIA) in Grasse, France

    Optimal exoskeleton design and effective human-in-the-loop control frameworks for rehabilitation robotics

    Get PDF
    Attention, since they decrease the cost of repetitive movement therapies, enable quantitative measurement of the patient progress and promise development of more e ective rehabilitation protocols. The goal of this dissertation is to provide systematic frameworks for optimal design of rehabilitation robots and e ective delivery of therapeutic exercises. The design framework is built upon identification and categorization of the design requirements, and satisfaction of them through several design stages. In particular, type selection is performed to ensure imperative design requirements of safety, ergonomy and wearability, optimal dimensional synthesis is undertaken to maximize global kinematic and dynamic performance defined over the singularity-free workspace volume, while workspace optimization is performed to utilize maximum singularity-free device workspace computed via Grassmann line theory. Then, humanin- the-loop controllers that ensure coupled stability of the human-robot system are implemented in the robot task space using appropriate error metrics. The design framework is demonstrated on a forearm-wrist exoskeleton, since forearm and wrist rotations are critical in performing activities of daily living and recovery of these joints is essential for achieving functional independence of patients. In particular, a non-symmetric 3RPS-R mechanism is selected as the underlying kinematics type and the performance improvements due to workspace and multi-criteria optimizations are experimentally characterized as 27 % larger workspace volume, 32 % higher position control bandwidth and 17 % increase in kinematic isotropy when compared to a similar device in the literature. The exoskeleton is also shown to feature high passive back-driveability and accurate sti ness rendering capability, even under open-loop impedance control. Local controllers to accommodate for each stage of rehabilitation therapies are designed for the forearm-wrist exoskeleton in SO(3): trajectory tracking controllers are designed for early stages of rehabilitation when severely injured patients are kept passive, impedance controllers are designed to render virtual tunnels implementing forbidden regions in the device workspace and allowing for haptic interactions with virtual environments, and passive contour tracking controllers are implemented to allow for rehabilitation exercises that emphasize coordination and synchronization of multi degrees-of-freedom movements, while leaving the exact timing along the desired contour to the patient. These local controllers are incorporated into a multi-lateral shared controller architecture, which allows for patients to train with online virtual dynamic tasks in collaboration with a therapist. Utilizing this control architecture not only enables the shift of control authority of each agent so that therapists can guide or evaluate movements of patients or share the control with them, but also enables the implementation of remote and group therapies, as well as remote assessments. The proposed control framework to deliver e ective robotic therapies can ensure active involvement of patients through online modification of the task parameters, while simultaneously guaranteeing their safety. In particular, utilizing passive velocity field control and extending it with a method for online generation of velocity fields for parametric curves, temporal, spatial and assistive aspects of a desired task can be seamlessly modified online, while ensuring passivity with respect to externally applied forces. Through human subject experiments, this control framework is shown to be e ective in delivering evidence-based rehabilitation therapies, providing assistance as-needed, preventing slacking behavior of patients, and delivering repetitive therapies without exact repetition. Lastly, to guide design of e ective rehabilitation treatment protocols, a set of healthy human subject experiments are conducted in order to identify underlying principles of adaptation mechanism of human motor control system. In these catch-trial based experiments, equivalent transfer functions are utilized during execution of rhythmic dynamic tasks. Statistical evidence suggests that i) force feedback is the dominant factor that guides human adaptation while performing fast rhythmic dynamic tasks rather than the visual feedback and ii) as the e ort required to perform the task increases, the rate of adaptation decreases; indicating a fundamental trade-o between task performance and level of force feedback provided

    Trajectory planning of single and dual-arm robots for time-optimal handling of liquids and objects

    Get PDF
    This Thesis studies the optimal control problem of single-arm and dual-arm serial robots to achieve the time-optimal handling of liquids and objects. The first topic deals with the planning of time-optimal anti-sloshing trajectories of an industrial robot carrying a cylindrical container filled with a liquid, considering 1-dimensional and 2-dimensional planar motions. A technique for the estimation of the sloshing height is presented, together with its extension to 3-dimensional motions. An experimental validation campaign is provided and discussed to assess the thoroughness of such a technique. As far as anti-sloshing trajectories are concerned, 2-dimensional paths are considered and, for each one of them, three constrained optimizations with different values of the sloshing-height thresholds are solved. Experimental results are presented to compare optimized and non-optimized motions. The second part focuses on the time-optimal trajectory planning for dual-arm object handling, employing two collaborative robots (cobots) and adopting an admittance-control strategy. The chosen manipulation approach, known as cooperative grasping, is based on unilateral contact between the cobots and the object, and it may lead to slipping during motion if an internal prestress along the contact-normal direction is not prescribed. Thus, a virtual penetration is considered, aimed at generating the necessary internal prestress. The stability of cooperative grasping is ensured as long as the exerted forces on the object remain inside the static-friction cone. Constrained-optimization problems are solved for 3-dimensional paths: the virtual penetration is chosen among the control inputs of the problem and friction-cone conditions are treated as inequality constraints. Also in this case experiments are presented in order to prove evidence of the firm handling of the object, even for fast motions

    MUSME 2011 4 th International Symposium on Multibody Systems and Mechatronics

    Full text link
    El libro de actas recoge las aportaciones de los autores a través de los correspondientes artículos a la Dinámica de Sistemas Multicuerpo y la Mecatrónica (Musme). Estas disciplinas se han convertido en una importante herramienta para diseñar máquinas, analizar prototipos virtuales y realizar análisis CAD sobre complejos sistemas mecánicos articulados multicuerpo. La dinámica de sistemas multicuerpo comprende un gran número de aspectos que incluyen la mecánica, dinámica estructural, matemáticas aplicadas, métodos de control, ciencia de los ordenadores y mecatrónica. Los artículos recogidos en el libro de actas están relacionados con alguno de los siguientes tópicos del congreso: Análisis y síntesis de mecanismos ; Diseño de algoritmos para sistemas mecatrónicos ; Procedimientos de simulación y resultados ; Prototipos y rendimiento ; Robots y micromáquinas ; Validaciones experimentales ; Teoría de simulación mecatrónica ; Sistemas mecatrónicos ; Control de sistemas mecatrónicosUniversitat Politècnica de València (2011). MUSME 2011 4 th International Symposium on Multibody Systems and Mechatronics. Editorial Universitat Politècnica de València. http://hdl.handle.net/10251/13224Archivo delegad

    Embodied Interactions for Spatial Design Ideation: Symbolic, Geometric, and Tangible Approaches

    Get PDF
    Computer interfaces are evolving from mere aids for number crunching into active partners in creative processes such as art and design. This is, to a great extent, the result of mass availability of new interaction technology such as depth sensing, sensor integration in mobile devices, and increasing computational power. We are now witnessing the emergence of maker culture that can elevate art and design beyond the purview of enterprises and professionals such as trained engineers and artists. Materializing this transformation is not trivial; everyone has ideas but only a select few can bring them to reality. The challenge is the recognition and the subsequent interpretation of human actions into design intent

    Robotics 2010

    Get PDF
    Without a doubt, robotics has made an incredible progress over the last decades. The vision of developing, designing and creating technical systems that help humans to achieve hard and complex tasks, has intelligently led to an incredible variety of solutions. There are barely technical fields that could exhibit more interdisciplinary interconnections like robotics. This fact is generated by highly complex challenges imposed by robotic systems, especially the requirement on intelligent and autonomous operation. This book tries to give an insight into the evolutionary process that takes place in robotics. It provides articles covering a wide range of this exciting area. The progress of technical challenges and concepts may illuminate the relationship between developments that seem to be completely different at first sight. The robotics remains an exciting scientific and engineering field. The community looks optimistically ahead and also looks forward for the future challenges and new development

    Robottimanipulaattorin anturipohjainen liikesuunnittelu

    Get PDF
    When teleoperating a manipulator, obtaining sufficient situational awareness is often difficult. The operator's task can be made easier by automatically taking care of supporting tasks, such as collision avoidance, enabling the operator to concentrate on the manipulation task. In this work planning based collision avoidance methods for a robot manipulator in a changing unstructured environment are studied. Sensor based motion planning system is developed. The system detects the environment using a three-dimensional range sensor and produces an occupancy grid map. Three motion planning algorithms based on rapidly exploring random trees (RRT) are compared based on the planning time of the algorithm, the execution time of the planned motion and the end effector movement caused by the motion. For the experiments the motion planning system was implemented using Kinova JACO robot arm as the manipulator and Microsoft Kinect as the sensor. RRT-based algorithms were found to be suitable for this kind of motion planning systems. Of the algorithms compared, RRT-Connect was the fastest, but RRT* produced the best solution paths. The selection of algorithm depends on the relative value of path quality and solution speed and is application dependent.Teleoperoitaessa manipulaattoria riittävän tilannetietoisuuden välittäminen operaattorille on haastavaa. Operaattorin työtä voidaan helpottaa hoitamalla automaattisesti manipulaatiotehtävää tukevia tehtäviä, kuten törmäyksen välttämistä. Tässä työssä tutkitaan suunnittelupohjaisia menetelmiä robottimanipulaattorin törmäyksen välttämiseen muuttuvassa ja etukäteen tuntemattomassa ympäristössä. Työssä toteutettu anturipohjainen liikesuunnittelujärjestelmä havainnoi ympäristöä kolmiulotteista etäisyysmittausta hyödyntäen ja muodostaa siitä varauskartan. Kolmea nopeasti tutkiviin satunnaispuihin (RRT) perustuvaa liikesuunnittelualgoritmia vertaillaan suunnitteluun kuluneen ajan, liikkeen suoritusajan ja työkalun kulkeman matkan suhteen. Kokeita varten järjestelmä toteutettiin Kinova JACO manipulaattoria ja Microsoft Kinect anturia hyödyntäen. Kokeissa havaittiin RRT algoritmien soveltuvan tämän tyyppisiin liikesuunnittelujärjestelmiin. Vertailluista algoritmeista RRT-Connect oli nopein, mutta RRT* tuotti parhaan ratkaisun. Algoritmin valinta riippuu ratkaisun laadun ja suunnitteluun käytetyn ajan välisestä arvotuksesta ja siten sovelluskohteesta
    corecore