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ABSTRACT

Vinayak. Ph.D., Purdue University, December 2015. Embodied Interactions for Spatial
Design Ideation: Symbolic, Geometric, and Tangible Approaches. Major Professor:
Karthik Ramani, School of Mechanical Engineering.

Computer interfaces are evolving from mere aids for number crunching into active part-

ners in creative processes such as art and design. This is, to a great extent, the result of mass

availability of new interaction technology such as depth sensing, sensor integration in mo-

bile devices, and increasing computational power. We are now witnessing the emergence

of maker culture that can elevate art and design beyond the purview of enterprises and pro-

fessionals such as trained engineers and artists. Materializing this transformation is not

trivial; everyone has ideas but only a select few can bring them to reality. The challenge is

the recognition and the subsequent interpretation of human actions into design intent.

Taking inspiration and guidance from embodied interactions, our focus in this work is

to design, develop, and evaluate interfaces and interaction techniques to support idea gener-

ation for the design of three-dimensional (3D) shapes. Grounded in the phenomenological

tradition of philosophy, embodied interactions represent a general framework to understand

the transformation of action into meaning – in our case, design intent. We present concrete

instances of this framework by investigating symbolic, geometric, and tangible approaches

for transforming human action into design intent.

We begin with the symbolic transformation of action to intent by introducing shape-

gesture-context interplay (SGC-I), a framework that enables the expression of design intent

in the virtual environment through a prescribed set of hand gestures combined with arm

motion. Here, the main idea is to automatically deduce the nature and extent of geometric

constraints by interpreting human gestures and motions in the context of a given modeling

operation.
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We explore the geometric transformation of action to intent by introducing proximal

attraction, a dwell-time approach that interprets a shape deformation as a progressive con-

vergence of the shape of the manipulated object (such as a lump of clay) to that of the

manipulating object (such as a hand or a tool). We demonstrate our approach using a mod-

eling metaphor inspired by pottery, which offers an unambiguous interaction context via a

well-defined and intuitive relationship between the use of hands and the shaping of pots.

We implement and evaluate a novel algorithm that uses kernel-density estimation to char-

acterize the contact between the hand and a 3D shape. In contrast to the symbolic nature of

SGC-I, the geometric approach does not compute any finite set of gestures or hand skele-

ton. Instead, it implicitly extracts the grasp and motion from the raw point-cloud (PCL) of

the user’s hand for deforming the shape of a pot in 3D space. This feature of our method

directly allows a user to shape pots by using physical artifacts as tools adding tangibility to

the process of shape ideation.

In the final stage of this work, we introduce a novel interaction metaphor for using

a hand-held smartphone as a medium for spatial design ideation. The core goal here is

to enable direct externalization of spatial design concepts by embedding the geometric

representation of the artifact within the physicality and tangibility of the creation process

itself. To achieve this goal, we re-purpose a smartphone as a hand-held reference plane for

creating, modifying, and manipulating 3D sweep surfaces. We implement MobiSweep, a

prototype application to explore a new design space of constrained spatial interactions that

combine direct orientation control with indirect position control via well-established multi-

touch gestures. MobiSweep leverages kinesthetically aware interactions for the creation of a

sweep surface by utilizing the spatial relationship between the physical action of sweeping

and the creation of the resulting swept surface. The design concepts generated by users, in

conjunction with their feedback, demonstrate the potential of such interactions in enabling

spatial ideation.
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1. INTRODUCTION

For years radios had been operated by means of pressing buttons and turn-

ing dials; then as the technology became more sophisticated the controls were

made touch-sensitive–you merely had to brush the panels with your fingers;

now all you had to do was wave your hand in the general direction of the com-

ponents and hope. It saved a lot of muscular expenditure, of course, but meant

that you had to sit infuriatingly still if you wanted to keep listening to the same

program. – Douglas Adams, Hitchhiker’s Guide to the Galaxy 1979

Computer support for design, architecture, and art has evolved in much the same way

in the real world as the “radio” which Mr. Adams imagined in his work of science fiction.

The invention of the mouse [1] fundamentally changed how digital content was created,

manipulated, and accessed. Novel interactions were developed to provide a graphical-

user-interface (GUI) using the windows-icons-menus-pointers (WIMP) paradigm. It was

possible for a designer to create digital geometric models by using geometrically coherent

interaction metaphors such as click-and-drag or click-and-move. Innovations in touch-

enabled technologies took a significant step forward wherein a user could create geometric

content by scribbling on a tablet, much in the same way as one would sketch on a piece

of paper. The recent success of Microsoft Kinect in the gaming industry demonstrated the

significance of using spatial human motion as a method for expression of the user’s intent

towards more engaging virtual experiences.

There seems to be common element behind these success stories – each of these de-

velopments took a radical step towards integrating human cognitive capabilities and motor

skills within the interactive workflow. In this thesis, our aim is to explore how physi-

cal human movement can be controllably transformed into the intent for designing three-

dimensional artifacts. Our broader approach, to this end, is to view the process of idea

generation in early phase design through the lens of embodied interactions.
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1.1 The Context of Spatial Design Ideation

Early-phase ideation is fundamental to product and industrial design processes. As

Hsu and Liu [2] note: “ even the highest standard of detailed design cannot compensate

for a poor design concept formulated at the conceptual design phase”. Idea generation

and detailed design are fundamentally different in terms of the utility that they provide

to the design process. Ideation involves divergent thinking for quick externalization of

a wide variety of ideas, as opposed to detailed design which entails convergent thinking.

From a cognitive standpoint, these thinking modes are understood as lateral and vertical

transformations respectively [3]. Thus, the primary goal of the ideation process is to help

the designer understand the design problem by exploring the problem space through quick

externalization of ideas [4, 5]. This exploratory nature of ideation demands an uninhibited

flow between what a designer is thinking and what the designer is doing to communicate

the thought.

Horváth [6] states: “conceptual design can be seen as a cognitive process in which,

ideation, externalization, synthesis and manipulation of mental entities, called design con-

cepts, takes place in symbiosis in a short-term evolutionary process”. Historically, sketch-

ing has played the most significant role to help externalize visual ideas; many creative

ideas began with sketches. Designers still predominantly prefer sketching to express their

ideas [2, 7]. To this end, current research on computer-aided ideation tools is also targeted

towards sketch-based brainstorming [8, 9]. It is, however, natural to assume that the explo-

ration of 3D product forms would require the designer to imagine concepts that are spatial.

Consequently, externalizing a 3D concept as a collection of segmented 2D projections is a

task that requires significant skill and training. This is perhaps why sketching is perceived

as a challenging medium by novice designers while communicating 3D forms [10]. While

2D artifacts like sketches and drawings are better off being created with 2D interfaces,

we find that the creation of 3D shapes using 2D interfaces limits the capability of design-

ers to experiment at conceptual and artistic levels [11]. There has been significant effort

made towards creating sketching systems, for instance EverybodyLovesSketch [12], that
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aim at reducing the barrier to entry for users untrained in sketching. Even these systems

are mainly focused towards the creation of detailed 3D sketches rather than quick design

conceptualization.

We seek to bridge the gap between the designer’s imagination of a concept and the

communication of the imagined concept. To do so, we focus primarily on the context

of computer-supported design ideation, i.e. the generation of ideas in the form of virtual

artifacts towards designing a product form. In particular, we are interested in spatial design

ideation – a term that, in this thesis, will assume two different meanings. In its first form

(spatial design ideation), it refers to the generation of ideas in the form of three-dimensional

shapes. In its second form (spatial design ideation), it refers to the spatial nature of the

interaction between the designer and the computer towards the generation of ideas in the

design process.

1.2 The Motivation for Spatiality

The primary motivation behind this work directly comes from the statement made by

Sproull [13]: “Only the determined model three dimensional objects and they rarely invent

a shape at a computer, but only record a shape so that analysis and modeling can proceed.

The grand challenges in three dimensional modeling are to make simple modeling easy and

complex modeling accessible to far more people.”.

Scali et. al [14] note, “highly digitized industrial processes tend to overlook the role

of the designer in the process itself ”. We find that computer support for ideation has re-

ceived very little attention in existing literature. Tools for 3D design are not suitable for

ideation since they do not embody the notion of controlled vagueness [15] that is central

to the process of idea generation. In particular, the interfaces of computer-aided design

(CAD) software lack the spontaneity crucial to quick externalization of visual ideas [16].

Further, the instructions and training are primarily dedicated towards learning the usage of

a modeling tool rather than focusing on the process of design itself. As a result, CAD tools

end up supporting the creation of sophisticated artifacts once the designer has learned the
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usage of the modeling tool. The amount of time spent in merely familiarizing oneself with

the tool digresses the designer’s attention from the design activity. Having said that, merely

catering to designers, i.e. individuals who have a professional stake in the activity of de-

sign, is only a part of Sproull’s vision. Facilitating the process of design for anyone that

wishes to externalize visual ideas is the bigger challenge. It is in response to this challenge

that we invoke the need for spatiality, not just in terms of what is created at the end of a

design process, but more so how it is created during the process.

As Michael Polanyi states [17, p.56]: “The body is the ultimate instrument of all our

external knowledge, whether intellectual or practical experience [is] always in terms of the

world to which we are attending from our body.” This is the fundamental insight that we

intend to embed in the design of interfaces for idea generation. Specifically, we identify that

proprioceptive and kinesthetic control come naturally to humans in any physical interaction

and are the key ingredients towards the flow of the design processes that involve human

action and perception [18, 19]. In contrast to this, we find that most current geometric

design processes are compartmentalized into disconnected sub-processes that do not allow

the user to invoke their internal conceptual models. For example, sketch-based design

approaches force the user to think in a projected (2D) version of the actual modeling (3D)

workspace.

Klemmer et al. [20] state: “One of the most powerful human capabilities relevant to

designers is the intimate incorporation of an artifact into bodily practice to the point where

people perceive that artifact as an extension of themselves; they act through it rather than

on it”. Systems such as Spatial Sketch [21] and Proto-TAI [22] are examples of embodied

approaches towards the creation of physical artifacts via bodily movement. This is what

motivates our interest in spatial interactions wherein the idea is to reduce the barrier to entry

in design by integrating our innate human ability and dexterity in virtual shape conceptual-

ization [23]. Drawing from these works, we argue that enabling the direct externalization

of spatial design concepts can be effectively achieved by embedding the geometric repre-

sentation of the artifact within the physicality of the creation process itself.
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1.3 Embodiment & Embodied Interactions

The notion of embodied interactions is an abstract one and requires explanation as

to why it matters in spatial design ideation. The concept of embodied interactions was

proposed by Paul Dourish [17] as a philosophical underpinning for approaching problems

in human-computer interactions (HCI). One of the central ideas here was to formulate an

integrated research framework inspired by tangible and social computing. To this end,

Dourish described embodiment as a “denotation of participative status rather than mere

physical reality”.

The central premise on which this thesis is built is that the very definition of embodied

interactions, as a manifestation of phenomenological tradition, provides a natural basis

for viewing design practice as bodily practice that allows one to communicate internal

knowledge to the external world through the interactive media.

Within cognitive science, embodied cognition examines the ways in which our inter-

actions with the physical world shape our cognitive experiences from a body-centric point

of view [18, 20]. More specifically, embodied cognition holds that our cognitive processes

are “deeply rooted in the body’s interactions with the world” [24]. This is in stark con-

trast to decades of research in cognitive science wherein the mind was viewed as a sort

of central but detached information processing unit where motor-sensory functions were

more-or-less secondary inputs and outputs to a main system [25]. Although there are many

tenets of this body-centric view, the primary conclusion relevant to this thesis is that spa-

tial interactions can shape, clarify, and reinforce our cognitive processes, leading to quick

learning by novice users. We posit that the key to making digital design accessible to the

novice untrained user is to provide a framework that takes advantage of the user’s prior

knowledge of the real world and embeds that knowledge into the design tool itself.

1.4 Overview

So far, we have argued in favor of spatiality of interactions for the purpose of facili-

tating ideation of shapes. It is evident from past research that the proposition of spatial



6

interactions for designing virtual artifacts is not, in itself, novel. However, the reason why

spatial design ideation is still a relevant and important research topic is that it still poses a

myriad variety of challenges.

In the context of creative endeavors such as design, Mr. Adams’ metaphorical radio is

indeed here and is in fact hard to operate. There are two fundamental causes responsible

for this difficulty. As Mr. Adams so eloquently puts it: “wave your hand in the general

direction of the components and hope”. This is essentially the problem of ambiguity in

recognizing the intent. He further adds: “you had to sit infuriatingly still if you wanted to

keep listening to the same program”. This is the problem of lack of controllability. Though

these issues must be resolved in any effort made towards computer-supported ideation, they

become much more pronounced when considering spatial interactions.

Converting user input into a meaningful shape modeling task involves (a) acquisition,

segmentation and processing of hand data, (b) extracting a virtual representation of the

hand, (c) mapping the gestures to a shape modeling tasks, (d) modeling an appropriate

response of the shape as intended by the user’s input. Simply deciding when to start and

stop a modeling task is an issue, unlike interacting with a tablet or a mouse, where touch

or a button press can unambiguously trigger events. The challenge lies in the recognition

and subsequently the interpretation of human action into meaningful design intent of the

user so as to allow fluid and robust interactions for shape ideation. Below, we will describe

a conceptual organization of this thesis with regards to how we will attempt this challenge

by borrowing from the principles of embodied interactions.

1.4.1 Conceptual Organization

There are two fundamental components of embodiment that are of direct and critical

relevance to this thesis. These are action and meaning. We are particularly interested

in two derivative concepts, intentionality and coupling. In the framework of embodied

interactions, intentionality helps define how an action is related to meaning and coupling
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Figure 1.1. Conceptual organization of the thesis.

can be understood as the chain of events that makes this relationship between action and

meaning effective.

In our context, design intent is closely linked to intentionality that essentially sets up the

relationship between what the user is doing and what they think is the intended outcome

of their action. To explore the expression of this design intent, the approach we take is

to investigate three different types of couplings between human action and the meaning

that emerges from the application of these couplings. Specifically, the three couplings

manifest in the form of symbolic, geometric, and tangible approaches for ideation (Figure

1.1). Below we summarize the contributions made in this work through the investigation

of these approaches for design ideation.
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1.4.2 Summary of Contributions

The notions of embodied cognition and embodied interactions form the philosophical

underpinnings of this work. These notions are abstract and only help in defining the broader

value of this work. However, in order to investigate how these concepts can be applied to

real interaction scenarios, we take a concrete application-oriented approach wherein we

attempt to understand spatial interactions for ideation through the design, development,

and evaluation of computer interfaces. As described below, the core contributions of this

work emerge from the evaluation and analysis of these interfaces that embody the symbolic,

geometric, and tangible approaches for ideation.

1.4.2.1 Symbolic Approach

• As the first step towards mid-air shape design, we demonstrate direct creation of

3D shapes through HandyPotter (Chapter 2), a prototype application for the creation

and modification of rotationally symmetric shapes. The core contribution here is the

association between symmetric bi-manual movement of the hands and the creation

of rotationally symmetric cylindrical shapes.

• We introduce shape-gesture-context interplay (Chapter 3), a framework which unifies

the shape exploration process with the gestural intent of the designer. This framework

enables the automatic deduction of the nature and extent of geometric constraints by

interpreting human gestures and motions. Through this we develop a fundamental

theoretical framework wherein the representation of a shape can be tied up seamlessly

to the interactions possible on the shape.

• We demonstrate free-form modifications of shapes with gestures through two appli-

cations Shape-It-Up. Here, we develop the idea of intelligent generalized cylinders

(IGC) as a shape representation which inherently integrates the contextual interac-

tions induced by the postures and motion of the hands. We demonstrate the creation

of IGCs in the context of natural human shape expression. We use the representa-
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tions to enable quick creation of a variety of constrained and free-form shapes while

retaining the aesthetic characteristics of the shapes.

1.4.2.2 Geometric Approach

• We introduce proximal attraction (Chapter 4), a method that directly uses the geo-

metric information encoded in the modeling context and the manipulating object such

as a hand or a tool. We develop a virtual pottery application as a concrete demon-

stration of proximal attraction. Our method uses a simple point-cloud (PCL) based

representation of the hands without the need for gesture recognition or hand skeleton

tracking. Thus, a user does not need to learn, know or remember any gestures to

interact with our system; the user can directly interact to shape pots. Our approach

allows for several types of user inputs namely, (a) hands, (b) physical objects as tools

and (b) virtual tools.

• We design a novel algorithm to determine user intent for shaping through proximal

attraction. Our algorithm, which is a combination of adaptive exponential smoothing

with selective Laplacian smoothing, is particularly robust to unintentional or acci-

dental user inputs. We extensively study the key parameters of our algorithm and

provide guidelines to design pottery based interactions for controllability.

• As an extension of proximal attraction, we develop a method that uses the kernel-

density estimate (KDE) of the hand’s PCL to extract the grasp and motion for de-

forming the shape of a pot in 3D space (Chapter 5). We present the complete evolu-

tion of our algorithm in three stages of iterative design . At the end of each stage, we

describe a user evaluation that informs the algorithm development of the subsequent

stage. Second, we evaluate our KDE based approach in comparison to proximal

attraction. Our evaluations help reveal two core aspects of mid-air interactions for

shape deformation, namely, intent & controllability. We characterize user behavior

in pottery design in terms of (a) common hand & finger movement patterns for cre-
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ating common geometric features, (b) user perception of intent, and (c) engagement,

utility, and ease of learning provided by our approach.

1.4.2.3 Tangible Approach

• We explore quick 3D shape composition during early-phase spatial design ideation

(Chapter 6). Our approach is to re-purpose a smartphone as a hand-held reference

plane for creating, modifying, and manipulating 3D sweep surfaces. We implement

MobiSweep, a prototype application to explore a new design space of constrained

spatial interactions that combine direct orientation control with indirect position con-

trol via well-established multi-touch gestures. MobiSweep leverages kinesthetically

aware interactions for the creation of a sweep surface without explicit position track-

ing. The design concepts generated by users, in conjunction with their feedback,

demonstrate the potential of such interactions in enabling spatial ideation.
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2. SYMMETRIC BI-MANUAL INTERACTIONS FOR MID-AIR CREATION OF

ROTATIONALLY SYMMETRIC SHAPES

In this chapter, we begin with the idea that the expression of rotationally symmetric 3D

shapes can be captured effectively using the motion of the hands in 3D space. In doing

so, we take the first step towards the development of a symbolic approach for spatial inter-

actions for the creation, modification, and manipulation of 3D shapes. The main goal of

this chapter is to demonstrate high-speed creation of shapes which are otherwise difficult to

model using existing commercial CAD tools. To this end, we will demonstrate a pottery-

based shape modeling metaphor for creation of generalized cylinders through bi-manual

human motion.

Figure 2.1. Overview of HandyPotter: shape modeling metaphor inspired by pottery (left)
and interpretation of hand locations for shape creation (right).
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Figure 2.2. Constrained and free form generalized cylinders.

2.1 Overview

Motion is the temporal variation of the spatial configurations of the hand and the arm,

i.e. it deals with the dynamic articulations of the hand and arm under kinematic constraints.

In the context of this chapter, we constrain the definition of a gesture as the interpretation

of hand and arm movements to convey a certain meaningful shape. A typical sweep oper-

ation, for instance, can be succinctly defined as a physical process of sweeping a curved

piece of wire in 3D space. To this end, we use the pottery metaphor for the creation and

modeling of sweep surfaces wherein the user moves both hands defining a side profile of

the swept surface (Figure 2.1). Our approach, thus, results in an intuitive association of

human motion with generalized cylinders. We use this association to enable quick creation

of a variety of constrained and free-form shapes while retaining the aesthetic characteristics

of the resulting shapes. We categorically show that a wide variety of shapes can be created

in a matter of a few seconds.

In HandyPotter, we are particularly interested in the creation of generalized cylinders

(GC’s). Given a 2D cross-sectional curve and a 3D skeleton curve, [26] defines a GC

as the sweep surface of the cross-sectional curve moving along the skeleton curve. The

cross-sectional curve may change its shape dynamically. However, in most conventional
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methods, the cross-sectional plane is restricted to be orthogonal to the tangent direction of

the skeleton curve. GC’s have been well-studied in literature since they have the combined

potential of being able to represent fairly complex and free-form shapes and still retaining

their parametric nature. In a discrete setting, we define a GC as a surface created by a

sequence of sections represented as planar poly-lines along a 3D trajectory or spine rep-

resented as 3D poly-lines. A given GC can be described by the position, orientation and

size of each of its cross-sections. We use the locations of the hands, −→p i
r (right) and −→p i

l

(left) at a given ith instance to evaluate these three parameters. Given a cross-section, the

distance between the hands, the orientation of the line-segment joining the two hands and

its mid-point, specify the size, orientation and position of the cross-section respectively

(Figure 2.1). Thus, the temporal variations of the locations of the two hands in 3D space

completely define the evolution of the GC for a given cross-sectional shape. Given a planar

cross-section C which tightly fits within a bounding square of unit-length, we represent a

GC, G, as a set of scaling factors, si, their corresponding center locations, −→c i and orienta-

tions represented as 3 × 3 rotation matrix θi (Equation (2.1)).

G = {Ci|Ci = siθiC + −→ci , 1 ≤ i ≤ n} (2.1)

si = ‖−→p i
r −
−→p i

l‖2

−→c i =

−→p i
r + −→p i

l

2

θi = Rot(αi, βi)

Here we confine to closed poly-line sections and open poly-line spines and we consider

the creation of constrained generalized cylinder (CGC) and free-form generalized cylinder

(FFC) (Figure 2.2). We envisage a CGC as a surface being created by motion of two hands

along a straight spine wherein a cross-section varies in size, retaining a constant orientation

and shape. On the other hand, creating an FFC is enabled by additional capabilities of

defining the orientation of each section dynamically and curvilinear spines. Thus, from

a representational standpoint, the only distinction between CGC and FFC is the level of
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Figure 2.3. Computational pipeline for HandyPotter.

controllability of si, −→c i and θi. We implement this controllability by defining snapping of

these parameters within prescribed limits with respect to the extent of the motions of the

user.

2.2 Implementation

To demonstrate the shape exploration framework with the pottery metaphor, we devel-

oped a modeling tool to support the creation of GC’s. In our current prototypical implemen-

tation we assume the the shape of the cross-section to be given a-priori. We particularly

experimented with circular, square and hexagonal cross-sections to create shape models.

The HandyPotter prototype was developed in C++ using openGL rendering. We use an

off-the-shelf Kinect camera in conjunction with the skeletal tracking capability provided

by the openNI library to track the hand locations of the user. The pipeline for the imple-

mentation is shown in Figure 2.3. The interface developed in this tool is very simple in

that the user only sees the global frame of reference and a working volume wherein the

user can create the GC’s. We define a working volume at a specified distance from the

global coordinate frame (Figure 2.4). When both the user’s hands are within this working
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Figure 2.4. Virtual working volume for sweep creation.

volume, the modeling tool starts creating the generalized cylinders described in the pre-

vious section. Taking into account the spatial extent within which a user would typically

feel comfortable working, we define the working volume at a distance of 1.5 m away from

the depth sensor and we define the thickness of the working volume to be 30 cm which is

about double the size of the palm. Figure 2.5 shows a typical interactive session using the

interface developed.

2.3 Results

Figure 2.6 shows general shapes corresponding to different constraints for the creation

of GC’s. We show three varieties of GC’s, (a) fully constrained, wherein the scale of the GC

changes with the hand motions while the spine is kept vertical and orientational variations

of cross-sections is not allowed, (b) partially constrained wherein the spine can take a free-

form on 3D space while the orientation is still constrained and (c) a completely free-form

mode wherein the spine, orientation and the section scales can be varied as per the wish of

the user. We were able to create these shapes within 2 to 3 seconds which is a significantly

low modeling time. However, a better understanding of 3D interfaces for shape modeling
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Figure 2.5. A snapshot of the interface for HandyPotter showing the user creating a shape
using two-handed motion.
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Figure 2.6. Fully constrained, partially constrained and free-form generalized cylinders
using HandyPotter.

5.3 sec 2.5 sec 3.4 sec 2.0 sec 1.9 sec 

4.9 sec 4.9 sec 5.1 sec 3.7 sec 4.4 sec 

Figure 2.7. Pot-like shapes modeled using HandyPotter.

warrants a detailed user-study involving the performance of our system and its comparison

with traditional CAD tools.

Figure 2.7 shows some examples of shapes and the corresponding time taken to model

each shape. Let us recall that our primary goal was to enable the designer to externalize
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rough design prototypes for the purposes of exploration in the early phases of design. Thus,

it can be appreciated that the description of shapes in the examples shown, involves only

the interpretation of what the designers want to create through their own body motion.

2.4 Conclusions

In this chapter, we presented the idea of pottery-based shape modeling metaphor which

enables rapid creation of generalized cylinders purely through arm motion. Here, our goal

was mainly to explore, through a minimalistic interface, how action could be transformed

into design intent. Thus, HandyPotter is a rudimentary effort leading to the symbolic ap-

proach for spatial design ideation. It merely offers a glimpse of the spatial interactions that

can be enabled by depth cameras for 3D shape exploration. In the following chapter we

will generalize the idea behind HandyPotter towards developing a general framework for

gesture-based interactions for idea generation.
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3. GESTURE-BASED MID-AIR INTERACTIONS FOR DESIGN IDEATION

Theories on the use of hand gestures in CAD, have been developed by Horváth [27]. To

this end, Horváth also investigated hand motion language for shape conceptualization [6].

Pavlovic et al. [28] illustrates the components of the human gesture interpretation process

namely, video input, analysis and recognition supported by a mathematical representa-

tion of gestures and finally gesture description for further actions. A review of VR-based

assembly and prototyping [29] states that “the ultimate goal is to provide an invisible in-

terface that allows the user to interact with the virtual environment as they would with

the real world”. However, VR-based technologies are typically more suitable for post-

design phases and are less affordable in terms of cost and setup-time. Although we inspire

our approaches along the same lines, we do it primarily in the context of the early design

phases where iteration of design prototypes necessitates the provision of an affordable and

non-intrusive environment which can support exploratory thinking amongst designers.

In this chapter, we begin with the first goal of this thesis: investigating and formal-

izing the symbolic approach for quick generation of 3D shapes. To do so, we present a

framework dubbed shape-gesture-context interplay (SGC-I), that for the expression of 3D

shapes through the naturalistic integration of human hand gestures. Our goal is to develop

Shape
Operand

Gesture
Operator

Context
Interpretation

Interplay
Operation

Figure 3.1. An overview of Shape-Gesture-Context Interplay.
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a symbolic approach for transforming action into intent. interface . We demonstrate a

concrete instance of SGC-I with a prototype interface, Shape-It-Up, to facilitate creation,

modification and manipulation of shapes through mid-air interactions.

3.1 Related Work

3.1.1 Mid-Air Shape Modeling

Segen and Kumar [30] showed examples of computer-aided design (CAD) with their

Gesture VR system, which used non-intrusive methods based on computer vision for gen-

eral virtual reality (VR) applications. Schkolne et al. [31] demonstrated the modeling of

organic shapes using a glove-based wearable device. Llamas et al. [32] describe Twister, a

method for producing intuitive deformations of surfaces using bimanual interactions with

two magnetic 6 degree-of-freedom (DOF) hand trackers to determine location, orientation,

and pose of hand. Keefe et al. [33] presented a tangent-preserving method for a controllable

illustration of 3D lines using the PHANToM haptic device in conjunction with a 6 DOF

tracker for bi-manual input. More recently, augmented reality interfaces for 3D digital con-

tent creation were shown by [34]. Wang et al. [35] presented 6D Hands to demonstrate

computer-aided design (CAD) using marker-less hand tracking. Holz and Wilson [36] pro-

posed Data miming as an approach towards descriptive shape modeling wherein a voxel

representations of a user’s hand motion is used to deduce the shape which the user is de-

scribing.

3.1.2 Gesture Recognition & Hand Skeletal Tracking

The pose of the human hand can be described as the spatial configuration of each fin-

ger and the palm, i.e. the kinematic parameters (joint angles) of the hand. The existing

algorithms are by and large based on 2D images obtained from single or multiple cameras.

Erol et al. [37] classify computer-vision based pose estimation algorithms in two broad

categories (a) single frame algorithms and (b) model-based tracking algorithms. There
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is however an overlap of approaches followed in these categories. Feature-based algo-

rithms involve extraction of relevant features of the hand like silhouettes and boundary con-

tours [38–42]. The feature extraction is typically followed by a global search amongst pose

samples, template matching or inverse-kinematics. Other methods [43] use deformable ge-

ometric models of the hand to estimate poses. Model-based learning [44, 45] and feature-

tracking [46, 47] based algorithms involve the tracking of the hand and subsequent estima-

tion of the joint angles using single or multiple hypothesis. The commonly used approaches

are based on Bayesian filtering [48], particle filters and grid based filters. With the advent

of low-cost depth cameras very recently, only a couple of papers algorithms have been pro-

posed for hand-pose estimation. Work in [49] used compressed 3D shape descriptors using

the depth data from Zcam for 3D hand pose recovery. Oikonomidis et al. [50] showed a

robust hand pose estimation based on particle swarm optimization on the GPU using depth

images from the Kinect.

The kinematic representation of hands has been employed in many of the model-based

approaches mentioned above [38,39,44–47,50]. Different degrees-of-freedom (DOF) mod-

els have been used in literature based on the methods applied for the pose estimation algo-

rithm. Thus, these hand representations are more application-specific. Hand representation

and kinematics has been widely studied in robotics [51], ergonomics, and digital human

modeling literature. Cobos et al. [52] presented an efficient 24-DOF kinematic model

of the hand suited for simulation of manipulation tasks. Like other joints of the human

body, joints on the human hands are coupled with each other such that their motion is con-

strained by the motion of the neighboring joints. Work presented in [53] illustrates the

joint constraints in the kinematic hand model and quantify these constraints in terms of

the relationship between joint angles. A detailed analysis given by van Nierop et al. [54],

discusses a natural human hand model with 12 DOF from a bio-mechanical perspective.

Besides kinematics models, Ingram et al. [55] show interesting statistical analysis of the

joint velocity analysis. Hand representation and kinematics has also been widely studied

in ergonomics [53] and digital human modeling literature [56, 57]. A concise summary of
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grasp taxonomies is given by Feix et al. [58]. Work in by Rusak et al. [59] demonstrates

interactive grasping simulation of product concepts in a VR environments.

3.1.3 A Brief Review of Geometric Modeling for Design

The representation of parametric shapes has been studied extensively in CAD literature.

A comprehensive description of these representations namely, (a) decomposition models,

(b) constructive models and (c) boundary models, can be found in [60]. Boundary represen-

tations (commonly called B-rep’s), especially polyhedral models are known to be directly

useful for graphical applications [60]. Parametric surface modeling makes use of Bezier,

B-Splines and NURBS for modeling complex shapes [61]. Shape representations based on

contours and mesh-regions have been explored in recent literature [62], for search, clas-

sification, reconstruction and processing operations like segmentation. Lipman et al. [63]

presented a differential coordinate representation for surface editing.

Shape deformation methods can be grouped into two broad categories, space based

and surface based. In surface-based methods [64, 65] the initial and target positions for a

subset of surface points are used to compute the positions of all remaining points. Cage

methods create a cell complex around an original shape and perform the deformation on the

cell complex with the deformed position of all points calculated with respect to each cell

[66–68]. Skeletal methods [69,70] constrain the deformation of a surface so that properties

of the skeleton are preserved. Feature based methods [67, 71–73] use either automatic or

user chosen features typically represented as a contour or area where the deformation is

constrained. Space based methods [73, 74, 74, 75, 75–78] modify a shape by deforming the

embedded space in some fashion.

Generalized cylinders (GC) have been extensively studied in CAD and shape modeling

literature [26, 79, 80] and several perspectives have been discussed towards their represen-

tation. Chang et al. [26] defines a GC as the sweep surface of the cross-sectional curve

moving along the skeletal curve. The cross-sectional curve may change its shape along

the skeleton. However, in most existing methods, the cross-sectional plane is typically de-
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fined by the normal and bi-normal on the skeletal curve. Work presented in [79] describes

sweep surfaces as parallel, rotational, spined and synchronized based on the primitives and

the sweeping rules. Special representations towards interactive deformation of GC’s were

presented in [26, 81]. More recently, [80] presented a direction map based representation

of GC’s which was particularly congenial for blending amongst the swept cross-sections.

Deformation of generalized sweeps have also been investigated extensively in [82, 83], to-

wards applications in human deformation.

Works by Igarashi et al. [84] and Nealon et al. [85] illustrate strategies for creating

3D shapes from 2D profile sketches. Work presented in [86–88] shows methods for data-

driven exploratory design to motivate suggestion-based modeling by leveraging on our cur-

rent prowess in shape-search. Literature in synthetic modeling [89–92] demonstrates the

capability of creating large complex 3D scenes from simple building blocks.

3.2 Overview

The SGC-I framework enables a set of generic and systematic tools wherein the shape

is considered as the operand, gestures as the operators, contexts as activity interpreters

and interplay as the whole operation (Figure 3.1). This framework enables the automatic

deduction of the nature and extent of geometric constraints by interpreting human gestures

and motions.

We categorize the shape exploration process into three distinct components, namely,

(a) shape creation, (b) shape modification and (c) shape manipulation (Figure 3.2). By

shape creation, we mean the use of hand gestures to create a shape in an empty working

volume. Shape modification refers to interactions with shapes with the intention of chang-

ing the geometric characteristics of the shape. Shape manipulation refers to the rigid-body

transformations for translating, rotating and scaling 3D shapes. The following sub-sections

give a detailed description of our technical approach towards the shape exploration process.

Work in [6] presented the conceptual and technical descriptions of hand-based interaction

systems. In our work, we define hand gestures as a combination of the posture of the
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Figure 3.2. Components of the proposed shape exploration paradigm.

hands and the 3D motion of the arms. Most importantly, we encapsulate the three shape

exploration components in a unified mathematical framework, SGC-I and demonstrate its

strength for mid-air applications.

3.3 Shape-Gesture-Context Interplay

In this section, we present the mathematical representations for the components of the

SGC-I paradigm, namely shape, gesture and context. We represent shapes as generalized

cylinders (GC) in a way such that naturalistic modifications can be enabled for hand-based

interactions. The representation of gestures is sub-divided into postures and motion.
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3.3.1 Gesture

Given a finite set of k postures, we define a hand posture as an positive integer σ ∈

{0, 1, . . . , k − 1}. Additionally, we represent the motions of a hand as the instantaneous

locations −→ω of the center of the hand. We define a gesture Γ as a function of time t (Equation

(3.1)) which is represented by an ordered pair of the postures σ(t) (Equation (3.2)) and

locations ω(t) (Equation (3.3)) of the left and right hands respectively.

Γ(t) = (σ(t),
−−−→
ω(t)) (3.1)

σ(t) = (σl(t), σr(t)) (3.2)

σl(t), σr(t) ∈ {0, 1, . . . , k − 1}

ω(t) = (−→ω l(t),−→ωr(t)) (3.3)

−→ω l(t),−→ωr(t) ∈ R3

In the given set of gestures, we declare σ = 0 as the NULL posture. In terms of interactions,

this gesture plays the role of discontinuing an ongoing interaction in progress. In the future

sections we will describe the representation advantage of this imposition.

3.3.2 Context

Before describing the formalization of contexts, we introduce two parameters, ε1 ∈

{0, 1, . . . , k − 1} and ε2 ∈ R, which we call the operation parameters. These parameters

aid in the extract of designer’s intent through the interpretation of gestures. The parameter

ε1 represents the posture classifier and ε2 represents a threshold whose meaning changes
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according to the context in which it is used. We define the context ΥΓ through the boolean

association (Equation (3.4)) of a set of modeling operations {Σ1, . . . ,Σr}, with a given a

set of gestures {Γ1, . . . ,Γr} by using a combination of the Kronecker delta (δ(a, b)) and

heaviside functions (u(x)). Here, d is a distance function defined in R3.

ΥΓ(ε1, ε2; Σ) =

 Σ if δ(σ, ε1) = 1 & u(d − ε2) = 1

¬Σ otherwise
(3.4)

By appropriate selection of the operation parameters, we will be able to select amongst

modeling operations like creation, modification and manipulation according the postures

and locations of the hands.

3.3.3 Generalized Cylinder (GC)

While many representations have been discussed for GC’s, these representations have

been mainly envisaged in the typical interaction scenarios wherein the user-input is pri-

marily two-dimensional. Our definition of the GC is inspired from the physical action of

holding a sectional curve (say a wire-loop) and sweeping it in 3D space along a path.

A 3D curve approximated by a discrete poly-line of resolution (number of edges)

“n” can be represented as a 3 × n real matrix C = [−→v 1
−→v 2 . . .

−→v n] wherein each column
−→v i = [xi yi zi]T represents a point in R3 and the columns are ordered to define the edges of

C. Any two curves defined in the manner described can be added together and multiplied

with a scalar. In a geometric sense, the addition can be interpreted as a commutative de-

formation of either of the two curves with respect to the other. Interestingly, the addition

of a curve C2 with identical columns to another general curve C1 would result in the trans-

lation of C1. Thus, in this representation, translation is a special case of deformation of a

curve. Similarly, scalar multiplication would correspond to the scaling of the curve. For the

purpose of generality, we do not distinguish between closed and open curves in this rep-
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resentation. In our implementations, we explicitly specify the closure as per requirements

without vertex duplication.

Given a set of 3D curves {C1,C2, . . . ,Cm} all with resolution n, the surface “S ” of a

GC is given by Equation (3.5). Here, si ∈ R, Ri ∈ M3×3(R) and Ti ∈ M3×n(R) represent

the scaling, rotation and translation of the ith cross-section Ci respectively. Here, ∆C
i , ∆T

i ∈

M3×n(R) represent the deformation of cross-section Ci and the skeleton Ti respectively. The

order of cross-sections defines the development of the surface in a discrete sense. In the

current section we assume ∆C
i and ∆T

i to be a zero matrix signifying that the cross-sectional

curve is transformed as is and the trajectory is static.

S = {Ki|Ki = siRi(Ci + ∆C
i ) + (Ti + ∆T

i ), 1 ≤ i ≤ m} (3.5)

We define a right-handed global coordinate frame such that the y-axis is vertical and

the z − x plane is horizontal. If αi and βi be the angles of elevation (rotation about z-axis)

and azimuth (rotation about y-axis) (Figure 3.3(a)) then the rotation Ri = R(αi, βi) be the

rotation matrix. Similarly, the translation of the curve from the origin along a vector −→o i =

[oix oiy oiz]T ∈ R3 is given by Equation (3.6). As mentioned earlier, it is easily observable

that the translation can be considered as a special deformation in M3×3(R) given by the

product of the diagonal matrix D(−→o i) ∈ M3×3(R) and the unit matrix U3×n ∈ M3×n(R)).

Ti = D(−→oi)U3×n =


oix 0 0

0 oiy 0

0 0 oiz



1 1 · · · · · · 1

1 1 · · · · · · 1

1 1 · · · · · · 1

 (3.6)

3.3.4 Sectional and Skeletal Deformations

Geometrically, the deformation of a curve can be seen as a set of translations on each

point on the curve. Also, this interpretation holds irrespective whether a curve is closed
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(a) (b) (c)

Figure 3.3. Section parameters (a) orientation (b) handle and deflection (c) handle-vertex
distance.

(a) σ = 0 (b) σ = 1 (c) σ = 2

Figure 3.4. Selected hand postures (a) Release (b) Grab (c) Point.
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or open. Thus, for a discrete curve of resolution n, the deformation can be described by

a set of n translations, one for each point on the curve. We represent the deformation of

a curve C using a simple matrix addition of the ∆ curve. We present ∆ as a curve simply

because it has the same representational properties as the curve C, i.e. it has the same

resolution as C and the columns of ∆ are ordered. More precisely, there is a unique one-to-

one correspondence between C and ∆. From interaction point-view, deformation requires a

point on the curve which is being deflected (pulled or pushed) in a certain direction. In case

of sectional deformation, we call this point the handle −→v h ∈ Ci and the deflection is defined

as a vector −→η i = [ηix , ηiy , ηiz]T ∈ R3 (Figure 3.3(b)). The remaining task is to transfer

the deflection to the other points on the curve. For sectional deformations, we achieve this

by defining a deformation-transfer function f (d j) which scales the deflection on the handle

and applies to the jth point −→v j on the curve based on the euclidean distance d j between the

handle and jth point (Figure 3.3(c)). Thus, ∆i can be formulated as follows:

∆C
i = D(−→η i)U3×nD( f (

−→
d )) (3.7)

=


ηix 0 0

0 ηiy 0

0 0 ηiz

 U3×n



f (d1) · · · · · · 0

0 f (d2) · · · 0
...

...
. . .

...

0 · · · · · · f (dn)



−→
d = [d1 , d1 , . . . , dn]T (3.8)

d j = ‖−→v j −
−→v h‖2

In Equation (3.7), D(−→η ) ∈ M3×3(R) is the diagonal matrix with components of deflec-

tion in the diagonal and D( f (
−→
d )) ∈ Mn×n(R) is a diagonal matrix with the deformation-

transfer function evaluations on the diagonal.
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Skeletal deformations could be treated in the same way as sectional ones. However,

we present a novel technique which is more suitable for bending of skeletal curves that is

not similar to the sectional deformation described above. Since our method is specific in

its construct and application, we will describe it in one of the following sections. In the

current section we will maintain the general description of deformation as the addition of a

curve ∆T
i to the curve Ti.

3.3.5 Intelligent Generalized Cylinder

The currently known representations of GC’s would typically look similar to the one

described in this chapter till this stage. Now we introduce the idea of the intelligent gener-

alized cylinder (IGC). Shape modeling with sweep representations typically involves con-

straining the primitives defining the sweep surface. For instance, the representations given

in [79] involve constraints of parallelism of section planes for parallel sweeps, intersec-

tion of section planes for rotational sweeps and tangency of sections with respect to the

trajectory for spined sweeps. The section and skeleton were two primitives in these rep-

resentations. In our scheme, we have four distinct primitives using which a GC can be

developed. These are (a) sectional scale (s∗i ), (b) sectional rotation parameters (α∗i ,β∗i ) (c)

sectional translation parameter (
−→
o∗i , T ∗i ) and (d) sectional deformation (∆∗i ). The challenge

in our scenario is to model the IGC in such a way that the behavior of the GC’s during

creation, modification and manipulation is naturally associated with the gestures of the

designer. Another important issue under consideration is that the jitter in the observed lo-

cations of the hands either due to noise in the input data or due to the inherent properties

of the control of hand movements should not affect the shape modeling process adversely.

The noises from the depth camera can be reduced by smoothing or computer-vision based

post-processing of the human skeletal data. We currently smooth the coordinates of each

of the joint locations using exponential smoothing. On the other hand, the control of hand

movements and their effects on modeling could be a subject of research in its own right.

Although studies in neuroscience [93] on human movement sciences can be augmented
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into modeling interactions, they are not within the scope of this work. With this in con-

sideration, we develop the IGC representation in a manner which is amenable to future

developments involving refined behavioral patterns of human movement.

Before describing the IGC representation, we introduce a third parameter, ε3 ∈ R,

which we call the intelligence parameter. This parameter, like ε2 introduced earlier, rep-

resents a threshold whose meaning changes according to the context in which it is used.

The definition of IGC involves two main modifications in the representation described in

Equation (3.5). Firstly, we redefine the four primitives stated above as functions of the

hand locations (Equation (3.9)). In the context of SGC-I, the functions F, G1, G2 and H

are intended to be based on the locations of the hands and will be defined in later sections.

Secondly, we replace the unit matrix U3×n with a heaviside matrix Ω3×n given by Equation

(3.10). The function u(d − ε3) is the heaviside function.

s∗i = F(ω(ti), s∗i−1) (3.9)

α∗i = G1(ω(ti), ω(ti−1), α∗i−1)

β∗i = G2(ω(ti), ω(ti−1), β∗i−1)

R∗i = R(α∗i , β
∗
i )

−→
o∗i = H(ω(ti))

T ∗i = D(
−→
o∗i )Ω3×n

∆C∗
i = D(−→η i)Ω3×nD( f (

−→
d ))

∆T∗
i = J(ω(ti)

Ω3×n = D(u(d − ε3))U3×n (3.10a)
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Transformations Sectional Scaling Bending DeformationCreation

Figure 3.5. Physical interpretation of the SGC-I framework for IGC modeling.

D(u(d − ε3)) =


u(dx − ε3x) 0 0

0 u(dy − ε3y) 0

0 0 u(dz − ε3z)

 (3.10b)

The introduction of the heaviside function is the key factor which converts a GC to

an IGC. By choosing appropriate values for the intelligence parameter we will be able to

define the geometric constraints during the creation and modification operations using the

hand locations. Thus, the surface S of the IGC is represented in terms of the hands as:

S ∗ = {K∗i |K
∗
i = s∗i R∗i (Ci + ∆C∗

i ) + (T ∗i + ∆T∗
i ), 1 ≤ i ≤ m} (3.11)

Manipulation, being a global transformation, is trivially described as sG
i RG(αi, βi)S ∗ +

TG
i , where sG

i , RG(αi, βi) and TG
i are the global scale, rotation and translation respectively.

This section described the mathematical framework for SGC-I with IGC as the repre-

sentation of the shapes that we have considered. In the following sections, we will explic-

itly provide functions for concretely describing the gestures and contexts for IGC’s with

examples and results.

3.4 Implementation Approach for SGC-I

In this section, we describe the gestures, operations and contexts which we have im-

plemented in this work towards the creative modeling of IGC’s. We consider three hand
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postures, namely release (σ = 0), grab (σ = 1) and point (σ = 2) as shown in Figure 3.4.

As mentioned earlier, the release posture is the NULL posture in this set since it naturally

creates an affordance for leaving contact with objects. Further, we combine the selected

gestures with hand locations to define a set of five contexts leading to five modeling op-

erations {Σ1, . . . ,Σ5}. A physical interpretation of these contexts and the corresponding

operations are shown in Figure 3.5. The definition of functions leading to these operations

can be prescribed by simply choosing appropriate operation parameters for the right (suffix

r) and left (suffix l) hands (Table 3.1). We assume that the IGC creation process (Σ1) takes

place along the global z-axis and the distance function is given by the euclidean distance

of the hands with respect to the torso (−→p tor). Thus, we associate a virtual slab which moves

with the designer parallel to the vertical (x − y) plane.

In a naturalistic setup, bending typically takes place by holding a sufficiently slender

shape with both hands. We simplify this process to a one hand operation by declaring the

object stationary. Thus, we impose a special constraint on the bending operation that a

skeleton can be bent only by grabbing the center of the top or the bottom section of an

IGC. The distance functions in all other operations are defined between a general point the

surface S ∗ of the IGC and the hand locations (Equation (3.12)). Here the symbols ∧, ∨ and

Y mean logical conjunction, logical disjunction and exclusive disjunction respectively.

d(Σi) =



‖
−→ωr∧l(ti) − −→p tor‖2 if i = 1

arg min j(‖
−→ωrYl(ti) − −→v S ∗

j ‖2) if i = 2

‖
−→ωrYl(ti) − −→o S ∗

1∨m‖2 if i = 4

arg min j(‖
−→ωr∧l(ti) − −→v S ∗

j ‖2) otherwise

(3.12)

−→v j
S ∗ = jth vertex of S ∗

m = number of sections
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Table 3.1. Operation parameter definition for modeling operations.

Opera- Create Deform Scale Bend Manip-
tion: (Σ1) (Σ2) (Σ3) (Σ4) ulate(Σ5)
ε1r 2 1(0) 1 1(0) 2
ε1l 2 0(1) 1 0(1) 2

*

iT
*

is
*

iR

Scale Orientation Center

Surface Deformation Skeletal Deformation

Figure 3.6. Mapping of hand motion is illustrated for the creation of IGC through scaling,
rotation, translation of a given section of a swept surface.

Figure 3.7. Fully constrained, partially constrained and free-form IGC, orientational and
translational snapping in swept surfaces. Note that this particular subset of shapes was
shown in HandyPotter (Chapter 2).
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3.5 IGC Creation

For simplicity and symmetry, we initialize a template cross-section, C, as a circle of ra-

dius 0.5 centered at the origin (Equation (3.13)) and lying on the horizontal (z− x) plane. In

a discrete setting, this translates to a closed regular polygon with sufficiently large resolu-

tion. The advantage of this definition is its inherent capability to represent sharp polygonal

cross-sections only by setting a low resolution.

Ci =


0.5 cos(θ1) · · · 0.5 cos(θm)

0 · · · 0

0.5 sin(θ1) · · · 0.5 sin(θm)

 U3×n (3.13)

∀1 ≤ i ≤ m

θ j =
2 jπ
n
, 0 ≤ j ≤ n − 1

Given a cross-section, the distance between the hands, the orientation of the line joining

the two hands and the mid-point of the line joining the two hands specify the size, orien-

tation and position of the cross-section respectively. Thus, the temporal variations of the

locations of the two hands in 3D space completely define the evolution of the IGC. We use

the locations of the hands, −→ω l(ti) (left) and −→ωr(ti) (right) at a given ith instance ti to evaluate

the scaling, rotation and translation (Equation (3.14)). During the creation of an IGC, our

goal is not only to allow the designer to create shape freely, but also to implicitly retain

the aesthetics of the shape being created on-the-fly. This is where our intelligence parame-

ters and heaviside function based representation play a key role. Using ε3s we control the

amount of variation in scale in order for it to take effect (Equation (3.14a)). If the hands

are almost at the same distance from one frame to another, we use the previous scale value.

Similarly, the choice of ε3α and ε3β (Equations (3.14c) and (3.14d)) allows for defining the

orientation of the current section to be either equal to the previous one or orthogonal to the

trajectory.
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s∗i = (1 − u(s − ε3s))s∗i−1 + u(s − ε3s)s (3.14a)

s = ‖−→ωr(ti) − −→ω l(ti)‖2

−→o ∗i =
−→ωr(ti) + −→ω l(ti)

2
(3.14b)

α∗i = (1 − e)α∗i−1 + eα (3.14c)

e = max{u(Aα − ε3∠), u(dα − ε3α)}

Aα = |α − elevation(
−−−−→
o∗i o∗i−1)|

dα = |α − α∗i−1|

α = arctan

 ωry − ωly√
ωrx − ω

2
lx + ωrz − ω

2
lz



β∗i = (1 − e)β∗i−1 + eβ (3.14d)

e = max{u(Aβ − ε3∠), u(dβ − ε3β)}

Aβ = |β − azimuth(
−−−−→
o∗i o∗i−1)|

dβ = |β − β∗i−1|

β = arctan 2
(
ωrx − ωlx,

√
ω2

rz − ω
2
lz

)
Similar to the strategy given above, the parameters ε3x, ε3y and ε3z in Equation (3.10)

can be used to snap the skeletal trajectory of the IGC based on the motion of the hands.

In our current implementation, we have used a common threshold of 0.5mm for the scale

and translation parameter values for IGC creation based on the size of objects modeled

which is typically of the order of 50cm to 100cm. Figure 3.7 shows shapes for a variety of
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(a) (b) (c)

Figure 3.8. Skeleton deformation (a) method (b) circular bending and (c) rectification for
θ = π/3 and 0.75 ≤ dbt ≤ 0.95.

intelligent constraints for the creation of IGC’s. We show three varieties of IGC’s wherein,

(a) the scale of the GC changes with the hand motions while the skeleton is kept vertical

and orientability of the sections is not allowed, (b) the skeleton can take a free-form on

3D space while the orientation is still constrained and (c) a completely free-form mode

wherein the skeleton, orientation and the section scales can be varied as per the wish of the

user.

3.6 IGC Modification

We describe three operations for modifying IGC shapes, namely (a) skeletal deforma-

tion (bending), (b) sectional deformation and (c) sectional scaling. With respect to the IGC

representation presented earlier, the first two modeling operations translate to the addition

of a deformation curve as given in Equation (3.11.) The third operation is similar to the

description given in Equation (3.14a).
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Figure 3.9. Recursive bending of IGC.
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3.6.1 Skeletal Deformation

Skeletal deformation entails the bending of the skeletal curve T ∗i of the IGC. We propose

a bending scheme which attempts to preserve the total length of the skeletal curve. All

we need to achieve this bending is a bending curve ∆T∗
i which can be added to T ∗i . For

simplicity, we assume that the skeleton is vertical in its initial configuration and the bending

happens only on the plane defined by the base, source and target points. First, we rotate

this plane using a transformation RB such that all the three points lie on the vertical (x − y)

plane and the base point is at the origin. Assuming one end of the skeleton to be fixed

at the base point (−→v b = RB
−→o S ∗

1 ), the problem is to find a set of rotations of each of the

line segments or links of the skeleton such that the location of the last point moves from

the source point (−→v s = RB
−→o S ∗

m ) to the location of the user’s hand which we call the target

point (−→v t = RB
−→v ∗t ). This can be seen as an inverse kinematics (IK) problem for a serial

manipulator and has been very well-studied in literature [94, 95]. However, we follow a

different approach based on the circular bending of a skeleton followed by a rectification

method for the final bending.

First, we compute the distance, dbt = ‖−→v t −
−→v b‖2, and the angle γ = ∠(−−→vtvb,

−−→vsvb).

Then we bend the skeleton to a circular arc taking dbt as a chord with its arc length is

equal to the length of the skeleton (Figure 3.8(a)). Obtaining the circular bend requires the

determination of the radius R of the circle and the angle corresponding to the chord-length

satisfying the constraint preserving the length of the skeleton (Equation (3.15)).

R = ‖−−→vsvb‖/θ (3.15)

θ = arg min
θ∈[0,2π]


∣∣∣∣∣∣∣sin(θ/2)

θ
−

dbt

2‖
−→
rb‖

∣∣∣∣∣∣∣


In Figure 3.8(a) the bending angle γ∗ is different than the desired angle γ. Thus, in the

final step, we minimize the angular error (|γ−γ∗|) by piecewise compensation for this error

using the hyperbolic tangent function. Equation (3.16) gives the final coordinates, −→q ∗i , of
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the the ith point −→q i on the bent skeleton. Figures 3.8(c) and 3.8(c) show a set of skeletal

deformations for a bending angle of γ = π/3 and varying target points.

−→q ∗i =

 cos(φi) sin(φi)

− sin(φi) cos(φi)

−→q i (3.16a)

φi =

i−1∑
j=1

{φ j + w j(γ − γ∗)} (3.16b)

φ0 = 0

wi =
tanh(1/i)

m∑
i=1

tanh(1/i)

(3.16c)

m = Number of sections in the surface

The deformation curve is then be described in terms of the planar deformation of the

skeleton as:

∆T∗
i = R−1

B


q∗1x − q1x · · · q∗mx − qmx

q∗1x − q1y · · · q∗my − qmy

0 · · · 0

 (3.17)

Figure 3.9 shows the effect of our bending scheme of three different IGC’s. The bending

of lamp sections in Figure 3.9(b) is undesirable since the shape of the important features

have changed. In such case, a more localized method of bending based on the partial

slenderness of a given IGC shape would improve the realism of these deformations.
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(a) (b)

Figure 3.10. Deformation functions (a) long-range plot (b) close-up for range [0, 1].
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 3.11. Recursive multi-handle deformation of a half-unit circle based on gaussian
(a-d), cauchy (e-h) and laplacian of cauchy (i-l) functions.
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Figure 3.12. Deformation of a cylinder original shape (left) to horizontally constrained 2D
deformation (middle-left) and recursive 3D deformations (middle right and right).
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Figure 3.13. Recursive scaling of a cylinder.

3.6.2 Sectional Deformation

The general theoretical details of sectional deformation were described in the mathe-

matical framework. The main detail of the sectional deformation method which was not

discussed earlier was the deformation-transfer function f (
−→
d ) in Equation (3.7). In this sec-

tion we discuss three functions namely the gaussian function ( f1(d) = e−d2
), cauchy’s func-

tion ( f2(d) = 1/(1 + r2)) and the laplacian of cauchy’s function ( f3(d) = (r2 − 1)/(r2 + 1)4).

Figure 3.10 shows the plots of these functions. Figure 3.11 shows a comparison of the ap-

plication of these functions on a circle of radius 0.5. We conducted experiments to observe

the effect of these functions on the deformation of a circle with single as well as multiple

handles. Based on the capacity of localized deformations and retainment of symmetry upon

recursive deformation, we found the laplacian of the cauchy’s function to be the best choice

for our sectional deformation function.

The deformation of an IGC is split into two parts, first being the deformation of the

active section Ca with center −→o a, containing the handle vertex and the second being the

transfer of deformation to the remaining sections. This is achieved by scaling the deforma-

tion matrix D(−→η i) with f3(d). In this case, d is the distance along the skeletal curve. Thus,

the deformation matrix for the jth section (1 ≤ j ≤ m) is given by ‖−→o S ∗
j −
−→o S ∗

a ‖2D(−→η i). Fig-

ure 3.12 shows the deformations of a cylinder with a variety of constraints using repeated

application of f3(d) on an initial IGC.
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3.6.3 Sectional Scaling

The general idea of sectional scaling for deformation is akin to the scaling for creation,

wherein the location of the hands define the deformation of scale on a certain cross-section

based on proximity. This deformation of scale is transferred to the remaining sections

using the same strategy of deformation transfer function described in the previous section.

If i and j be the active sections due to proximity of left and right hands to the surface S ∗

then the scale deformation is given by δ(i, j)(‖−→ωr(ti) − −→ω l(ti)‖2 − si). Note here that the

Kronecker delta used here assures that i and j are the same sections, i.e. both the hands

must share proximity to the same section which then becomes the active section. For

Kinect Primesense  
openNI 

Skeleton Hand Data 

Shape Modeler Visualization 

Gesture 
Interpreter 

Hand/Arm 
Posture 

Gesture 
Classifier 

Visual 
Feedback 

Hand/Arm 
Motion 

3D Depth Sensing Module 

User Computational Module 

Figure 3.14. Pipeline showing the flow of information from the user to the proposed system.

practical purposes, it is difficult to get both the hands simultaneously close to the same

section. To overcome this issue, we allow a range of sections (about 10% of the total

number of sections) for the proximity of the left and right hands. We select the section in
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Figure 3.15. User interface of the prototype.

the middle of this range as the active section. Figure 3.13 shows a sequence of recursively

scaled IGC’s through sectional scaling using the deformation transfer function f3(d).

3.7 IGC Manipulation

The manipulation of an IGC is a global transformation activity which was described

in section 3.3.5. In the context of hand based modeling, we the use the point posture

in conjunction with bimanual proximity (i.e. both hands near the surface) to define the

context of manipulation. Here, the scaling, translation and rotation are given by Equation

(3.14), with different values of the intelligence parameter for the scaling. In the context of

manipulation, i and i − 1 are instances of time. In this case, we intend to scale the object

only with significant change in the inter-hand distance. Thus, we set the ε3 to 2.5cm in the

present work.
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3.8 Implementation

To demonstrate natural shape exploration with the SGC-I paradigm using IGC repre-

sentation, we developed a prototype to support the creation of GC’s. In the current im-

plementation we assume the shape of the cross-section to be given apriori. In this case,

we decided to take a circular cross-section with resolution of 100. The development of

the tool was done using C++ and openGL was used for the rendering. We use an off-the-

shelf Kinect camera in conjunction with the skeletal tracking capability provided by the

openNI library to track the hand locations of the user. For the recognition of user intent

through gesture classification, we implemented a hand-posture classification method for

gesture recognition. In our situation, each hand data was an 8080 depth image as seen by

the Kinect. Since the hand poses are perceived in different viewpoints and there are large

variances, we choose to use random forest [96] to classify a given observation. Random

forest is one of the most accurate learning algorithms available; especially, it is fast, only

several binary decisions are needed in recognition. The pipeline for the implementation is

shown in Figure 3.14.

The interface developed in this tool is simple; the user only sees the global frame of

reference and a working volume wherein the user can create the IGC’s. Taking into account

the spatial extent within which a user would typically feel comfortable working, we define

the virtual slab at a distance of 75% of the total arm-length of the designer along the view

direction of the Kinect camera. Figure 3.15 shows a typical interactive session using the

interface developed.

3.9 Results

Figure 3.16 shows a wide variety of shapes using the IGC representation within the

SGC-I approach. It can be appreciated that the description of shapes in the examples shown

involves, to a large extent, the interpretation of what the designer wants to create. Since the

actual dimensional details of a shape can always be specified as a post-process by standard
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Figure 3.16. Shapes modeled using Shape-It-Up.



49

parametric CAD techniques, the 3D shape creation process demonstrated in this chapter is

more intuitive and natural to use.

3.10 Conclusions

In this chapter, we proposed the idea of shape-gesture-context interplay (SGCI) towards

natural 3D shape modeling, wherein the interpretation of gestures in the spatial context of

a 3D shape directly deduces the designer’s intent and the subsequent modeling operations.

Our primary focus is to propose SGCI as a generic framework which can be used to design

not one but many novel gesture-driven interfaces for applications in shape modeling. We

implemented “Shape-It-Up”, a prototype tool for gesture-driven expression of 3D shapes

using IGC as the shape representation. We demonstrated the potential of our modeling

framework through high-speed creation of shapes without the actual need for training which

are otherwise difficult to model.

Shape-It-Up offers only a glimpse at the variety of rich spatial interactions enabled by

depth camera for 3D shape exploration. In the current implementation, the tool allows

the designer to create 3D shapes. Modeling on surfaces with holes an multiple cross-

sections will be an important area which we will consider. Other future work includes

deformations of the model with enforced symmetric constraints, constrained bending with

natural limits and twists in cross-sections. The general logical architecture behind SGC-

I can be used for implementing a wide variety of contexts with different combinations of

gestures and shapes. A complete user study based on factors like fatigue, time of modeling,

ease of use etc. is, in its own right, a research problem involving significant effort. In the

forthcoming chapters, we will revisit this framework in the context of virtual pottery and

show a evaluation of the symbolic approach.
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4. GEOMETRIC APPROACH FOR MID-AIR DEFORMATION THROUGH

PROXIMAL ATTRACTION

We learned from the previous chapter that in the symbolic approach for shape ideation,

converting user input into a meaningful shape modeling task involves (a) acquisition, seg-

mentation, and processing of hand data, (b) extracting a virtual representation of the hand,

(c) mapping the gestures to a shape modeling task, and (d) generating an appropriate re-

sponse of the shape as intended by the user’s input. The key element here is that it is

interface designer who must decide what gestures to use and how to map them to a given

set of geometric operations. In fact, in our exposition of SGC-I, we followed a similar

approach.

Dourish [17, p.170] states: “Traditional interactive system design ascribes two sets

of responsibilities to the designer. The first is responsibility for the artifact for its form

and function, and for how they are related. The second is responsibility for its use for

the sets of activities in which people will engage with that artifact.” Thus, in the context

of embodied interactions, a symbolic approach does not inherently allow users to manage

coupling. One might argue that users’ preference could be accommodated through gesture

elicitation where they may define what the set of gestures should be and how they must

be mapped to a given set of geometric operations. However, hand and finger movements

in real-world shaping processes (such as pottery or clay sculpting) are complex, iterative,

and gradual. Such processes are essentially governed by the geometry of contact between

hand and clay. Thus, eliciting a finite set of symbols and associating them to dynamic tasks

such as deformation is not as simple as defining gestures for operations such as selecting,

picking, or placing objects. In this chapter, we will investigate a geometry-driven approach

for shape deformation that does not depend on a prescribed set of gestures. Instead, it

implicitly utilizes the geometry of contact between the user’s hand and a virtual object

towards mid-air shape deformation.
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To cater to our goal of investigating mid-air deformation, we choose the example of

virtual pottery. Our choice of pottery offers a well-defined and intuitive relationship be-

tween the use of hands and the shaping of pots to a user. The simplicity of the geometric

representation and deformation in pottery lends itself to quantitative measurement of the

user’s response to our system. As we will see in the subsequent chapter, this concrete and

practical implementation enables us to study how hand and finger motions can allow users

to deform a shape as they see fit).

4.1 Related Work

Three-dimensional user input has been extensively studied, evaluated, and reviewed [97–

100] in the context of 3D selection, manipulation [101], control, and navigation, in vir-

tual environments. Mid-air interactions have found significant use in gaming [102] and

art [103–105]. Within the context of 3D conceptual shape design, we find two broad classes

of mechanisms that enable mid-air user input.

4.1.1 Instrumented Controllers

The first class comprises of instrumented controllers such as gloves [31, 106, 107],

hand-held trackers [32, 108], and haptics devices [33, 109, 110]. Special devices and se-

tups [111–116] have also been demonstrated for 3D interactions. These hardware systems

offer great control, feedback, and unambiguity to the user while interacting in mid-air. In

these approaches, the user provides explicit commands via the hand-worn or hand-held

controller to indicate design intent such as starting,stopping, or selecting a modeling oper-

ation when desired. However, such systems are not accessible to the common user outside

a lab environment. Further, wearing or holding can be intrusive to the user during a focused

modeling task.
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4.1.2 Gesture-Based Input

The second class of mechanisms for mid-air user input are the so-called bare-hand

gesture-based interactions [30, 35, 36, 95, 117, 118]. With the recent commercialization

of depth cameras, gesture-based interactions have become accessible to the common user.

Creative applications for free-form shape modeling [119] in mid-air have gained significant

popularity. The user input in these applications is represented as a combination of a hand

posture (such as pointing with a finger) and the motion of a representative point (such as

the palm or fingertip) on the hand.

Both classes of mid-air interactions (instrumented controllers and bare-hand gestures)

have one common characteristic, namely, there is a clear distinction between interaction

and geometric modeling. In this work, we take a different approach; we pose mid-air in-

teraction itself as a geometric problem. Our focus is the geometric investigation of spatial

interactions in the specific context of shape deformation. Particularly, we address the prob-

lem of determining how the shape and motion of a user’s hand and fingers geometrically

relates to the user’s intent of deforming a shape.

4.2 Problem

Consider a mid-air interaction scenario of selecting and displacing a mesh vertex for

deforming the mesh. Unlike a controller-based approach, there is no explicit physical

mechanism for triggering events. Here, gestures serve two fundamental purposes. First,

they help define a beginning (e.g. reaching and clutching some region of interest) and end

(e.g. de-clutching the region after required deformation) of an interaction [120, 121]. Sec-

ondly, they help define the exact operation from a set of operations defined in the context of

an application. For example, the type of deformation could be selected by using different

gestures (e.g. fist to pull, point to push, open palm to flatten).

There are two issues with this approach. First, gesture-based interactions rely heavily

on (a) the robustness of gesture recognition to hand occlusions and (b) stability of rec-

ognized gestures over time. Even slight instability in the accuracy of gesture recognition
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Figure 4.1. Definition of a pot and the deformation using proximal persistence.

can disrupt the modeling process leading to user frustration. Secondly, predefined gestures

impose rigid constraints on users. Having to learn too many gestures is memory-intensive

in a creative activity, but too few gestures can result in ambiguity while expressing design

intent.

Works by Sheng et al. [112], Kry et al. [113], and Pihuit et al. [114] have leveraged

finer finger level movements and grasping for 3D shape deformation by designing inge-

nious hardware systems. In their systems, users can actually grasp and deform virtual

objects. However, for marker-less camera-based systems, the true expressive potential of

finger movements remains underutilized despite advances in hand pose and skeleton esti-

mation [50,122]. We aim to determine user’s intent from fine finger-level movements while

retaining the non-intrusiveness and accessibility of depth cameras. In doing so, we demon-

strate that it is unnecessary to prescribe shape modeling interactions with a predefined set

of rules using classified hand gestures or full-scale hand skeletons.

4.2.1 Overview

Our basic idea is to progressively conform the shape of a pot (represented as a 3D mesh)

to that of the user’s hand. This idea, dubbed proximal persistence, is a generalization of the

notion of dwell-time used in 3D object selection [123]. Our algorithm is a combination of

exponential smoothing and selective Laplacian smoothing (Figure 4.1). Here, each point in
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the hand’s PCL attracts a local region on the pot, hence deforming the pot’s section. The

combination of many such local deformations, due to each point on the hand, amounts to a

progressive convergence of the pot-profile to the shape of the user’s hands. We found two

approaches that appear similar to our method in terms of the representation of the hand and

the idea of persistence-based deformation.

The first approach is Data miming [36] wherein the hand is modeled as a set of active

voxels in a volumetric domain. Thus, this approach uses hands without explicit deter-

mination of gestures for recognizing user intent, as in our case. Our method, however,

is inherently different from this approach in two ways. Firstly, Data miming focuses on

the specification existing objects through the user’s hand motions rather than creating new

shapes through shape deformation. Secondly, it differentiates the relevant voxels from the

irrelevant ones by imposing a threshold on the number of times the user’s hand visit each

voxel. Our method does not require any threshold or statistic to distinguish intentional ac-

tions from unintentional ones. Instead, we use the rate of attraction as our parameter to

determine when and how much to deform a surface (Section 4.3.3). We also provide an

explicit relationship between our parameters and the responsiveness of shape deformation

(Section 4.4). We determined appropriate parameter values of our algorithm through our

pilot experiments. Such a study was not the focus of the Data miming approach.

The magnet tool demonstrated by Schkolne et al. [31] captures the idea of persistence.

It is a custom made hardware addendum that allows a user to change a region of surface

locally by waving the hand close to the surface while holding the tool. This tool, as men-

tioned by the authors, enables an overdrawing metaphor for surface deformation. In our

case, the input is dynamic and unstructured data (the PCL of the user’s hand) and there

is no explicit user expression (such as waving) that triggers the deformation of a shape.

Further, our method is capable of both local and global changes to the shape depending on

how the user makes contact with the surface of the shape.
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4.3 Proximal Attraction

Proximal attraction can be described as a spatio-temporal model according to which

a ’modifiable object’ in space deforms when in close proximity to a ’modifying object’.

Deformation occurs over a length of time, until the shape of the modifiable object matches

the profile of the modifying object. In our case, the modifiable object is the surface of a

virtual pot, the modifying operation is deformation, and the modifying object is a point-

sampled surface of a hand or a hand-held tool. Thus, the idea is to define the modeling

process of a 3D shape as a time-series of its deformed states converging, so as to conform

to the shape of the hand or the tool (Figure 4.1).

To provide a realistic and enjoyable experience of pottery, there are four considerations

which drive our modeling technique. These are: (a) smooth appearance, (b) behavioral

realism, (c) intuitive interactions, and (d) the possibility of using real-world and virtual

objects as tools for pot creation. We will first define the required components of the tech-

nique and describe a general strategy for the deformation of pots. Our strategy is based on

Laplacian smoothing which has been extensively used in literature (see [124] for a detailed

review).

4.3.1 Pot Definition

We describe a pot P̃(h, r(h)), as a simple homogeneous generalized cylinder (SHGC)

containing a set of circular sections at heights h̃ ∈ [h1, h2] (h1, h2 ∈ R) whose radii are

defined by a smooth function r̃ : R → R applied to the closed and connected interval

[h1, h2] ∈ R. Thus, the function r̃(h̃) can also be interpreted as the profile curve of the pot.

In a discrete setting, a pot is given by:

Pn,m := {(hi, ri) | ri = r(hi) , h1 < . . . < hn ∈ R} (4.1)
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The surface S (Pn,m) of the pot is defined as a vertical sequence of n circular sections

Ci of radii ri at heights hi. In a discrete setting, a circular section is approximated by a

closed regular polygon with m sides (Equation (4.2)) thus allowing for a simple quad-mesh

representation.

Ci = [vi,1, . . . , vi,m]T (4.2)

vi, j =

[
−ri sin(

2 jπ
n

), hi,−ri cos(
2iπ
n

)
]T

A manipulator is defined as a point denoted by µ(t,p), where t is the time stamp and

p ∈ R3 is the position of the manipulator. The manipulating object (user’s hand or a hand-

held tool)can thus be represented as a point cloud (PCL) given by M(t) = {µ(t,p)} where

each point is a manipulator. A handle, q(t) = vi, j ∈ V (1 ≤ i ≤ n and 1 ≤ j ≤ m), is defined

as the vertex on the pot which is closest to the manipulator in euclidean space. We define a

convergence threshold εC as the distance between a handle and its manipulator at which the

handle is considered to be coincident with the manipulator. Finally, we define a proximity

threshold as the maximum distance, εP,at which a manipulator should be from a handle in

order for a deformation to occur. Making use of the structured topology of the pot mesh,

we compute the handle for a given hand by first computing the index of nearest section and

subsequently the point closest to the hand on the nearest section. Thus, the handle q at an

instance t, is given by:

q(t) = vi, j (4.3)

i = argmin
i

(hi − py(t))

j = argmin
j

(‖vi, j − p(t)‖)

Here, ‖.‖ is the Euclidian distance defined in R3. Further, i gives the index of the cross-

section closest to the manipulator. It is clear that the relationship between a manipulator and

its corresponding handle is that of proximity, the first component of proximal persistence.
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Figure 4.2. Deformation strategy of a curve γ (row 1) involves initializing a seed displace-
ment (row 2), application of the Laplace operator to obtain a smooth deformation curve δ
(row 3), and finally the computation of deformed curve γ + δ.

4.3.2 Deformation Method

In real world pottery, deformations due to the potter’s hands are either local or global

based on the extent of the profile region in contact with the potter’s hands or the tools held

in the hands. The smoothness of deformation is an essential constraint as well. Consider

the hand as a set of points in 3D space. Each point in the PCL deformed a small local region

on the pot using the proximal attraction approach. On the whole this amounts to a gradual

and progressive convergence of the pot-profile to the shape of the user’s hand. We achieve

this convergence by using the idea of selective Laplacian smoothing. This method performs

local or global deformation of the profile based on the distribution of the manipulators on

the profile. For manipulators within a small region of the profile, the deformation is local.

If the manipulators cover a broader span of the profile, the deformation is global.

Given the profile function r(h), the problem of deforming the surface of a pot is essen-

tially transformed to that of deforming the profile curve. For a curve γ̃(u) ∈ R3 (u ∈ [0, 1]),

deformation on γ̃ can be defined as a curve δ̃(u) such that δ̃ : γ̃ → (γ̃+ δ̃)(u). Our goal is to

determine a deformation δ̃(u) which satisfies Laplace equation (∇2δ̃ = 0).
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Figure 4.3. The selective application of Laplace operator is based on the window operator
α which defines the neighborhood around some given vertex i in a profile.
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Figure 4.4. Recursive attraction of a handle q towards a manipulator p is shown. The
parameter λ ∈ [0, 1] defines the rate of convergence and is akin to the smoothing constant
in single exponential smoothing.
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With seed displacements defined on selected vertices of the profile, we compute a

smooth deformation and apply it to the profile (see Figure 4.2). Let γ := {(hi, ri)} be

the discrete profile curve as given in (Equation (4.1)) and K ⊂ [1, n] define a set of se-

lected vertices in γ. Given a set of seed displacements on the vertices in K, our goal is to

determine the displacement of all other vertices so as to preserve the smoothness of γ. To

achieve this, we first initialize a seed displacement curve δ (such that δi = 0∀i < K) and

iteratively apply discrete Laplacian smoothing, L(δ) = 0, (Equation (4.4)) with Neumann

boundary conditions. The deformed profile is then obtained by setting ri ← ri + δi, ∀i.

The derivatives at the boundary are set to zero, i.e, the radii at the boundary sections of the

pot are the same as the radii at their neighboring sections. We use inverse edge weights to

determine the non-diagonal elements of L (Equation (4.5)).

Li, j =



−1, |i − j| = 0

1, |i − j| = 0, i ∈ {1, n}

wi, j, |i − j| = 1, i < {1, n}

0, otherwise

(4.4)

wi, j =
l j∑

k∈K

lk

(4.5)

K = {k : |i − k| = 1}

In order to deform the profile in a smooth manner, we begin by defining W to be a set of

all contiguous subsets in [1, n]. Note that a single section i ∈ [1, n] and the whole set [1, n]

trivially belong to W. Subsequently, we define a mapping α : W → W as given in Equation

(4.6). Given a section i, it is clear that α(i) determines the window of sections above and

below the section i, which are subject to Laplacian smoothing (Figure 4.3).
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α : {i . . . j} 7→ {max(1, i − α) . . .min(n, j + α)} (4.6)

α ∈ N

i, j ∈ [1, n]

Thus, for a given seed displacement δ(t), the deformation of the profile can be controlled

using parameters, namely the window operator α and a parameter β ∈ N specifying the

number of iterations for Laplacian smoothing. Note that a single point manipulator will

instantiate a smooth but local deformation as should be expected in a typical real-world

scenario - a thin tool creates a thin impression. However, we aim to allow for both global

and local deformations. In our case, note that a manipulating object is a point-sampled

surface. Thus, global deformations naturally occur due to the combination of window

operators for spatially proximal manipulators.

4.3.3 Attraction

We define attraction as a continuous temporal response of the pot profile to the prox-

imity of a given manipulator. The main step towards the definition of attraction is one

involving initializing the seed displacement. For a discrete pot profile curve γ and a han-

dle i, the idea is to attract a handle towards its corresponding manipulator by a fraction of

distance between them (Figure 4.4). Our idea is inspired by exponential smoothing [125].

Given a parameter λ ∈ [0, 1], we converge the handle towards the manipulator over time

in a smooth manner (Figure 4.5). Note that this parameter, when constant, is analogous to

the smoothing constant in single exponential smoothing. Similarly, a temporally varying

parameter λ = λ(t) ∈ [0, 1] is analogous to adaptive exponential smoothing. We call λ the

attraction parameter.
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Figure 4.5. Algorithm for the application of proximal attraction to a discrete profile curve
of the pot for one manipulator.

4.3.4 Pushing vs. Pulling:

Generally, a deformation to any given shape can either be inward (push) or outward

(pull). The exact characterization of the deformation (shape, size, and location) is subject

to the type of contact that is maintained on the deforming object. Along similar lines, our

modeling technique has three general responses to a user input, namely push, pull, and no

response. The goal is to recognize which of these represents the response to the actual

intent of the user without asking the user to remember any prescribed rule (for instance, a

button press or a static hand gesture). Note that the recognition of intent for “no response”

is important, since it represents the robustness to accidental user input in cases when the

user wishes to take rest or explore other features in a given modeling interface.

A push is characterized by an inward displacement i.e. when δ̂H
i < 0. This is the

simplest case wherein a user would typically approach the pot and subsequently recede

away once the desired deformation has occurred. A pull is characterized by an outward

displacement i.e. when δ̂H
i > 0. This is a non-trivial intent to recognize since a user

would invariably approach the surface first and then recede to pull. The overall motion of

the hand is similar to that of a push. However, unlike a push, a pulling action typically
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involves the articulation of hands so as to grasp the surface that is being deformed. In order

to account for grasping actions in pulling tasks, we defined the attraction parameter as a

smooth function given by λPe−A(δ̂N
i )2

(Figure 4.7. Here, A defines the rate of decrease of the

function with respect to δ̂H
i and δ̂N

i is the normalized horizontal distance of a manipulator

from a given section of the pot, given by:

δ̂N
i =

δ̂H
i

δ̂H
max − δ̂

H
min

(4.7)

∀i such that: δ̂H
i > 0

Our initial experiments showed that the normalization of δ̂H
i allowed us to standardize

the design of bandwidth A. Also, λP is the maximum rate of pulling (for δ̂H
i = 0).

4.3.5 Accidental Deformation:

Periods of rest, reflection, and accidental hand movements can sometimes lead to un-

intended deformations. We propose a temporal approach for avoiding accidental or unin-

tended deformation of the pot by allowing for the pot to deform only when contact with the

pot is maintained for a sufficient amount of time. We employ adaptive exponential smooth-

ing to achieve this wherein we vary the attraction parameter λ according to a monotonically

increasing function of time with a bounded range, i.e. a fixed duration of time T . Note that

the same approach is also applicable to λP. In this work, we implemented a linear function

to determine λ as follows:

λ(t) = max
( t − T0

T
λ̃, λ̃

)
(4.8)

Here, λ̃ and λ̃P represent pre-defined maximum values of the attraction parameters for

push and pull respectively; T represents a pre-defined duration of time taken for λ to vary

from 0 to λ̃ from the starting time T0. The idea is to reset λ for every initial contact made
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Figure 4.6. An illustration of proximal attraction for hand PCL-based deformation is shown.

with the pot and linearly increase it to a maximum prescribed value within a stipulated

duration of time.

Given a handle vi, j ∈ Ci and its corresponding manipulator µ(t,p), the application of

attraction translates to defining the increase or decrease in the radius of Ci such that vi, j

converges to the µ(t,p) (Figure 4.6). The rate at which this convergence takes place is

decided by the parameter λ as represented by the following equation:

vi, j ← λvi, j + (1 − λ)(δ̂H
i bi, j) (4.9)

δ̂H
i = |〈bi, j,p − vi, j〉|

bi, j =

[
− sin(

2 jπ
n

), 0,− cos(
2iπ
n

)
]T

Using Equation (4.9), the seed displacement and the corresponding section transforma-

tion are given by Equation (4.10). Note that δ̂H
i is a signed displacement and can take both

positive and negative values for outward (pull) and inward (push) displacements respec-

tively.

Ci ←

(
ri + δH

i

ri

)
Ci (4.10)

δH
i = λδ̂H

i



64

i

j

0ˆ H

0ˆ H

Push Pull 

H

i
ˆ

  H

j

AP
N
je 

 ˆ
2ˆ

Figure 4.7. The intent for push and pull can be disambiguated by the identifying the shape
of a manipulating object even when the overall motion is similar (top row). We apply
outward attraction on the profile in terms of a smooth function decreasing with respect to
the distance between that manipulators and the handle (bottom row).
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4.4 Guidelines for Controllability

The controllability of our deformation method is affected by two factors: (a) the dispar-

ity between what a user intends for the shape to be and what the shape actually becomes

after the deformation, and (b) the responsiveness of the deformation. The goal is to mini-

mize the disparity and optimize the responsiveness. Here we investigate parameters which

affect the deformation behavior and responsiveness of the interaction as described below.

We can define proximal attraction by the set of parameters as P(εC, εP, λ̃, λ̃
P, A, λ(t),T )

wherein the first two parameters characterize proximity and the last three parameters char-

acterize persistence. Combined with α and β described in section 4.3.2, we define defor-

mation parameters denoted asD(α, β).

4.4.1 Sampling and Resolution

From our deformation strategy, it follows that our approach is affected by the density

of points in the manipulating object and the resolution of the pot mesh (defined by m and

n). Note that the maximum point density in the manipulating object is dependent on the

resolution of the depth camera. Thus, we define the pot resolution such that the hand or

tool PCL’s are densely sampled in comparison to the pot. The rationale is that the sparsity

of the hand or tool PCL will result in undesired effects when the user intends a global

deformation.

4.4.2 Deformation Parameters (D(α, β))

The window operator defined by α primarily decides how local the deformation will

be for a single point manipulating object. Larger values of α result in global deformation.

This parameter is also a factor in producing global deformations for a manipulating object

with several points. The parameter β affects responsiveness. Recall that we apply Neu-

mann boundary conditions for Laplacian smoothing of the deformation curve which is an

open 1-manifold. Thus, applying the Laplace operator selectively near an internal section
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(i.e. a section not at the profile boundary) for a reasonably large amount of time (i.e. in-

creasing β sufficiently) would make the deformation converge to zero making the profile

non-responsive to any deformation.

4.4.3 Attraction Parameters (P(εC, εP, λ̃, λ̃
P, A, λ(t),T ))

These parameters specifically affect the responsiveness of deformation. Assuming λ(t)

to be a constant function, the attraction parameters λ̃ and λ̃P are directly proportional to

responsiveness. The parameter A defines the bandwidth of the exponential function for

pulling. Lower values of A will distribute the rate of pull along the profile while higher

values will lead to localized pulling at the points of contact on the pot. Low values of the

proximity threshold εP require precision from the user while deforming the pot. Higher

values require the user to recede from the pot at higher speed once a desired deformation

has been achieved. The value for εP is decided based on the geometric properties of the

modeling scene, the size of the pot and size of the hand. Finally, the parameter T signifies

the amount of time required for the pot deformation to vary from being completely non-

responsive to optimally responsive. Higher values of T would require the user to maintain

contact for a longer time, thus making the deformation under-responsive.

4.5 Implementation

We explore our approach with two depth sensors to obtain such an input, as described

below.

4.5.1 System Description

Our system setup consists of a ThinkPad T530 laptop computer with Dual Core CPU

2.5GHz and 8GB RAM, running 64 bit Windows 7 Professional with a NVIDIA NVS

5400M graphics card, a depth sensor (such as a SoftKinetic DS325 sensor or a Leap Motion

Controller). The placement of the depth sensor varies according to needs (Figure 4.8). Our
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Figure 4.8. The overall setup consists of a computer and a depth camera. We implemented
our approach using two such cameras, SoftKinetic DS325 and the Leap Motion controller.

applications were developed in C++ and openGL with the openGL Shading Language

(GLSL). We implemented two instances of our pottery application using the two different

depth sensors, namely Leap Motion controller and SoftKinetic DS325 sensor.

SoftKinetic DS325 is a close range (0.1m-1.5m) time-of-flight depth sensor that pro-

vides a live video stream of the color and depth image of the scene. Every pixel on a

given depth image can be converted to a 3D point using the camera parameters. We use the

DepthSense™SDK to obtain the depth-map of the scene. Our first step was to segment the

hand from the scene based on a depth threshold. We then convert the segmented depth map

to the PCL of the hand using the camera parameters. This is akin to using a pre-defined a

volumetric workspace as the active region in front of the computer screen.

Since the main data provided by the sensor is a depth map, several image processing

algorithms can be applied to extract skeletal and boundary points as we will demonstrate

in future sections (see Figure 4.9). Leap Motion provides a skeletal representation of the

hand comprised of the palm and fingers. We used this device to implement virtual tools,

with each tool defined by a prescribed set of manipulators. We used the palm position and

orientation, provided by the Leap SDK, for tool manipulation.
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Figure 4.9. The depth sensing module for SoftKinetic involves the segmentation of hand’s
depth image from the full depth image using the DepthSense SDK. This is followed by
optional image processing steps for skeletal and boundary images, and subsequently the
segmented depth image is converted to a PCL using camera parameters.
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4.5.2 Interface

Our interface comprises of an integrated 3D scene with a rotating pottery wheel, a set

of shaping tools overlaid on natural outdoor background. In our pottery application, we

combine three spatial interactions, namely, (a) 3D environment navigation though interac-

tion space partitioning and 3D camera transitions , (b) robust tool selection using cylindrical

zoning, and (c) gesture-free shaping interactions using proximal persistence. The interfaces

for the two depth sensors, are similar in appearance. However, we designed additional in-

teractions for tool selection for our Leap motion version.

4.5.2.1 Leap Motion Controller:

We partitioned the 3D scene into three distinct interaction spaces for unambiguous in-

teractions (Figure 4.10). Each of these partitions, when active, map to the interaction space

of the Leap Motion device. This allows for precise hand-motions in real space and con-

strains the user’s focus to the active area. The user can freely transition between the spatial

partitions by moving towards the right or left extremities of the Leap motion device. The

potter’s wheel partition is the main workspace wherein a user can shape the pot by modi-

fying the lump of clay into a pot. The right and the left partitions represent the shaping and

decoration tools respectively.

4.5.2.2 SoftKinetic:

The interface for SoftKinetic is simpler in that we did not need to use any tool selection

interactions. Thus, this interface consists of the whole 3D scene without any spatial parti-

tions. The user sees only the potter’s wheel and a PCL representation of their hands, or the

tools held in their hands.
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Figure 4.10. Our interface consists of active partitions of the total interaction space where
each partition is associated with a virtual camera. Cameras C0, C1, and C2 correspond to
the pottery wheel, tool-set 1, and tool-set 2 respectively. User’s motion towards the left
or right extremity results in camera transition and a subsequent re-mapping of the users
physical interaction space to the active partition. The selection of tools is based on a dwell-
time strategy.
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Figure 4.11. Attraction parameters identified with sufficiently-responsive deformation were
applied for skeletal (left), boundary (middle), and hybrid (right) PCL’s of the hand. While
the boundary and hybrid PCL’s are generally more controllable, the skeletal PCL shows
better controllability for local-pulling tasks.

4.6 Results

In this section, we will discuss and demonstrate three use cases for our approach,

namely (a) hand, (b) physical tools, and (c) virtual tools. For the first two cases, we fur-

ther explore multiple modes of sampling such as (i) full PCL, (ii) boundary PCL, and (iii)

skeletal PCL. Based on the designed interaction space, we fixed the pot to be 0.6 units in

length with radius in the range [0.1875, 0.3125]. Further, we fixed the resolution of the pot

by assigning m = 314 and n = 100, i.e. the difference in height between each section is set

to 6×10−4 units. After spatial mapping and PCL scaling, the average distance between two

neighboring points in the PCL were observed to be 2 × 10−3, 4 × 10−4, and 1.5 × 10−3 units

along x, y, and z directions respectively. The deformation thresholds were set as εC = 10−8

εP = 0.1. Our deformation parameters D(α, β) were set to D(5, 50). This is based on

experiments we conducted for the chosen pot resolution.

4.6.1 Hand and Physical Tools

The proximal attraction approach involves several parameters (section 4.4) which must

be appropriately determined in order to design controllable interactions with our interface.

Thus, our first step was to study the effect of attraction parameters (λ̃, λ̃P, A, and T ) on
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Figure 4.12. Three use cases are shown for using day-to-day physical objects (left - kitchen
knife, middle - mobile phone, and right - CD-case ) as shaping tools.

the intuitiveness and responsiveness of the pot deformation process. We note that effect

of these parameters are not independent. Thus, an exhaustive study of all combinations is

prohibitively difficult. We conducted an informal pilot study where participants used our

system with six set of parameter combinations. Here, the ranges of parameters were:

• 0.1 ≤ λ̃ ≤ 0.4

• 0.1 ≤ λ̃P ≤ 0.4

• A ∈ {0.5, 1.0, 1.5, 2.0, 2.5}

• T ∈ {0.5, 1.0, 1.5, 2.0, 2.5}

The general trend we observed is that λ̃P > λ̃ and A < 2.0 resulted in uncontrollable

pulls. We also found that despite sufficient responsiveness, the deformations were unsta-

ble for T < 1.5 seconds, in that they alternated between inward and outward directions.

We believe this to be a consequence of the Laplacian smoothing parameter β. Our final

parameters provided by user’s feedback were λ̃ = 0.3, λ̃P = 0.1, A = 2.0, and T ∈ 1.5.

These values worked well for boundary and skeletal PCL of the hand (Figure 4.11). Use

of physical tools proved to be more stable in comparison to the hand (Figure 4.12). This,

we believe, can be attributed to the highly articulated nature of hand-based manipulations

in comparison to the relatively rigid PCL obtained from the tools.
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Figure 4.13. A variety of virtual tools are shown with their respective deformations on the
pots.
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Figure 4.14. The results of the pot composition are shown Pots were created by participants
using our full hand PCL-based interface.

4.6.2 Virtual Tools

Based on parameters determined from our experiments, we implemented virtual tools

using the Leap Motion (Figure 4.13). In this case, we constrained the deformations to be

purely inward. This was a design decision considering the typical use of tools in real world

pottery. We implemented a smoothing tool wherein we did not associate any PCL with the

tool. This tool simply applies the Laplace operator on the profile of the pot itself. The use

of virtual tools lends itself to rapid conceptualization of several shapes. To demonstrate

this, we created a virtual chess set (Figure 4.14) where each piece was created in less than

one minute, taking a total time of approximately six minutes to create all the pieces.

4.6.3 Efficiency

The main cause of computational bottleneck is the need to determine handles corre-

sponding to each manipulator. This can be a major cause of disruption and dissatisfaction

for users. For arbitrary meshes, the typical solutions in such a case would be to use spatial

hashing or the GPU. In our case, however, the SHGC representation of the pot eliminates
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Table 4.1. The times (millisec.) taken for the steps of our algorithm are shown for different
combinations of pot resolution and PCL sampling resolution.

Pot # Points # Handles Normal Pot-Pcl Deformation Sectional Total
Resolution in PCL Computation Map Computation Scaling Time
314 × 100 3524 51 4.0 12.5 0.06 0.36 17
471 × 150 3142 69 9.7 17.3 0.11 1.62 29
314 × 100 816 49 6.6 5.2 0.10 0.71 13
471 × 150 805 66 6.6 3.1 0.07 1.30 11
628 × 200 821 71 26.9 10.3 0.21 4.37 42
628 × 200 352 73 26.5 5.1 0.20 4.33 36
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Figure 4.15. Pots that were created by young participants using our Leap-based interface.

the need to use any such special method. For a pot mesh S (Pn,m), the worst case complexity

to determine handles for k manipulators is O(k(n+m)). This is attributed to the fact that the

computation of a handle vi, j is sequentialized in first finding the closest section (i.e. i) based

on only the heights of the manipulators and sections, and then finding the closest vertex per

section (i.e. j). We experimented with different pot and hand PCL resolutions and found

that the total time taken for a pot with 314 × 100 vertices deformed by a hand with 3524

manipulators was about 17 ms. Increasing the pot resolution to 470 × 150 vertices resulted

in a total time of 29 ms for 3142 manipulators on the hand (see Table 4.6.2). Given that the

average frame-rate for SoftKinetic is 60 Hz, our computational efficiency is well within the

required range for an interactive design application.

4.7 User Evaluation with Virtual Tools

In this study, we wanted to evaluate how well our method allows young users to rapidly

conceptualize shapes through direct spatial interactions. In order to do so, we wanted to

provide the users with a simpler and finite set of deformation tools for pottery. Thus, we

used the virtual tools implemented using the Leap Motion controller (section 4.6.2).

This study was conducted as an informal workshop wherein we invited twelve young

participants studying in fourth, fifth, and sixth grades. We introduced our application and

demonstrated the interactions. Following this, all participants were asked to create as many
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pots as possible in a duration of ten minutes as in the pot composition task. Figure 4.15

shows the pot concepts brainstormed by each participant during the pot composition task.

4.8 Discussion

4.8.1 Three-Dimensionality

There is no limitation in the method which restricts a user from manipulating the pot

from any direction, as demonstrated in our results. However, we observed that the use of

2D displays is a factor, due to which users tended to use side configurations. We believe

that 3D visual feedback would encourage users to access the front and back faces. Further,

hand skeleton tracking provided in the Leap API is not sufficiently robust to use in front

configurations due to occlusions. Our PCL-based method works for hand configurations

where gesture recognition and skeleton tracking will fail.

4.8.2 Limitations

We see four limitations with our current approach. First, severe occlusion resulting from

camera position and hand orientation is a problem particularly for skeleton-based gesture

recognition. We partly addressed this challenge using our PCL-based approach which can

make use of partial data even when the full hand skeleton is intractable. However, occlu-

sion is an inherent problem in any camera-based method. Investigation of optimal camera

position and the use of multiple cameras at strategic locations is important. Secondly, we

provided a method for temporally adaptive persistence. However, this does not take the

structure of the hand or the geometry of the physical tool into consideration. For instance,

the optimal attraction parameters for the palm may be different from those of the fingers be-

cause of the nature of hand articulation. Hence, spatially adaptive estimation of attraction

parameters needs further attention. Thirdly, in our current implementation, the definition

of window operators is in terms of 2D profile topology, rather than actual distances in

real space. Thus, our implementation is dependent on PCL sampling, relative to the mesh



78

resolution of the pot. Independence from the sampling resolution may be achieved with

an adaptive approach wherein new sections could be added according to manipulators, or

old ones removed based on geometric properties of the pot profile such as curvature. Fi-

nally, we observed that our method gives plausible outcomes for different representations of

manipulating objects such as full, boundary, and skeletal PCL. The performance and con-

trollability in each of these modalities may differ according to the context and the user’s

intent. A method to determine the optimal modality for each modeling task requires further

investigation.

4.9 Conclusions

In this chapter, we demonstrated that it is possible to tailor a geometric modeling

method to suit the needs of controllable spatial interactions that use hands and finger mo-

tions for 3D shape modeling. We make two main contributions. First we demonstrate, with

a practical implementation, that it is possible to achieve controllability in bare-hand mid-air

shape deformation using unstructured PCL data of the user’s hand. We describe a method

that does not compute any finite set of gestures or hand skeleton. Instead, our method uses

the actual shape of the user’s hands for deforming the shape of a pot in 3D space. This

directly allows a user to shape pots by using physical objects as tools.

Intent disambiguation, user experience, and computational efficiency are affected by the

representation of shapes, the modeling technique, and hand representation. Our approach

allows for the accommodation of different representations of the hand, ranging from dis-

crete gesture-classes to kinematic hand models. A comparative investigation of different

hand representations as well as traditional interactions would provide a comprehensive

understanding of controllability of the shaping process. The augmentation of geometric in-

formation, such as normals to the PCL, may provide valuable insights on the articulation of

hands and allow for determining parameter combinations adaptively based on the motion

of the hands. Works by Rosman et al. [126,127] provide frameworks for motion segmenta-

tion of point clouds and demonstrate specific examples related to hand segmentation were



79

demonstrated. Augmentation of such frameworks with our technique could lead to several

novel interaction mechanisms.

At its core, proximal attraction is a general notion which can be instantiated in a vari-

ety of ways by combining different hand representations with different shape representa-

tions and modeling metaphors. It will be interesting to investigate methods which could

automatically deduce appropriate hand representations for different modeling metaphors.

With upcoming mid-air geometric design applications, achieving simultaneous efficiency,

robustness, and controllability is a challenging problem towards enhancing the user’s cre-

ative process and outcome. We believe that proximal attraction takes a fundamental step

towards problem.
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5. HAND GRASP & MOTION FOR MID-AIR SHAPE DEFORMATION

So far, we have detailed two approaches, namely SGC-I and proximal attraction, for trans-

forming human action into design intent. First, we described the SGC-I framework wherein

the intent was modeled as a combination of arm motion and a finite set of symbolic hand

gestures. The aim was to contextualize this intent with respect to the geometric content that

the user intended to create, modify or manipulate. Subsequently, we generalized the no-

tion of shape deformation through proximal persistence wherein we demonstrated the use

of point-sampled representation of hands to interact with 3D shapes. Here, the main idea

was to embed the users’ understanding of a real-world shaping process within the virtual

interactions for shape modeling. In particular, we considered pottery as a creative context

to instantiate the proximal persistence approach.

We note that the two approaches provide fundamentally different modes of interactions

with 3D geometry. On one hand SGC-I can be viewed as a state-based approach wherein

an hand-based modeling application could be designed by a finite set of pre-defined as-

sociations between geometric objects and processed user inputs such as gestures. On the

other hand, proximal attraction captures the notion of spatio-temporal continuity of hand-

to-shape interactions by making use of raw user-inputs such as point clouds.

In this chapter, we will extend the idea of proximal attraction (presented in Chapter 4)

by investigating how design intent can be deduced for shape deformation by determining

the user’s hand grasp and motion on a given shape. Our broader goals are to (a) identify

aspects of real-world interactions that can be emulated in free-form 3D shape deformation,

(b) understand the expression of design intent in shape deformation in terms of the user’s

hand grasp and motion, and (c) design an interaction that integrates the geometric infor-

mation in user’s actions with shaping operations in virtual space. To this end, we design,

implement, and evaluate a method for geometric characterization of the contact made by the

hand’s point-cloud (PCL) on the surface model of a shape. Our approach uses the kernel-
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density estimate (KDE) of the hand’s PCL to extract the grasp and motion for deforming

the shape of a pot in 3D space.

For the sake of completeness, we will present the complete evolution of our algorithm

in three stages of iterative design (section 5.2.3) that have been described in detail in Chap-

ters 3 and 4. At the end of each stage, we will describe a user evaluation that informs

the algorithm development of the subsequent stage. Our evaluations help reveal two core

aspects of mid-air interactions for shape deformation, namely, intent & controllability. We

characterize user behavior in pottery design in terms of (a) common hand & finger move-

ment patterns for creating common geometric features, (b) user perception of intent, and

(c) engagement, utility, and ease of learning provided by our approach.

5.1 Related Works

5.1.1 Mid-Air Gestures

Gestures can be designed effectively for pointing, selection [128, 129], and navigation,

since they define an unambiguous mapping between actions and response. Such tasks

are implemented using deictic gestures [130] and can usually be segmented into discrete

phases, with each phase triggering an event or a command [120]. Pointing in the direc-

tion of a virtual object creates the association between the user and the object. A recent

study [123] shows dwell-time to be an effective method of pointing and selecting objects

without hint to the users. In manipulative tasks such as ours, a direct spatial mapping is

required between the user’s input and the virtual object [130,131]. Particularly in our case,

such an association would be in terms of the proximity of the user’s virtual hand to the

shape being deformed.

5.1.2 Mid-Air Virtual Pottery

Work specifically related to virtual pottery using direct hand manipulations has in it-

self made a niche within the hand-based modeling paradigm. One of the earliest works we
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found is by Korida et al. [106] wherein the authors describe a 3D stereoscopic display based

interface which allows users to create pottery with their hands by wearing two-handed in-

strument gloves. Han et al. [95] proposed an augmented reality (AR) based pottery system

for realistic pottery experience. Lee et al. [110] proposed a haptic interface for creating

realistic pottery experiences using the PHANToM Omni device. Cho et al. [115] presented

Turn, a system which augmented a tangible interfaces like a wooden table with 3D hand

based virtual sculpting to create digital pottery using the Kinect. They used volumetric ge-

ometric representation based on the well known virtual sculpting [132] using the marching

cubes method. Han and Han [117], demonstrated an interesting surface-based approach

with particular focus on audiovisual interfaces for creating 3D sound sculptures.

5.1.3 Hand Grasp

Prehension is a common phenomenon in real-world interactions. Jeannerod [133] notes

two functional requirements of finger grip during the action of grasping, (a) adaptation of

the grip to the size, shape, and use of the object to be grasped and (b) the coordination

between the relative timing of the finger movements with hand transportation (i.e. whole

hand movements). Intended actions strongly influence motion planning of hand and finger

movements [134]. This suggests that the intent for deformation can be recognized before

the user makes contact with the surface being deformed. Grasp classification [135] and

patterns of usage and frequency [136] have been integral to robotics research. Literature

in virtual reality [137, 138] has studied and implemented grasping in the context of object

manipulation (pick-and-place). Kry et al. [113] implemented a novel hardware system to

emulate grasping for desktop VR applications such as digital sculpting. It is worth noting

that the primary methodology for investigating grasp taxonomies is mostly derived from the

geometry of the hand in relation to a physical object that is held or manipulated by the hand.

What we aim to do is to understand what is the minimal and sufficient characterization of

the user’s hand and finger movements, that could be used for mid-air deformation. Our
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goal is not to explicitly detect the hand grasp, but to design a deformation approach where

the grasp is automatically and implicitly taken into consideration.

5.2 Overview

5.2.1 Intent & Controllability

The general term intent is literally defined as “the thing that you plan to do or achieve

: an aim or purpose”. In our case, intent (what one wants to achieve) can be described in

terms of the context of shape deformation (what operations one can perform on the shape).

Based on Leyton’s perceptual theory of shapes [139], Delamé et al. [140] proposed a pro-

cess grammar for deformation by introducing structuring and posturing operators. Here,

structuring operators involve adding/removing material to the shape, while posturing oper-

ators allow for modifications such as bending or twisting some portion of the shape. Since

our context is that of deformation, we define the intent in terms of two basic operations:

pulling and pushing. These are analogous to structuring operators.

We see controllability as the quality of intent recognition and disambiguation as per-

ceived by the user. Specifically, in our context, controllability is defined as a function of

two factors: (a) the disparity between what a user intends for the shape to be and what the

shape actually becomes after the deformation and (b) the responsiveness of the deforma-

tion. The goal is to minimize the disparity and optimize the responsiveness.

5.2.2 Rationale for Pottery

We have two goals in this paper. First, we seek a concrete geometric method that takes a

general representation of the user’s hand (PCL) and allows the user to deform 3D geometry.

Second, we want to investigate this geometric method in light of intent and controllability.

Thus, our focus here is not to build a comprehensive and feature-rich 3D modeling system.

Instead, we intend to investigate spatial interactions for 3D shape deformation with an

unprocessed representation of the hand.
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Our broader motivation in this work is to cater to the creative needs of individuals that

are inclined towards 3D modeling and design and but do not have the expertise require for

working with design tools. With this in view, we use pottery as our application context

for two reasons. First, it offers a well-defined and intuitive relationship between the use

of hands and the shaping of pots to a user. This allows us to concretely construct a geo-

metric relationship between the shape of the hand PCL and the corresponding user intent.

Secondly, the simplicity of the geometric representation and deformation lends itself to

quantitative measurement of the user’s response to our system.

5.2.3 Evaluation Approach

Given the context of pottery, our approach involved the following three stages:

Stage 1: Using hand as one-point manipulator, we implemented proximal-attraction, an

interaction technique for clutching and de-clutching without hand gestures. Our technique

(section 5.3) generalizes the notion of dwell-time in the context of mid-air shape defor-

mation. We conducted a preliminary study to evaluate the feasibility and effectiveness of

this technique.

Stage 2: We extended the proximal-attraction1 method to the whole shape of the hand

(section 5.4). Here,the hand was represented as a collection of multiple points (i.e PCL)

obtained via a depth sensor. Each point in the PCL deformed a small local region on

the pot using the proximal-attraction approach. On the whole this amounted to a gradual

and progressive convergence of the pot-profile to the shape of the user’s hands. Through

experimentation, we found that users had significant difficulty in creating convex (pulling)

and flat (fairing) features on the pot. This method was also found to be agnostic to the

user’s grasp and hand movements.

Stage 3: Based on our experiments, we implemented our final technique for pot deforma-

tion using hand PCL (section 5.5). We used kernel-density estimation to characterize the

1The technical details of this approach were provided in Chapter 4
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contact between the hand and the pot. This allowed us to classify the users’ intent to push,

pull or fair the surface of the pot depending on the hand grasp, finger movements, and mo-

tion of the hand on the pot’s surface. We conducted a final user evaluation to investigate

the efficacy of this approach.

5.3 Hand as a Point: Clutching by Proximal Attraction

In the first stage, we developed a method wherein the hand is represented as a single

point manipulator, as is the case with many gesture-based methods. The main goal was to

allow users to deform the surface the of pot without using hand gestures for clutching and

de-clutching the pot.

5.3.1 Technique

Let h be the location of the hand in 3D space and p be the point on the pot that is closest

to h. The main idea of proximal-attraction is to deform the pot gradually by attracting p

towards h in the horizontal plane. The condition of proximity is that the distance between

h and p should be less than a pre-defined threshold (say ε). We implement the approach in

the following steps:

1. Given h and A, compute p

2. if(‖h − p‖ < ε)

(a) Set δ to horizontal distance between h and p

(b) Set attraction at p to αδ

(c) Compute smooth deformed profile using Laplacian smoothing (∇2δ = 0 for all

points in A)

3. Rescale pot sections

Here, α ∈ [0, 1] is the rate of attraction where α = 0 implies no attraction and α = 1

implies maximum attraction. Our idea is inspired by exponential smoothing [125]. The
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Figure 5.1. Algorithm for one-point pot deformation is illustrated for proximal-attraction.
The pot is gradually deformed by attracting the profile towards the hand (represented by a
point). Subsequently, each section is re-scaled to obtain the deformed pot surface.

Grab & Pull Release 

a. Gesture based deformation 

b. Proximal Attraction 

Figure 5.2. Two strategies are shown for clutching and deforming a pot using hand as a
single point. In the first approach (a) grab and release gestures. The second (b) is the
proximal-attraction approach.

main step was to determine the right balance between the rate of attraction and the distance

threshold. The responsiveness of deformation is directly proportional to both, attraction

rates and distance threshold. From our pilot studies, we found α = 0.3 and ε = 0.05 to be

the optimal values. Here, the distances are in the normalized device coordinates. In our

current implementation, we pre-defined the active region A to be 50% of the total profile

length.
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UserScreen

Figure 5.3. An example of common behavior is shown wherein users shaped their hands to
express their intent for deformation.
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5.3.2 Preliminary Evaluation

Our main goal was to examine the feasibility and effectiveness of the proximal-attraction

approach for pot shaping in terms of user performance and behavior. We also wanted to

determine the differences between our method and a typical gesture-based approach. Addi-

tionally, we wanted to understand the reception of a creative application such as pottery for

a wide variety of participants - particularly those without prior knowledge of CAD tools.

For this, we conducted a two-day field study 2 in an exhibition setting.

5.3.2.1 Apparatus

Our hardware setup consisted of a ThinkPad T530 laptop, a 60” display, and the Mi-

crosoft Kinect camera. The Kinect camera was placed on a tripod below the display facing

a user standing at a distance of around 1.5 − 2.0 meters from the display. Our pottery

prototype was developed in C++ and openGL.

5.3.2.2 Implementation

We implemented two versions of our pottery application, one using mid-air gestures

and the other based on the proximal-attraction approach. We first obtained the position

of the hand using the skeletal tracking algorithm provided by the openNI API. Owing to

the nature of the venue, the study was not conducted in a controlled environment leading to

disturbances in skeletal tracking, posture recognition, and ambient noise. Thus, appropriate

measures were taken to isolate the user from the audience.

The gesture-based prototype uses two simple hand postures, grab and release, which

correspond to closed and open palms respectively (Figure 5.2(a)). We used the random

forest algorithm for posture recognition as detailed in [141]. The grab and release postures

allowed the user to clutch and de-clutch a certain region of interest on the pot. The user

could create concave and convex profiles of the pot by grab-and-push and grab-and-pull

2MakerFaire, Bay Area (2013)
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Table 5.1. Behavioral observations in our preliminary evaluation.

Age Value Behavior

5-10 Fun, Excitement,
Play Random hand movements

11-15 Entertainment, Controlled movements,
Education Explored tool features

16-30 Entertainment, Controlled movements,
Art, Education Investigated pot behavior

30-60 Entertainment, Controlled movements,
Meditative Expected real-world like response

actions at the desired location of the pot surface in 3D space. In the second prototype, we

implemented our proximal-attraction technique (Figure 5.2(b)).

5.3.2.3 Participants & Procedure

Participants within a wide age range (5-60 years) were invited to use our pottery proto-

type wherein, the task for each participant was to create a pot as per the participant’s liking.

Although we did not carry out a formal demographic survey, we found that the participants

were from a variety of backgrounds including non-technical users, engineers, designers,

artists, and professional potters. Our evaluation was mainly informal and observational

wherein we recorded videos of sessions subject to the participant’s permission and the time

taken to complete the creation of a pot. Due to the nature of our venue, we constrained the

maximum time for each participant to about 8-10 minutes.

A total of 360 participants responded to our invitation and used our prototype to create

pots. In the first session (day 1), 180 participants used the prototype implemented using

the grab and release gestures. In the second session (day 2), 180 participants used the

proximal-attraction technique for pot deformation. There were participants that were either

completely unable to create any meaningful shape of the pot or did not find the resulting

shape as the intended one. These attempts we removed from our database leaving us with

the recorded times for 113 participants per session (i.e. 226 participants in total).
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5.3.3 Results

We categorized the perceived utility and user behavior during the use of the pottery

applications on the basis of age. Young participants (5-10 years) were mostly interested

in simply playing around with the application and usually applied arbitrary hand move-

ments during the deformation of the pot’s profile. Participants in the age range of 11-15

years provided more controlled movements of the hands during pot shaping with slower

and more careful hand movements and accurate hand gestures. They also adopted a more

exploratory approach towards the applications in that they were primarily interested in the

various software features rather than the realism in the pot’s deformation.

However, in case of participants above the age of 15, we observed that they instinctively

shaped their hands according to geometry of the pot on the screen. Specifically, users within

16 and 30 years of age were mainly interested in investigating how the gesture and motion

of the hand was related to the deformation of the pot. They would frequently expect the pot

to deform according to how they shaped and moved their hands on the pot’s surface. This

strongly suggested that the internal learning of physical interactions, combined with some

prior expectation of the pot’s response, increased with the participants’ age. In case of

the gesture-based approach, this was also a cause for intermittent gesture misclassification,

resulting in user frustration. Despite their simplicity, the grab and release gestures were

tedious to use while using virtual tools. This was mainly the case with participants who

were completely new to interfaces developed for RGBD cameras.

On the other hand, users found the proximal-attraction approach easier to learn and use.

The participants could immediately start deforming the pot, and at the same time they could

shape their hands as they saw fit. A common mental model that the users seemed to create

was that of a surface which “sticks” to their hands upon coming close. Thus, the users were

invariably slower while approaching the pot (so as to reach the right location) and retreated

faster when they wanted to release contact with the pot. For some users, fast retreat also

caused accidental deformation leading to frustration.
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Figure 5.4. Algorithm for pot deformation is illustrated for proximal-attraction. The profile
is deformed based on the proximity of the points on a given hand PCL. Subsequently, each
section is re-scaled to obtain the deformed pot surface.

5.3.4 Takeaways

The two main insights we gained were: (a) the intent for deformation directly translates

to how users shape their hand and (b) the rate of attraction for pulling and pushing must be

determined separately so as to make them consistent. We found that full-body interactions

caused significant fatigue and difficulty in controlling deformation. Thus, our subsequent

stages, we implemented interactions at close range wherein a user could perform pottery

sitting in front of a desktop or a laptop computer.

5.4 Hand as a PCL: Shaping by Proximal Attraction

Our main objective in this stage was to adapt the proximal-attraction method that could

use the shape of the whole hand to deform the pot. Thus, we used a representation of the

hand as a collection of multiple points (i.e PCL) obtained via a depth sensor3.

5.4.1 Technique

Consider the hand H as a set of points {hi} in 3D space. Each point in the PCL deforms

a small local region on the pot using the proximal-attraction approach. On the whole this

3See Chapter 4 for complete technical details
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amounts to a gradual and progressive convergence of the pot-profile to the shape of the

user’s hands (Figure 5.4).

5.4.1.1 Pushing vs. Pulling

A push is characterized by an inward displacement (δ < 0). This is the simplest case

wherein a user would typically approach the pot and subsequently recede away once the

desired deformation has occurred. A pull is characterized by an outward displacement

(δ > 0). This is a non-trivial intent to recognize since a user would invariably approach the

surface first and then recede to pull. The overall motion of the hand is similar to that of a

push. In order to distinguish pulling and pushing, we used two different rates of attraction.

For pulling, we defined the attraction rate as a smooth function of the distance between the

hand point and pot. The function is given by βeγδi . For pushing, we defined the rate of

attraction as α. This essentially allows the user to first approach the pot without deforming

it during the process of approach. The algorithm is as follows:

1. For each section i

Compute unique hi such that ‖hi − pi‖ < ε is minimum.

Set δi to horizontal distance between hi and pi

2. Set δr to δmax − δmin

3. Set γ to 0.1
δr

4. For each i on profile

if(δi < 0): Set attraction at pi to αδi

else: Set attraction at pi to βeγδiδi

5. Compute Active region A

6. Smooth deformation (∇2δ = 0 for all points in A)
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7. Compute deformed profile

8. Rescale pot sections

5.4.1.2 Initialization Time

In order to avoid accidental or unintended deformation of the pot, we implemented

an that allows for the pot to deform only when contact with the pot is maintained for a

sufficient amount of time. We achieved this in two steps. First, we reset α and β to 0 at every

new contact that the hand made with the pot. Subsequently, we linearly increase them to

their maximum values within a stipulated amount of time T . We call this the initialization

time. Intuitively, T is the time taken by the pot to gradually initiate the response to the

user’s hand after a contact is made.

5.4.2 Experiment

The main motivation behind our user evaluation was to understand was the relationship

between the design outcome (“what users want in the end”) and design process (“how they

want to get there”). In order to understand how users perceive and perform mid-air shape

deformations, we conducted a lab experiment to evaluate the proximal-attraction approach.

Our primary goals in this evaluation were: (a) to observe common and uncommon user

patterns during the shaping process in terms of hand grasp and (b) to get user’s feedback

on the effectiveness of controllability. The results of this experiment led us to develop the

final approach for characterizing grasp and motion for the deformation of pots. To cater

to these goals, we performed an observational and user perception analysis. In order to

support our observations and findings, we first wanted to characterize how well and how

fast users could create basic shape features using our proposed algorithm. To assess the

quality of shapes created by the users in relation to the time taken for creating the shapes,

we utilized an approach based on curvature cross-correlation. Below, we describe our

evaluation in detail.
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Depth Sensor User’s Hand 

b. Interface a. Apparatus 

Figure 5.5. The apparatus (a) consists of the user, a computer and a depth camera. The user
sees a PCL of their hand deforming a rotating pot (b).

5.4.2.1 Apparatus

Our setup consisted of a Lenovo ideaPad Y500 laptop computer with an intel i7 proces-

sor and 8GB RAM, running 64-bit Windows 8 operating system with a NVIDIA GeForce

GT 750M graphics card, and the SoftKinetic DS325 depth sensor (Figure 5.5(a)). SoftKi-

netic DS325 is a close range (0.1m-1.5m) time-of-flight depth sensor that provides a live

video stream of the color and depth image of the scene. Every pixel on a given depth image

can be converted to a 3D point using the camera parameters.

5.4.2.2 Implementation & Interface

After segmenting the hand from the scene, we use the SoftKinetic iisu API for tracking

the hand PCL. However, the tracking method provided in this API does not work with hand-

held objects - a feature that we required in order to allow users to utilize physical objects for

deformation. Thus, we used a pre-defined a volumetric workspace as the active region in

front of the computer screen. Our interface comprises of a 3D scene with a rotating pottery

wheel on natural outdoor background (Figure 5.5(b)). The user sees the potter’s wheel and

the PCL of their hands, or the tools held in their hands. We designed this interface based on
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a eb fc gd h

Figure 5.6. Eight pre-defined pots were shown to participants in the quiz. These are: (a, b)
thin convex and thin concave, (c,d) fat convex and concave, (e, f) round and flat, and (g, h)
flat at center and ends.

the guidelines provided by Stuerzlinger and Wingrave [142]. Finally, we provided keyboard

shortcuts to the allow the participants to undo and redo a particular deformation at any time.

Additionally, we also made provisions for the participants to reset the current shape to the

blank pot.

5.4.2.3 Participants

The participants of this evaluation comprised of 15 (13 male, 2 female) science and

engineering graduate students within the age range of 20 − 27 years. Out of the 15 partic-

ipants, 5 participants self-reported familiarity with mid-air gestures and full body interac-

tions through games (Kinect, Wii). Due to engineering background, most participants (12

of 15) reported familiarity with 3D modeling and computer-aided design. Incidentally, we

also had 3 participants who had prior experience with physical ceramics and pottery.

5.4.2.4 Procedure

The total time taken during the experiment varied between 45 and 90 minutes. We

began the study with a demographic surface where we recorded participants’ background

regarding their familiarity with depth cameras, full-body games, and pottery. Subsequently,

we provided a verbal description of the setup, the purpose of the study, and the features of

the pottery application. This was followed by a practical demonstration of the pottery appli-
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cation by the test administrator. The participants were then asked to perform the following

tasks:

P Practice: To get an overall familiarity with the interaction of their hands with the pot

surface, each participant was allowed to practice with our interface for a a maximum

time of three minutes. The participants were allowed to ask questions and were

provided guidance when required.

T1 Quiz: A pre-defined target shape was displayed on the screen and the participant was

asked to shape a “blank” pot so as to roughly match the most noticeable feature of

the target shape. We showed a total of eight target shapes in a randomized sequence

(Figure 5.6). The participants were allowed to undo, redo, and reset the pot at any

given time and for as many times as they required.

Q1 Questionnaire 1: Each participant answered a series of questions regarding the asso-

ciation of the deformation to the shape of the hand, responsiveness of the deforma-

tion, and consistency of pushing and pulling.

T2 Composition: The participants were asked to think of (and verbally describe) a set

of intended pot shapes and subsequently create those shapes using their hands. Al-

though the maximum duration of time for each shape was fixed to five minutes, we

allowed the participants to complete their last composition that was started before the

end of the specified duration.

Q2 Questionnaire 2: Finally, each participant answered a series of questions regarding

enjoyability, ease of use and learning. The participants also commented on what they

liked and disliked about the application, interface and interaction.

5.4.3 Metric for Quality of User Response

The main aspect that we sought from the Quiz was the quality of the final outcome

across participants for a given quiz problem. We also wanted to understand what features
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Figure 5.7. Curvature cross-correlation is used as measure of quality of user created pots.
Given the observed and target profiles (a), we compute curvature signatures (b), and sub-
sequently compute maximum correlation between the signatures (c). Notice the sensitivity
of the curvature signature (b) for a seemingly high visual similarity. In the example shown,
the profile of the observed pot are shifted upwards by 5 sections with respect to the target
pot.

C = (0.60, 3.69) 
Sp = 1.223 

C = (0.71, 3.05) 
Sp = 0.745 

C = (0.68, 1.94) 
Sp = 0.618 

C = (0.65, 2.26) 
Sp = 0.654 

(C = 0.51 ,3.58) 
Sp = 0.708 

C = (0.42, 5.17) 
Sp = 1.573 

C = (0.62, 2.61) 
Sp = 1.197 

C = (0.54, 3.07) 
Sp = 1.106 

Figure 5.8. User performance is shown for the each quiz problem as a bag-plot. The x-axis
is time in the range [0, 14] minutes and the y-axis is the curvature cross-correlation in the
range [0, 1]. The dark and light blue regions show the bag and fence regions, respectively.
The white circle is the Tukey depth median and the points marked with red circles are
the outliers. The insets show the actual pot profiles (black lines) created by the users in
comparison to the target shapes (beige region) of the Quiz. The coordinates of the tukey
median (C) and the spread (Sp) are provided for each target shape.
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were difficult for the users to create, i.e. a comparison of the final outcomes across fea-

tures. Thus, we sought to compare experimentally observed (user created) pot profiles with

respect to the target shapes (quiz problems). The requirements for our metric were: (a)

invariance to the shift between the features of the profiles along vertical and horizontal

directions and (b) sensitivity to capture small local dissimilarities across users. Thus, we

used curvature cross-correlation as a measure to compare the quality of user created pro-

files. We first compute the curvature signature of an observed profile wherein each point

on the signature is the curvature of a point in the profile (Figure 5.7(a)). Subsequently,

we compute the normalized cross-correlation [143] between the curvature signatures of the

observation with that of the ground truth (Figure 5.7(b)). The quality is then defined as

the maximum value of the correlation (Figure 5.7(c)). Since the signatures are normalized

before cross-correlation, the value of the measure of quality is in the range [0, 1]. Here,

higher values represent better quality (1 corresponding to perfect match and 0 no match).

5.4.4 Results

5.4.4.1 User Performance (T1)

Each user perceived and approached a given target shape; there was no observable cor-

relation between the time taken by each user and the quality (curvature cross-correlation)

of the final pot created by the user for any of the target shapes. Hence, we chose to rep-

resent the user performance as a bag-plot [144] (Figure 5.8), where the time taken and the

response quality are considered as independent variables. Rousseeuw et al. [144] state:

Like the univariate boxplot, the bagplot also visualizes several characteristics of the data:

its location (the depth median), spread (the size of the bag), correlation (the orientation

of the bag), skewness (the shape of the bag and the loop), and tails (the points near the

boundary of the loop and the outliers). In this section, we will identify notable aspects of

user response by looking at the location, spread, and skewness of the bag-plots for each of

the quiz questions. In the subsequent sections, our goal will be to report our visual obser-
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vations of user behavior and usage patterns across the different quiz questions based on the

bag-plot observations.

Users performed best for thin-concave and fat-convex targets with Tukey median values

of (3.80, 0.71) and (1.90, 0.69) respectively. In particular, the fat-convex case shows a

nearly vertical orientation indicating a strong correlation between the time taken and the

quality of response. The average time taken by users was highest for round-flat features

with significant variation in the quality. As expected, the thin-convex target feature was

difficult to shape. This is also shown by the large spread (1.223) and the Tukey median of

(0.60, 3.69). Contrary to our expectation, the top-flat-bottom-round feature (Figure 5.6(f))

was most difficult for the users to create, as indicated by the maximum spread (1.573) and

lowest Tukey median of (0.42, 5.17). Similar difficulty was observed in the central flat

feature (Figure 5.6(h)). The spread was consistently higher for all flat features (bottom

row of Figure 5.8) indicating that the key problem the users faced was due to the lack

of an explicit method for smoothing the surface of the pot. We found that the quality of

responses in relation to the completion time are closely linked to how the users perceived

correspondingly approached the shaping process. Below, we provide a detailed description

of how the measurements of the response quality and time are related to the behavior and

strategies of the users for approaching, grasping, and deforming the pots.

5.4.4.2 Hand Usage (T1)

Users generally preferred small finger level movements for thin features. For fat and flat

features, we observed that the users first formed a grasp according to the amount of defor-

mation required and then moved the whole hand to achieve the feature as expected [134].

Pushing generally required smaller finger movements in comparison to whole hand move-

ments. Most users spent time smoothing and refining the surface of the pot after the general

shape had been obtained. The motion of the hand was performed vertically along the sur-

face of the pot (Figure 5.9). This led to frustration, for two reasons. First, the accidental

unintended deformations caused due to the contact of the hands with regions of the pot other
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Figure 5.9. Common user patterns are shown in terms of grasp and motion performed by
users for each target shape (in decreasing order of occurrence along columns). The hand
images represent the grasp and the arrows (red) show the motion of the hand. The most
successful strategies are indicated by blue boxes for each target shape.

a. Creating a thin concave feature  

b. Creating a flat-round feature  

Figure 5.10. Two examples are shown of common deformation strategies are shown through
which users created (a) thin concave and (b) flat-round features.

than the parts which the users were attempting to refine. Secondly, although our algorithm

allowed for smooth deformations, there was no explicit way for the users to smooth or

straighten a region of the pot. Another interesting observation was that most users avoided

using the key-board commands for undo, redo and reset. Instead, they preferred using their

hands for reversing an accidental deformation. In some cases, users had to be reminded of

the undo, redo and reset functionalities.
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5.4.4.3 Hand Usage (T2)

On average, users created 5 pots (max: 9, min: 3) within 5.75 minutes (std. dev.:

1.00 min). Most users felt that the control of the pot was significantly better during the

composition phase. One user stated: “I thought it was easier to learn the software when

I was trying to make my own pot not a model one”. This was expected because of the

learning and practice that the users had during the quiz. However, according to the users’

comments, the cause of difficulty in the quiz turned out to be split attention between the

target shape and the user’s pot. There were two common observations that we made. First,

almost all users tried making a pot that they perceived to be the most difficult ones to make.

Surprisingly, these were the round-flat combinations (Figures 5.6(e),(f)), rather than the

thin convex one (Figures 5.6(a)). Most of the users tried to make pots with large and straight

stems, such as in a wine glass or chalice wherein most of their effort went in smoothing and

straightening long vertical regions of the pot. This, in conjunction with their difficulty in

the Quiz, strongly indicated the need for an explicit method for recognizing the intent for

smoothing or fairing the surface of the pot.

5.4.4.4 Reaching, Grasping, & Deformation Strategies

Each user had a different perception of the process necessary to achieve the profile of

a given target shape. Most users attempted the quiz problems in multiple trials, wherein

they would refine their strategy to deform the profile in every trial. However, we observed

that these strategies of reaching, grasping, and deforming the profile converged to patterns

common across users (Figure 5.9). Typically, users would first estimate the size and shape

of the grasp according to the geometric feature of the profile and then move the whole

hand in the intended grasp to deform the profile [134]. The most common usage pattern

observed across users was the recursive smoothing and refining of the pot after deforming

the profile reasonably close to the target shape. This was typically done by moving the

hand vertically along the surface of the pot (Figure 5.9). This was the cause of frustration

for two reasons. First, the accidental contact of the hand with the pot’s surface resulted
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in unintended deformations. Second, the proximal attractions did not allow for an explicit

way to smooth or straighten a region of the pot. Despite being reminded of the undo, redo,

and reset functionalities, most users preferred using their hands for reversing an accidental

deformation.

For the thin-convex profile, most users first created a convex feature in the center fol-

lowed by pushing the top and bottom portions inward. For concave features, users first

pulled the top and the bottom portions of the pot and subsequently pushed the central re-

gion of the pot (Figures 5.10(a)). This was an interesting common pattern since we had

assumed that users will create concave features in a single inward action. This was also

the case with flat-round features (Figures 5.10(b)) wherein many users first pulled out the

round feature followed by straightening the flat regions of the pot. The pointing posture of

the hand was commonly observed during the creation of thin concave features. However, in

subsequent trials, most users resorted to using an open palm. This was because the pointing

pose limited the depth to which the users could push the surface inwards, owing to the inter-

ference of the fingers other than the index finger. The cupping of the hands in conjunction

with vertical movement of the hands was a common approach for round features.

The use of two hands was particularly prevalent for round-flat combinations. Due to

arm fatigue, some users also changed from their dominant hand to the non-dominant hand.

This was a cause for frustration due to the limited volume of the workspace and unintended

deformations caused by the asynchronous motions of two hands. Most users commonly

approached the pot from the sides. The reason, as stated by a user, was: ” “my own hand

blocks the view of the pot”. Difficulty in depth perception caused many users to inadver-

tently reach behind the pot’s surface. This caused further unintended deformations when

the user did not expect one, or the lack of response when it was expected.

5.4.4.5 Intent & Controllability (Q1)

In general, users agreed that the shape of the profile behaved in correspondence to

shape of the hands (Figure 5.11(a)). However, only 50% of the users agreed that the re-
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Pot shapes like the hand 

Speed of reaction was1  

Push-pull equally difficult 

Initialization Time2 

Accidental Deformation3 

Practice time sufficient 

Demonstration sufficient 

Close to real pottery 

Easy to learn 

Easy of use 

App was NOT tiring 

Enjoyable experience 

Q1: Intent & Controllability 

Q2: User Experience 

Strongly Disagree Strongly Agree Agree Neutral Disagree 

Too Slow Too Fast Fast Balanced Slow 1 
2 

3 

Too Low Too High High Balanced Low 

Too frequent, 
Affected Work 

Did not occur Occurred but, 
Not Annoying 

Less Frequent 
but Annoying 

Figure 5.11. User response to are shown for proximal-attraction. The main issue in terms of
controllability (a) was the slow response and difficulty of pushing in comparison to pulling.
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sponse speed of the deformation was balanced. There was a common agreement on the

initialization time and robustness to accidental deformation. There were two common and

expected difficulties that the users faced. These were: (a) pulling specific regions of the pot

and (b) creating straight and flat features on the top portion of the pot. As a user stated:

“Pushing seems easier than pulling. Part of the reason I suspect is the visual feedback. It

is easier to determine if my hand starts to touch the pot, while it’s not as easy to determine

if my hand is still attached with the pottery or leaving it.”. This indicated that perceiving

the depth difference between the hand and the pot was difficult for the users.

5.4.4.6 User Experience (Q2)

Despite the frustrations with pulling and smoothing, most users enjoyed the non-symbolic

aspect of the interaction. According to a user: “I enjoyed the lack of constraints in the de-

sign process; free-forming”. Another user commented: “This is the first time I have seen

something like this. The app is very sensitive so that way it gives the user a lot of freedom. i

really loved that part”. The main aspects that the users liked were (a) realism of pottery, (b)

ease of learning, and (c) the freedom of choosing how to deform the pot (Figure 5.11(b)).

5.4.5 Takeaways

There were two main issues with the proximal-attraction approach. First, pulling was

clearly more difficult since the rate of attraction was designed to be lower than that of

pushing. Secondly, the users clearly distinguished between several operations of fairing,

straightening, carving, pulling and pushing. However, the proximal-attraction approach,

was not designed to explicitly identify or classify the type of operation the user intended to

perform. Our main goal in our third and final stage was to resolve these two issues. Our

first step was to identify the main characteristics of users’ preferences towards grasping to

pull and motion patterns for smoothing the pot. Subsequently, the aim was to design a ge-

ometric approach that could recognize these identified characteristics and broadly classify

the intended actions from the hand PCL.
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Figure 5.12. Algorithm for grasp+motion technique is illustrated. The main steps involve
computation of axial KDE for hand PCL, detection of intent for smoothing, differentiation
between pulling and pushing, and deformation of the pot. In this example, we show the
details of the pulling deformation (row 2).
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5.5 Hand as a PCL: Grasp + Motion

Our observations strongly indicated that users distinguished their intent in three broad

categories: pulling, pushing, and smoothing. In our final stage, we implemented a grasp

and motion based approach to identify these three classes of intent.

5.5.1 Technique

The basic idea of the grasp+motion approach is to summarize the grasp of the hand in

relation to the surface of the pot and subsequently classify the user’s action (Figure 5.12).

We achieve this by using kernel-density estimation of the point cloud on the axis of the

pot. In our context, this kernel-density estimate (KDE) is essentially a smoothed histogram

of the distribution of the hand’s PCL on the pot’s. We use the exponential function to

determine the KDE. For a given section i, the KDE is given by:

φi, j =

j=|H|∑
j=1

ea‖δ2
i, j‖ (5.1)

There were three main observations (Figure 5.9) that helped us use the KDE to classify

the user’s intent. First, users moved their hands in a fixed pose along the surface of the

pot to express their intent for smoothing. This corresponds to detecting the vertical shift of

the KDE. We used normalized cross-correlation [143] between the two consecutive KDE

signals to determine the shift. Secondly, for pulling the pot, we observed that users used

specific grasps. In this case, we note that the KDE has two maxima and one minima (Figure

5.13(a)). Here, each maxima corresponds to the fingers making contact with the pot and the

minima corresponds to the center of the grasp. This essentially allows us to track a basic

skeletal representation of the hand. We then define the attraction rate using a based on the

angle of grasp (φ) (Figure 5.13(b)). Finally, all actions that do not correspond to either

smoothing or pulling, are assigned as pushing. For pushing, we use the proximal-attraction

approach for deformation. The steps of the algorithm are:

1. Compute the KDE φt at time t
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  cos

a. KDE and Skeletal points for 
pulling and pushing grasps

b. Attraction Function for 
pulling grasp

Figure 5.13. a. KDE functions are shown for a pulling (left) and pushing (right) intents, b.
Computation of attraction rate using the angle of grasp is illustrated.

2. Compute normalized cross-correlation C(φt, φt−1)

3. Compute Active region A

4. Set s to the shift of correlation

5. if(s < S ): Smooth pot profile in A

6. else:

Compute extrema

Detect skeleton

Compute θ

if(#maxima = 2 & θ < 2π): Apply pulling in A

else: Apply proximal-attraction in A

7. Smooth deformation (∇2δ = 0 for all points in A)

8. Compute deformed profile

9. Rescale pot sections
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Original Modified Modified Original 

a. Thin Convex b. Thin Concave 

Figure 5.14. The thin convex and concave features were modified according to the capabil-
ity provided by the grasp+motion technique.

5.5.2 Experiment

We used identical apparatus and interface to evaluate our final stage. Additionally, we

made two important modifications to the interface. First, we added a shadow of the hand

on the surface of the pot. The goal was to enable users to estimate their proximity to the

surface. Secondly, we clamped the hand PCL so as not to allow points on the hand to reach

behind the surface of the pot.

5.5.2.1 Participants

We recruited 15 (11 male, 4 female) participants within the age range of 19 − 30 years.

None of these participants had prior knowledge of mid-air interactions or had participated

in any of our previous studies with pottery interface. All participants were from science

and engineering background wherein 10 participants had familiarity with mid-air gestures

and full body interactions, and 11 participants reported familiarity with 3D modeling and

computer-aided design. 5 participants reported that they had practical familiarity with real

ceramics via informal workshop sessions but did not pursue pottery as a regular activity or

professional practice.
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5.5.2.2 Procedure

Our overall experimental procedure was identical to the one that we used for evaluat-

ing the proximal-attraction approach (Section 5.4.2, Procedure). However, we made three

modifications to the evaluation procedure as listed below:

1. One of the main goals of our work was to enable users to invoke their tacit knowledge

of deforming physical objects. To this end, we designed the grasp+motion approach

such that it is geometrically-driven and can potentially be used even for user inputs

that used other physical objects as tools in addition to the use of hands. In order to

verify the generality of our approach with respect to user input, we added another

composition task (T3) wherein participants were given a duration of five minutes to

create pots using a set of physical artifacts as tools. Our “tools” comprised of day-to-

day objects (e.g. white-board marker, pair of scissors, ruler) and also some special

objects such a Shapescapes™4.

2. In order to understand user experience with physical objects tools, we also added

questions to the questionnaire Q2 regarding the utility, ease of use, and preference of

tools over hands.

3. We modified the target shapes for the thin convex and concave features (Figure 5.14).

The rationale behind this modification was that the graph+motion technique is sen-

sitive to the size of the hands, finger thickness. Thus, the detection of single-point

pulling intent is not possible, as in the case of proximal-attraction.

For each participant and task (T1, T2, and T3), we recorded the completion time and

the profiles of the pots shaped by the users. Even though we designed T1 towards sta-

tistical analysis, we observed that each user perceived the target shapes differently and

consequently the measured data did not provide sufficient insights regarding the strengths

and weaknesses of our approach. With this in view, we present a visual comparison of the

4www.shapescapes.com
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Figure 5.15. User created pot profiles (black curves) are shown relative to the target shapes
(light brown cross sections). The top and bottom rows shows the results for proximal-
attraction and grasp+motion approaches respectively. Visual inspection evidently shows
improvements in the creation of flat, round and smooth features. More significant improve-
ments were observed in the creation of fat convex features in comparison to proximal-
attraction.

numerical data recorded during the evaluation of proximal-attraction and grasp+motion

techniques.

5.5.3 Results

5.5.3.1 User Performance (T1)

Visual similarity with respect to the target shapes evidently increased in comparison

to the proximal-attraction approach (Figure 5.15). This was primarily due to the explicit

smoothing. Overall, the completion time (Figure 5.16(a)) was reduced as expected. Sur-

prisingly, the maximum completion time across all users and all target shapes was recorded

for the thin-concave feature (14.4 minutes) followed by the thin-convex feature (13.2 min-

utes). The mean completion time was highest for the thin-convex feature (3.4 minutes)

followed by the central-flat feature (3.3 minutes). The main aspect that we sought from

T1 was the quality of the final outcome across participants for a given quiz problem. We

used curvature cross-correlation (CCC) as a measure of the quality of user created profiles

(see [145] for details). As expected, the smoothness of the results was notably superior
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in comparison to the proximal-attraction (Figure 5.16(b)). We also recorded the number

of trials per user per target shape (Figure 5.16(c)). The global maximum number of trials

were 7 and 5 for proximal-attraction and grasp+motion techniques respectively. In case

of grasp+motion, most users required only one trial for fat-convex, central-flat, and top-

bottom-flat features. On the other hand, thin-concave and thin-convex features required

more iterations.

Each user perceived and approached a given target shape in different ways. Conse-

quently, there was no evident correlation between the time taken by each user and the

quality (CCC) of the final pot created by the user for any of the target shape. To account

for this, we represent the user performance as a bivariate dataset given by the ordered pair

of the response quality and completion time. We visualize performance as a bag-plot [144]

(Figure 5.17). Here, the spread of the data (i.e. variations in user responses) is given by the

area of the bag. Users clearly performed best for thin-concave targets with Tukey median

value of (0.94, 1.46). Performance was most consistent for the fat-concave feature (Figure

5.17(d)). Users also performed consistently for round-and-flat features (Figures 5.17(e)

and (f)). Variations were significant for central flat feature (Figure 5.17(g)). Further, the

pot-profile quality was very low for the central-flat and top-bottom-flat features (Figures

5.17(g) and (h)). This was mainly because users typically spent considerable time pulling

and smoothing the top and bottom regions after performing an initial push. Consequently,

the median completion times were also higher for the round-flat and central-flat features

(Figure 5.17(f) and (g) respectively).

5.5.3.2 Hand Usage (T1)

The general user behavior in terms of reaching the pot was similar to the proximal-

attraction approach. Both the algorithm and its description was different in this case. The

users were explicitly made aware of pushing, pulling and smoothing as three distinct oper-

ations. This obviously led to variation in user behavior as compared to proximal-attraction.
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Figure 5.16. A comparison between proximal-attraction (top row) and grasp+motion (bot-
tom row) is shown in terms of (a) the time taken by users to shape a target profile, (b) the
quality of users’ responses in terms of curvature cross-correlation of profiles, and (c) the
distribution of users with respect to the number of trials per target profile.
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Figure 5.17. User performance is shown for the each quiz problem as a bag-plot. The x-axis
is time in the range [0, 14] minutes and the y-axis is the curvature cross-correlation in the
range [0, 1]. The dark and light blue regions show the bag and fence regions, respectively.
The white circle is the Tukey depth median and the points marked with red circles are
the outliers. The insets show the actual pot profiles (black lines) created by the users in
comparison to the target shapes (beige region) of the Quiz. The coordinates of the depth
median (C) and the spread (Sp) are provided for each target shape.

Figure 5.18. The characterization of tool geometry is visualized for five different physical
objects. The objects were chosen to represent concave, convex, flat, and round contacts for
deformation.
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5.5.3.3 Hand Usage (T2)

On average, users created 5 pots (max: 12, min: 2) within 5.80 minutes (std: 0.66

min). We made two interesting observations in T2. First, we found that users were able to

repeat the process of getting from an initial shape to the same final shape across multiple

trials. Similarly the users could also deform a current shape back to some previous shape,

akin to the undo operation, but with the hands. In fact, most participants preferred using

their hands to undo a pot deformation instead of the keyboard-shortcut. One user stated:

“I thought it was easier to learn the software when I was trying to make my own pot not

a model one”. This was expected because of the learning and practice that the users had

during the quiz (T1). However, during T1, users mentioned that their attention was divided

due to the need to intermittently look at the target shape during the shaping process. Thus,

they generally perceived T1 to be more demanding than T2.

We made two observations that were not evident in the earlier stages. First, we found

that the ability to repeat the process of getting from an initial shape to the same final shape.

Similarly, the ability to get to some previous state from the current state was increased

substantially. We observed that most of the participants were successfully able to use their

hands to undo a pot deformation instead of the keyboard-shortcut.

5.5.3.4 Geometric Characterization of Tools

The choice of everyday objects and ShapeScapes™was mainly helpful in providing a

reasonable variety of geometric profiles for pot deformation. However, in order to better

understand how users would use these objects, we wanted to pre-determine how the intent

of pulling and pushing translates to the use of physical objects. Thus, we conducted a set

of experiments (Figure 5.18) to verify if the users could in fact extend their understanding

of the grasp+motion approach and apply it to the use of physical tools. Our experiments

showed that the geometry of the tool can indeed be interpreted in terms of the nature of the

KDE of the tool’s PCL and the grasping angle of the skeleton computed from the KDE.
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a. b. c. 

d. e. f. 

Figure 5.19. Examples of tool usage are shown.

Below, we summarize how this observation came into play during the usage of tools by our

participants.

5.5.3.5 Tool Usage (T3)

Users showed immediate enthusiasm during the use of tools. Almost all users first

inspected the objects provided to them and planned how to use them for shaping the pots.

Users created 4 pots on average (max: 8, min: 2) within 6.0 minutes (std: 0.8 min). In

contrast to the use of hands, we observed exploratory behavior in users while using tools.

Rather than creating pots, most users were more interested in finding out the effect of each

of the objects provided to them. This explained the decrease in the average number of

pots in the composition task. One of the difficulties with the use of hands was the inability

to create thin concavities. With the use of tools (Figure 5.19(a),(d)), users could achieve

this easily. The most interesting behavior that was observed was the tendency to create

convex deformations, which the users achieved by combining two different objects, so as

to simulate a grasping hand. This was evident from the users’ fascination with scissors

(Figure 5.19(b)).
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Another important observation was the direct association the users made between the

shape of the tool and the purpose it could be used for. The motion of the hand was affected

by this association. For instance, while using a white-board eraser (Figure 5.19(c)), the

most common motion was that of smoothing the pot. Similarly, for objects with grasp-like

geometries, users invariably tried convex deformations by pulling (Figure 5.19(e)). One

user fashioned a new tool by combining different Shapescapes™parts. This provided the

convenience of holding the tool at the “handle” and deforming the pot using fine hand

movements (Figure 5.19(f)).

5.5.3.6 Intent & Controllability (Q1)

We see evident improvements in the perception of intent recognition quality, initializa-

tion time, and robustness to accidental deformations (Figure 5.20). However, despite the

decrease in completion time (task T1) there was no significant improvement in the user’s

perception of inconsistency between pulling and pushing. In this case, reason for this per-

ception was primarily related to the visual and tactile feedback rather than the algorithm

for pulling itself. This was evident from the user’s comments such as: “I think the reason

pushing and pulling were different were because the pulling you had to 2 contacts with the

pot and pushing you only needed one. I had a hard time understanding the depth of the pot

making it hard to get two contacts on the pot”. One user also suggested: “I think it would

be better if I get some feeling when I touch the pottery. It [would] make me feel more real

and easier to control my hand. Then it would be better to have some sounds when I touch

the pottery”.

5.5.3.7 User Experience (Q2)

The experience was mostly positive, similar to the proximal-attraction approach (Fig-

ure 5.20(b)). In particular, users liked the use of tools and the smoothing operation the

most. One user commented: “The freeform design with tools was the most fun, as I could

spend most of my time focusing on the design aspect as opposed to focusing on minimizing
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Pot shapes like the hand 

Speed of reaction was1  

Push-pull equally difficult 

Initialization Time2 

Accidental Deformation3 

Practice time sufficient 

Demonstration sufficient 

Close to real pottery 

Easy to learn 

Easy of use 

App was NOT tiring 

Enjoyable experience 

Q1: Intent & Controllability 

Q2: User Experience 

Strongly Disagree Strongly Agree Agree Neutral Disagree 

Too Slow Too Fast Fast Balanced Slow 1 
2 

3 

Too Low Too High High Balanced Low 

Too frequent, 
Affected Work 

Did not occur Occurred but, 
Not Annoying 

Less Frequent 
but Annoying 

Tools are useful 

Tools easier than hands 

Prefer tools over hands 

Figure 5.20. User response to are shown for grasp+motion. While the robustness to acci-
dental deformations was perceived to be negligible (a), many users still perceived pulling
to be difficult. Users agreed regarding the usefulness of tools but were not in general agree-
ment about preferring them over hands.
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errors.”. According to another user: “The pottery changing according to my hand shape is

so real. While smoothing, I could shape it as well, I like to do it this way a little bit.”.

5.5.4 Limitations

Our method is currently implemented for pottery, which is essentially a one dimensional

deformation. Further, we observed that the use of 2D displays is a factor due to which users

tend to use side configurations. We believe that 3D visual feedback will encourage users

to access the front and back faces. One user noted: “This application with haptic feedback

could train people for pottery before they actually perform it”. This strongly indicates that

the lack of tactile feedback is a critical component that is missing from our current system.

Severe occlusion resulting from camera position and hand orientation is an issue partic-

ularly for skeletal based gesture recognition. We partly addressed this challenge using our

PCL-based approach which can make use of partial data even when the full hand skeleton

is intractable. However, occlusion is an inherent problem in any camera-based method.

Investigation of optimal camera position and use of multiple cameras at strategic locations

is important. Secondly, we provided a method for temporally adaptive persistence.

In our current implementation, the definition of active regions is in terms of 2D profile

topology rather than actual distances in real space. Thus, our implementation is dependent

on PCL sampling relative to the mesh resolution of the pot. Independence from the sam-

pling resolution may be addressed with an adaptive approach wherein new sections could

be added according to manipulators or old ones removed based on geometric properties of

the pot profile such as curvature.

In terms of our evaluation approach, our participants were primarily from science and

engineering background. Even though some users had prior experience with creative tasks

such as pottery and computer-aided design, studying our approach with art students would

provide additional insights on user experience and utility of our approach.
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5.6 Discussion

5.6.1 Spectrum of Expressiveness

One aspect that is both advantageous and disadvantageous in our approach is that differ-

ent users can achieve the same target shape using different strategies for grasping, reaching,

and deforming a shape. While this provides flexibility and intuitiveness to the user, it also

results in increasing the time taken by the user to reach to a desired shape. The evaluation

of proximal-attraction evidently indicated that there needs to be a balance between com-

pletely free-form interaction and symbolic approaches. This is what we attempted through

the grasp+motion approach. The main advantage that our process provided was the dis-

covery of relevant grasp information that is useful to design continuous operations such as

shape deformation. Our grasp based approach can serve as a starting point for designing

grasp-based interactions using cleaner data such as hand-skeleton [122].

5.6.2 Definition of Intent:

We began with a simple classification of intent through the analogy of structuring oper-

ators inspired by Delamé’s [140] work. However, users’ description of actions and expec-

tation strongly indicates towards a richer and more complex mental model for deformation

processes. To this effect, we had to include a third class of operation, namely “smoothing”

which evidently improved the performance of the user. Though this aspect is not new in

3D modeling in general, this aspect of refinement is certainly worth investigating from a

perceptual point of view.

5.6.3 Generalization

Although we demonstrated intent classification for rotationally symmetric shapes, the

general approach of computing KDE to characterize grasp and motion can be extended to

the deformation of arbitrary shapes. Here, we propose such an extension in two steps. First,

we will consider asymmetric deformation in the context of pottery itself. For this, we begin
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Polar KDE
(Pot Static)

t
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Deformation

Symmetric
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Input:
Hand PCL

Figure 5.21. Asymmetric deformation can be applied to a pot in two steps. When the pot
is rotating, we apply the axial KDE (top row) of the hand PCL for deforming the profile of
the pot. Subsequently, users can stop rotating the pot and deform the pot locally using the
polar KDE (bottom row).

PCL Mapped on
Parametric Space

Shape Skeleton 
Re-computation

Input:
Hand PCL

2D KDE in
Parametric Space

Skeleton in
Parametric Space

General
Deformation

Figure 5.22. The computation of two-dimensional KDE in the parametric space of a cylin-
drical surface leads to the computation of grasp and motion for an arbitrary orientation of
the hand PCL with respect to the surface. This allows for arbitrary ddeformation of the sur-
face. Recomputing and segmenting the deformed surface using the method of Bærentzen
et al. [146] provides a generalized deformation approach using our KDE based approach.
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by noting that our approach summarizes the hand grasp and motion by computing a one-

dimensional axial KDE of the hand PCL on the pot’s surface. In the same way, we can also

compute the one-dimensional polar KDE of the PCL (Figure 5.21). Thus, by combining

two one-dimensional KDE computations (axial and polar), we can enable users to create

asymmetric features on the pots.

To see how these ideas can be used to conceptualize an arbitrary deformation of a shape,

we make two observations. First, the pot is a cylindrical shape with a simple parametric

representation and the axis of the cylinder is essentially its skeleton. Thus, given the hand’s

PCL in an arbitrary orientation with respect to the cylinder’s surface, its two-dimensional

KDE can be computed in the parametric space as a simple means to determine the grasp

and motion of the hand (Figure 5.22). The consequent deformation of the cylinder would

inevitably result in the need for re-computing the skeletal structure of the surface. This is

where we invoke our second observation that an arbitrary 3D surface model can be con-

verted to a set of connected cylinders using the recent work by Bærentzen et al. [146] that

demonstrates the conversion of arbitrary triangle meshes into polar-annular meshes (PAM).

The PAM representation effectively segments 3D shapes into generalized cylinders. Thus,

the combination of two-dimensional KDE with the PAM representation can be used for

deforming arbitrary meshes.

5.6.4 Precise & Selective Reachability

One user aptly commented: “Sometimes it is hard to use the palm because it may deform

the surface too much. The context of barely touching does not seem too well implemented.

However, if you do this very carefully you can do the barely touching but may make your

arm tired a little.”. This is the problem of precise and selective reachability wherein one is

required to reach and manipulate a local region of an object without affecting neighboring

regions. There is extensive volume of work that investigates distal selection, manipula-

tion, and navigation [98, 99, 147] of objects. We believe that precision and selectivity are

problems worth investigating for close-range, i.e. proximal 3D manipulations in mid-air.
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5.7 Conclusions

Extending the grasp+motion approach for arbitrary meshes would involve several com-

putational challenges since distance computations and KDE computation would be on 2-

manifolds. Secondly, it will also be important to study how user perception ad performance

is affected by adding 3D visual feedback and also tactile feedback. Finally, with our ap-

proach, it is not possible to perform deformation using existing hand skeleton tracking

approaches. We intend to investigate this in comparison to the PCL based hand repre-

sentation. One key advantage of using tracked skeletons is that there is a direct corre-

spondence between the fingers and palm which can give useful movement information for

better intent detection. This would help segmenting users intentional and unintentional

movements [148]. One of the main observations in our preliminary exploration was that

users from different backgrounds and age group had different ways of using the pottery

tool. In future works, it would be interesting to investigate how experience, performance,

and creative outcomes vary with respect different user groups such as artists, engineering

designers, and young participants.

In this chapter, we presented a spatial interaction technique that uses hand grasp and

motion for intent expression in virtual pottery. This approach enables a shift from ex-

isting gesture-based procedural events towards non-procedural and temporally continuous

processes in the context of shape deformation. In other words, our work enables users to

achieve what they intend in the way they see fit. To the best of our knowledge, no existing

hand-based spatial modeling scheme offers such diverse contexts of user input, for instance

the use of everyday real objects as tools for virtual shaping, with controllable outcomes.
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6. SPATIAL DESIGN IDEATION USING A SMARTPHONE AS A HAND-HELD

REFERENCE PLANE

The demonstration of tools in the geometric approach added anew dimension to spatial in-

teractions for ideation: tangibility. In this chapter, we will investigate the role of tangibility

in further detail through mobile spatial user interfaces (M-SUI’s). M-SUI’s have received

significant research focus towards 3D manipulation, navigation and design on large-screen

public displays, immersive environments, and mixed-reality setups. In this chapter, we

explore spatial design ideation through the association of physical human movement to

the design outcome. Our broader goal is to explore the role of embodied interactions in

enabling spatial ideation during early phase design by employing M-SUI’s. As a concrete

step towards this goal, we present MobiSweep, a prototype application for creation of 3D

compositions comprised of swept surfaces through constrained spatial interactions with a

smartphone.

As the name suggests, MobiSweep makes use of sweep surfaces as the underlying shape

representation. Sweep surface representations are fundamental in computer-aided geomet-

ric design (CAGD) and provide a simple and powerful means for defining 3D shapes of

arbitrary complexity. Further, sweep surfaces inherently lend themselves to an intuitive

association to the action of sweeping a 2D shape in 3D space. In this context, we inspire

our work with two observations from CAGD and M-SUI. First, traditional construction of

sweeps relies heavily on the procedural specification of datum planes as spatial references

and 2D curves profiles and trajectories. Within conventional CAGD systems, this is a te-

dious process, involves a number of operations, and requires parametric configuration of

each plane [35]. Secondly, even though sketch-based interactions are common to both ge-

ometric modeling and 2D mobile applications, their utilization in existing M-SUI’s [149]

has been severely limited towards mid-air shape creation. We posit that by combining the

spatial freedom in mid-air interactions with multi-touch capabilities of smartphones, novel
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Controller

User MotionVirtual Environment

Figure 6.1. The idea behind MobiSweep is to utilize the spatial relation between the action
of sweeping with the creation of the swept surface.

and creative work-flows can be constructed to enable expressive design exploration. To this

end, we introduce an interaction metaphor that uses a smartphone as a hand-held reference

plane. Our interaction is an extension of the free plane casting method proposed by Katza-

kis et al. [150]. By adapting our metaphor for sweep surface creation, we demonstrate

how users can directly create, modify, and compose 3D design concepts through tilt and

touch interactions on the mobile phone.

6.1 Related Works

6.1.1 Mobile Devices for 3D Manipulation

Mobile devices offer a unique combination of computational power, wireless data com-

munication, 3D sensing capabilities, ergonomic manipulability, and multi-touch input mech-

anisms. Although mobile devices have been previously explored as spatial controllers for

several virtual applications, the primary disadvantage in case of a mobile device is the lack

of an explicit position tracking method. While there is literature that uses smartphone ac-

celerometers to detect motion-gestures [151, 152], a significant amount of work has used

touch-tilt combinations for 3D object selection and manipulation [153, 154]. The multi-

touch capability of mobile devices provides additional affordances for both direct and in-

direct manipulations of the virtual objects [150, 155, 156]. Combinations of touch and tilt
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interactions have also been utilized for precise object selection [157–159], scene naviga-

tion [160], and immersive interactions [161–163]. A study by Tsandilas et al. [164] iden-

tified the best tilt-touch combinations in terms of user performance, motor coordination,

and user preferences. Similar interactions have also been utilized within 3D exploratory

applications such as volumetric data annotation [165] and scientific visualization [166].

In contrast to these works, our focus is on the exploration of novel interactions for 3D shape

composition, i.e. activities that involve shape creation tasks (e.g. cross section sweeping)

and modification tasks (bending, twisting) in addition to manipulation.

6.1.2 Design with Mobile Devices

Interactive design and shape modeling has also been studied with mobile interfaces.

Xin et al. [167] demonstrated the use of a tablet as an augmented reality (AR) canvas for

3D sketching, akin to creating wire-sculptures. Scheible and Ojala [168] proposed Mo-

biSpray, a system for intuitive graffiti on large physical environments using mobile phones

as spray-cans. Lakatos et al. [169] and Leigh et al. [170] proposed the use of mobile

devices as spatially-aware hand-held controllers in conjunction with hand-worn gloves for

3D shape modeling and animation. Their work was more focused on demonstrating general

interactions for modeling scenarios rather than exploring a concrete design work-flow for

shape composition. Mine et al. [171] described and discussed an immersive M-SUI sys-

tem and demonstrated an immersive adaptation of the SketchUp application. Though their

work provides an excellent set of guidelines for mobile-based modeling, their focus was

towards an immersive system augmented with additional hardware for positional tracking.

Our work differs from these works in two ways: (a) our focus is on supporting creative

3D composition through interaction and work-flow design (in contrast to [167, 168]) and

(b) our system does not use any additional hardware or vision based method for explicit

position tracking (such as in [169–171]).

Xin et al. [167] demonstrated the use of a tablet as an augmented reality (AR) can-

vas for 3D sketching, akin to creating wire-sculptures. Similarly, Lue and Schulze [149]
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demonstrated the 3D Whiteboard system using smartphone AR technique with fiducial

markers. Lakatos et al. [169] demonstrated the use of tablets as spatially-aware hand-held

controllers in conjunction with hand-worn gloves for 3D shape modeling and animation.

However, their work was more focused on demonstrating general interactions for modeling

scenarios rather than exploring a concrete design work-flow for shape composition. Mine

et al. [171] described and discussed an immersive adaptation of the SketchUp application

using a tracked smartphone in a CAVE setting. Our work differs from these works in two

ways: (a) our intention is to support quick creative compositions with actual 3D surfaces

in contrast to [21, 149, 167] and (b) our system does not use any additional hardware or

vision based method for explicit position tracking (such as in [169, 171]).

6.2 MobiSweep

6.2.1 System Setup

The MobiSweep interface comprises of a hand-held controller (smartphone), and the

virtual environment (i.e. a modeling application running on a personal computer) (Figure

6.2). The virtual environment consists of a reference plane with a local frame of reference

mapped to the phone’s coordinate system.

6.2.2 Design Rationale

The design goal behind MobiSweep is to strike a balance between modeling constraints,

interaction techniques, and system workflow to enable direct spatial ideation. There are

mainly two fundamental aspects that we considered while designing MobiSweep: (a) 3D

manipulation and (b) sweep surface generation. For 3D manipulation, the critical aspect

under consideration is to minimize fatigue for precise manipulations and minimize the in-

teraction time for coarse manipulations. Instead of imposing full mid-air movements, we

employ touch gestures to allow controlled and precise 3D manipulation of virtual objects.

In order to minimize learning time, we take advantage of the fact that most users are al-
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Figure 6.2. Setup for MobiSweep comprises of a visual display of the virtual environment
and a smartphone that acts as a reference plane in the virtual environment.
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ready familiar with multi-touch gestures for manipulating objects. Thus, we define a single

context-aware interaction metaphor that: (a) uses known multi-touch gestures and (b) is

shared between several modeling tasks.

Drawing from the key insight of Jacob et al. [172], we find that the separation of

degrees-of-freedom (DoF) can be effective if the interactions for the task (sweeping a sec-

tion) are synergistic with the input mode provided by the device (the smartphone). Based

on this, we inspire our approach from the free plane casting method proposed by Katzakis

et al. [150] by combining direct orientation control with indirect gesture based position

control. We introduce an interaction metaphor - phone as a reference plane - that emulates

the action of sweeping a sketched cross-section that is held in the user’s hand (Figure 5.5).

In doing so, we do away with the procedural specification of planes as spatial references for

drawing 2D curves to define profiles and trajectories, as is predominantly done in conven-

tional CAD systems. The key advantage of our metaphor is that in addition to creation, it

naturally lends to spatial actions such as on-the-fly bending, gesture-based cross-sectional

scaling, and in-situ modification of the cross-sectional shape by sketching.

6.2.3 Gesture Definition

In order to define the interaction work-flow for MobiSweep, we begin with the definition

of our interaction metaphor - phone as a reference plane. Given a hand-held phone, we can

define a reference plane in the virtual 3D space with a local coordinate frame. Subsequently,

the objective is to allow the user to specify the location and orientation of the reference

plane. We define the following gestures to achieve this objective:

Rotate: Here, the orientation (and hence the local coordinate frame) of the phone is

directly mapped to that of the reference plane. Thus, simply rotating the phone results in

the rotation of the reference plane (Figure 6.3: column 1, row 2).

Pan: Using the two finger sliding gesture, users can translate the reference plane on the

x-y plane of the local coordinate system (Figure 6.3: column 2, row 2). This is similar to

in-plane panning in the free plane casting interaction [150].
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Scale: Users can also perform in-plane scaling by using a two finger pinch gesture.

However, scaling is a context dependent operation that is allowed only when the reference

plane either contains a sweep section (Figure 6.3: column3, row 3) or is attached to a 3D

object during a manipulation task (Figure 6.3: column 3, row 4).

Offset:The use of one-finger press/hold (Figure 6.3: column 4, row 2) gesture allows

for automatic translation of the reference plane along its normal with a predefined constant

speed. Users can also offset the reference plane by applying a three-finger pinch/spread

gesture (Figure 6.3: column 4, row 2). In this case, the magnitude of offset defined ac-

cording to the area of pinching or spreading1. The one finger gesture provides a quick but

imprecise method for offsetting. On the other hand, the three finger gesture requires more

effort but allows for a more precise and bi-directional control of the reference plane.

Sketch: Users can sketch a curve on the reference plane using the traditional one finger

movement. Similar to scaling, we allow sketching only when the user wants to modify the

cross-section of a sweep surface.

6.2.4 Modeling States

The gestures defined for manipulating the reference plane form the basis of MobiSweep’s

work-flow. For any given state in the work-flow, the input gestures (Figure 6.3: row 1) re-

main the same but the reference plane takes a different meaning according to the context of

the states (Figure 6.3: rows 2-4) as defined below:

Configure (S1): In this state, the reference plane is detached from all existing shapes (if

any). This empty plane can be manipulated to a desired location and orientation in 3D space

using the gestures described above (Figure 6.3: row 1). Such as manipulation may occur

either during the creation of the first shape of a composition or during in-situ composition

where a user is directly creating one shape on an existing shape. Alternately, users can also

move the reference plane in order to select an existing shape in the virtual environment.

1See supplementary material for details.
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Author (S2): In this state, the reference plane is attached to the top-most section of a

sweep surface. Users can (a) create a swept surface by offsetting (Figure 6.3: columns 4-5,

row 3), (b) bend and twist a sweep surface by rotating the phone (Figure 6.3: column 1,

row 3), (c) pan and scale a section using two-finger gestures (Figure 6.3: columns 2-3, row

3), (c) modify a section’s shape by sketching on the phone (Figure 6.3: column 6, row 3).

Manipulate (S3): This state involves rigid transformation of a swept surface for com-

posing through assembly. Here, the reference plane serves as a container for the swept

surface through which users can translate, rotate, or scale the surface. Additionally, users

can also copy an existing shape and reuse a transformed version of the copy within the

composition.

6.2.5 Modeling Work-Flow

In the MobiSweep work-flow, the configure state (S1) is the base state from where

users can transition to either the authoring state (S2) or the manipulation state (S3). The

transition between these states are enabled using a combination of menu and gestures. The

controller interface for MobiSweep is a single-screen Android application that allows for

two distinct modes of interactions: (a) multi-touch input for reference plane manipulation,

sketching, and state transition and (b) menu navigation for state transitions and general

software tasks. Below, we describe the three canonical examples for creation, modification,

and manipulation of swept shapes.

6.2.5.1 Shape Creation

The creation of a swept surface involves the transition from the configure (S1) to the

author state (S2) (Figure 6.4(a)). For this, the user selects the “Add Shape” button on the

menu, thus expressing the intent to begin the creation of a sweep surface. Once the user

has expressed the intention to add a shape, the visual representation of the reference plane

changes to a default circular section. The user can now sweep the section by using the one

finger press-hold (or three-finger pinch-spread) gestures. This corresponds to the offsetting



132

operation occurring along the reference plane normal. By continuously re-orienting the

phone during the sweeping process, users can create curved sweeps. Users can also modify

the swept surface as described in the following section. Once the user has created a desired

shape, the swept surface can be detached from the reference plane using the double-tap

gesture effectively bringing the user back to the configure state.

6.2.5.2 Shape Modification

Once the user has created a swept surface, the authoring state allows users to modify

it as long as the user has not detached the reference plane from the surface. The refer-

ence plane is attached to the top-most section of the sweep surface (Figure 6.3: column

3). Hence, all interactions performed by the user affect the top most section only and cor-

respondingly changes the remaining sections of the sweep surface (Figure 6.4(b)). For

instance, simply re-orienting the smartphone results in the rotation of the top-most section

effectively allowing the user to bend and twist the swept surface. Similarly, using the two-

finger gestures allows for panning and scaling the top-most section of the swept surface.

The modification of the shape of the top-most section involves three steps. The user first

selects the “Sketch Section” button on the menu to activate the sketching mode. Once in

sketching mode, the user simply sketches a desired curve on the smartphone. In our current

implementation the user is required to sketch the section in a single stroke. Every time the

user finishes drawing a sketch, the sweep surface is immediately modified according to the

new sketched section. Thus, the user can simply keep over-drawing the sketch in order

to explore different varieties of shapes. Once satisfied with the modified section, the user

finalizes the modification using the “Confirm Section” button on the menu. Similar to shape

creation, the swept surface can be detached from the reference plane by using a double tap

gesture.
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6.2.5.3 Shape Manipulation

Manipulation of an existing shape involves two steps (Figure 6.4(c)): hover (S1) and

selection (S3). Translating the center of the reference plane inside a swept surface is defined

as hovering on the surface. The user can select an object by first hovering on the object

followed by a double tap gesture on the phone. Similarly, using the double tap on a selected

object reverts the state to hover again. Thus, double tap acts as a toggle between the

attachment and detachment of a shape from the reference plane. The use of double-tap

enables users to perform selection without looking at the controller. Selection signifies the

attachment of a 3D object with the reference plane, i.e. all rigid transformations applied on

the reference plane are transferred to the selected object. In addition to manipulation, the

hover state can also be used to perform operations such as copying, deleting, and coloring

a shape by using the menu.

6.3 Implementation

6.3.1 Hardware & Software

Our hardware comprises of a ThinkPad T530 laptop computer with Dual Core CPU

2.5GHz and 8GB RAM, running 64 bit Windows 7 Professional with a NVIDIA NVS

5400M graphics card, and the Samsung Galaxy Note 3 as the hand-held controller. We

implemented a one-way Bluetooth serial port communication to stream input data from the

controller (phone) to the MobiSweep application (running on the PC). The input data packet

consisted of device orientation, touch coordinates, menu events and multi-touch gestures.

Our controller interface was implemented using the Android SDK and the application was

developed in C++ with openGL Shading Language for rendering 2.

2See supplementary material for details on menu and calibration implementations
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6.3.2 Algorithms

6.3.2.1 Sweep Surface Generation

The sweep surface is represented as a stack of cross-sections. Once the users starts

the offsetting interaction, the sweep surface is incrementally generated in three steps: (a)

adding a new section and (b) translating the top-section along the reference plane normal

at until a stipulated time has elapsed, and (c) repeating addition and translation as long as

the user is offsetting the reference plane. This process of incremental generation provides

the visual continuity of sweeping to the users and the translation time defines the distance

between consecutive sections.

In this work, we implemented a variant of the control-section based sweeping tech-

nique [173] wherein every sweep surface consists of two control sections at the two ends

of the sweep surface. Each control section comprises of equal number of points and the

information about its local coordinate frame (i.e. the frame of the reference plane). Hence,

there is a one-to-one point correspondence between the control sections. For a given pair of

control sections, we interpolate each meridian of the sweep surface by using the cubic her-

mite basis functions (Figure 6.5(a)). The interpolation requires four boundary conditions,

namely, the position and tangents at the end points. These are conveniently provided by the

vertices and the normal of the section’s local coordinate frame respectively. Our approach

removes the need for explicit computation of the individual section transformations and

avoids frame rotation minimization and section blending. This simplifies the operations

(bending, twisting, panning, scaling and section modification) in the authoring state.

6.3.2.2 Section Modification

Currently, we allow single stroke sketching in our implementation and the number of

points in each section of the sweep surface is constant and pre-defined. For a sketch input,

we first determine if the sketch is an open or a closed curve based on a simple distance

threshold between the two end-points of the sketch input. For a closed curve, we imple-
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Figure 6.5. Algorithms for (a) sweep generation and (b) section sketching.

mented a three stage processing of the sketch input (Figure 6.5(b)). First, we perform an

equidistant curve re-sampling [174] to match the number of points on the sketch to the

initial control section of the sweep surface. Subsequently, we determine if the orientation

of the curve is the same as that of the initial control section. This involves the comparison

between the signs of the areas enclosed by the sketched curve and the initial section. If the

initial and sketched sections have opposite orientations, we correct the sketch orientation

by reversing the order of vertices in the re-sampled sketch input. Finally, we minimize the

twist between the sketch input and the initial section [175].

6.4 User Evaluation

The goals for our study, were to (a) understand how users perceive the interaction work-

flow embodied by MobiSweep, and (b) explore and characterize user ideation and creation

enabled our system.

6.4.1 Participants

We recruited a total of 14 (11 male, 3 female) participants in the range of 19 − 40

years. Our user population consisted of 9 mechanical engineering students (with 1 user

with expertise in CAD and design practices) and 5 students from other fields including

engineering, liberal arts, and sciences. All participants were dominantly right handed and

owned an Android-based or an Apple smartphone.
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6.4.2 Procedure

The length of the study varied between 60 to 75 minutes. In the beginning of the study,

each participant was given a verbal description of the setup, the purpose of the study and

functionality of the MobiSweep application. The participants were then asked to perform

the following tasks:

P Guided Practice: Each participant was taken through a guided composition process

wherein the participant used MobiSweep to create an abstract tree concept. The goal

was to introduce the participants with features and constraints of the system in an

organized manner. During this phase, the participants were encouraged to think-

aloud, ask questions and were provided guidance when required.

T Idea Exploration: This task focused on understanding the usefulness of MobiSweep

as a tool for design brainstorming. Participants was given 1 among 3 pre-determined

product contexts (tea-kettles, jars, lamps) and were asked to create variants of the

given context in a fixed time duration of 15 minutes. Although the duration of time

was fixed, we allowed the users to complete their last composition that was started

before the end of the specified duration. Once the participant was satisfied with a

composition, they would clear the virtual environment and start with a new compo-

sition.

Q Questionnaire: After completing the tasks, participants were asked to complete an

online questionnaire regarding the workflow, intuitiveness of the gestures, and task

preference. the participants were asked to complete an online questionnaire for eval-

uating: (a) effectiveness of interactions and gestures and (b) the usefulness of Mo-

biSweep towards ideation and creation activities in early design. For assessing the

usefulness of MobiSweep for design ideation, we used the creativity support in-

dex [176]. We also asked them questions regarding the potential future use of the

application.
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Figure 6.6. Design concepts generated by the users are shown (kettles and jars are shown
in the top three rows and lamps in the bottom two rows). Each box represents concepts
generated by one user.
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6.4.3 Results

We found that almost all users were able to rapidly generate ideas in the product con-

texts provided to them (Figure 6.6). With an average practice time of 19 minutes (min:

11, max: 30), users generated between 3 to 4 (min: 1, max: 6) concepts within an average

ideation time of 15.7 minutes (min: 6, max: 21). Typically, each concept comprised of at

least 2 and at most 4 parts (sweep surfaces). As expected, the number of concepts reduced

for compositions with more geometric detail at the part level. In the context of these re-

sults, we will discuss our observations and users’ feedback regarding interactions, creative

support, and perceived utility of MobiSweep.

6.4.3.1 Interactions

A significant majority of the ratings were positive across interaction types and work-

flow states (Figure 6.7). The two main problems users faced were (a) manipulation of

a shape/part (S3) using the offsetting operation with one finger press and (b) controlling

the reference plane orientation (S1). Interestingly, many users actually moved their hands

along the trajectory of a sweep surface during shape authoring despite having the knowl-

edge regarding the lack of explicit position tracking. One user commented: “I felt 3D
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objects [were] alive while I was sweeping and manipulating them.” This corroborates the

proprioceptive nature of these activities, making the case for spatio-kinesthetic awareness

for mapping spatial motion of smartphone-based controllers for 3D shape creation.

For the reference plane offset operation, we asked users to compare the one finger press,

with the three finger scale on ease of use, physical comfort, intuitiveness, and controllabil-

ity. All but three users indicated that the three finger press was better in terms of controlla-

bility. However, we found no significant preference towards ease-of-use, physical comfort,

or intuitiveness. Users commented that the three finger pinch was more controlled, however

it took some practice to understand how to apply the gesture correctly. They also perceived

the one finger press as simple and natural, but only controllable in one direction (upwards).

This is a useful insight that could be used to improve the offset operation by introducing

auto-rotation features based on the ergonomics of wrist movements in one-handed manip-

ulations.

Users found the sketching mode to be an intuitive and direct method for specifying

cross-sections. A user commented: “Section sketching granted me quite a lot of flexibility

in producing the desired shapes. I also found that section sketching allows me to select

even the end sketch giving even more flexibility” Additionally, the default circular section

was also considered useful by users. One user pointed out that “Having the circle as a

default was very helpful, as more often than not, I wanted a circular cross-section. When

I didn’t need a circle, I felt it was simpler to just sketch the shape. Having other options

(polygon selection, for instance), may have been annoying.”.

6.4.3.2 Creative Support

A large majority of users responded favorably in terms of the exploration capability,

expressiveness, engagement, and enjoyment provided by MobiSweep (Figure 6.8). In par-

ticular, the user feedback strongly validated our primary goal - quick design ideation in 3D

space. As a user pointed out: “Quickly sampling ideas in 3D shortens the discussion on

any subject that requires a solution and closes the gap between individuals who can’t ex-
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Figure 6.8. User feedback for creativity support in MobiSweep.

plain what they see in their heads and individuals who can’t visualize what is explained to

them. Normally such discussions would end with - I’ll have to show you later.”. Regarding

quick ideation, a user stated: “This tool can be very useful for people who are afraid to

make mistakes and can also help people to formulate spatial perceptions. ”

6.4.3.3 Utility

Users confirmed MobiSweep’s utility in real design problems in individual and team

settings. In particular, users with mechanical engineering and design experience found

such a tool particularly useful in the context of their design projects. One user commented:

“I can see myself using this tool for a quick mock-up of ideas, something to do right after

the sketching stage. Assuming that a future version of the system will allow me to navigate

my creation in 3D (instead of offering a single-port view as it does currently), I would be

able to use this to mock up an idea in 3D to discuss issues like space, access, scale etc.

with my team.”. Most participants with prior design experience perceived our system as a

useful mode of coarse design followed by fine refinement using a professional CAD tool.

One user with expertise in CAD and professional engineering design experience stated: “I

can see a multi-user scenario of this system, where you can perform 3D modeling versions

of the C-sketch or Gallery methods of ideation. It would make for a fun activity, with each

user using their own device to move between ideas and interact with shapes.”
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6.4.3.4 Limitations

One user who was focused on precise manipulations, mentioned: “[it is ] hard to keep a

steady orientation when manipulating”. We believe this can be rectified using simple mea-

sures such as smoothing the smartphone orientation data and snapping the reference plane

orientation along primary axes. Another user mentioned that: “depth is so hard to perceive

on screen.”. Improving visual feedback and allowing view manipulation would allow for

better assembly of shapes. The use of cubic-hermites in our implementation constrains the

control of the spine of the sweep surface. Our early experiments showed that this was a nec-

essary constraint to achieve controllability while maintaining reasonable design flexibility.

Extending our interactions for piecewise will help improve the expressiveness of ideation

at the part level. Our indirect multi-touch control for 3D translations provided low-fatigue

interaction and was effective in terms of controllability. Although users commented that

3D position tracking will improve the their efficiency in translation, their primary reason

was the repetitive nature of the two-finger panning while moving long distances rather than

unintuitive interaction design. One user commented on the offsetting gesture: “I would still

prefer on occasion to use the single tap for coarse movement, and the three-finger touch

for fine movement.” This strongly indicates that the allowing users to customize interaction

parameters such as the offsetting speed and panning sensitivity will significantly improve

user performance in 3D translation allowing for both coarse and fine translations.

6.5 Discussion

The primary motivation behind MobiSweep was to adapt existing parametric geome-

try representations in a conceptual design work-flow using mobile spatial interactions. In

this respect, the creative outcomes, observations and feedback from our user evaluations

make a strong case in favor of the underlying canvas metaphor presented in our work-flow.

Fundamentally, there are two aspects of the metaphor that played a central role: the offset-

ting operation and the sketching modality. Even though it is theoretically possible to span

the whole 3D space using in-plane panning in conjunction with the orientation (free-plane
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casting [150]), the offsetting interaction turned out to be a necessary addition, particularly

in the sweep surface modeling context. Second, despite the constrained screen space on

the smartphone, enabling users to provide sketch inputs for 2D curve creation proved to

be equally essential for allowing them to create shapes with reasonably complex geometric

features.

Extending the arguments above, the aspect most critical in our work was the combina-

tion of two fundamental interactions pertinent to geometric design: sketching and spatial

configuration. Sketch-based 3D modeling forms an exclusive area for early phase design

due to it’s accessibility and natural interface [177]. However, the two-dimensionality of the

interactions involved in sketching interfaces necessitates additional interactions to achieve

a complete 3D modeling work-flow. We believe that the combination of canvas interactions

with sketch-based modeling is a simple but powerful idea that could lead to several new

design work-flows reveal new challenges in mobile spatial interaction. To this end, Mo-

biSweep demonstrated how both 2D and 3D interactions can be coupled in their intended

forms to refine the design work-flow in a concrete modeling system.

6.6 Conclusions

In this chapter, we explored an embodied approach for spatial design ideation through a

sweep-based shape composition work-flow using a smartphone. At its core, MobiSweep al-

lowed for two important geometric modeling interactions: rigid transformations and curve

creation (both 2D and 3D). Our goal in the immediate future is to perform a quantitative

evaluation of the reference plane metaphor for these three operations. MobiSweep revealed

an untapped design space that emerged from the combination of M-SUI and CAD towards

novel work-flows for creative shape conceptualization in early phase design.
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7. CONCLUSION

We will conclude this thesis by first summarizing the technical contributions, reiterating

the implications of this work on spatial design ideation, and finally discussing the avenues

for future research on spatial design ideation.

7.1 Summary

In this work, we explored three approaches for transforming physical human action into

the intent for designing of 3D shapes. We began with the SGC-I framework wherein the

intent was modeled as a combination of arm motion and a finite set of symbolic hand ges-

tures. The aim was to contextualize design intent with respect to the geometric content that

the user intended to create, modify or manipulate. The symbolic transformations embodied

by SGC-I are representative of a state-based approach through a finite set of pre-defined

associations between geometric objects and user input.

Subsequently, we introduced the geometric approach for enabling intent expression in

shape deformation for the design of constrained 3D artifacts – pots. In doing so, we intro-

duced two new interaction techniques, proximal attraction and grasp+motion, that captured

the spatio-temporal continuity of use input by making use of raw user-inputs (PCL). There

were three key outcomes of this approach. First, we practically demonstrated how users’

understanding of a real-world shaping process can be embedded within the virtual inter-

actions for shape modeling. Second, we presented the formal evaluation of the two core

components of interactions for ideation: intent & controllability. Finally, the geometric

approach helped us introduce the role of tangibility in the ideation process through the use

of physical objects has hand-held tools for virtual shape deformation.

In the final stage of this work, we investigated the tangible approach towards spatial

design ideation enabled by the use of smartphones as hand-held controllers. In particular,
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we investigated a new interaction metaphor for transforming the smartphone into a tangi-

ble mediator of design intent. Here, the idea was to capture the physical action of creating

swept surfaces towards their creation. We demonstrated the effectiveness of this approach

towards spatial design ideation through the MobiSweep application. From the general per-

spective of interaction techniques, the tangible approach was as a middle-ground between

the symbolic and geometric approaches through the combination of prescriptive gestures

and spatial manipulation.

7.2 Design Implications

While the embodied interaction framework served as the source of broader guiding

principles, there are some specific aspects of spatial interactions that we have discovered

through the symbolic, geometric, and tangible approaches presented in this work. Below,

we describe the broader insights in terms of the implications for designing spatial interac-

tions for the ideation of shapes.

• Context-aware Interaction Approaches: There are several aspects to a software

tool that must be considered from the point of view of usability, utility, and context.

Especially when the tool is targeted towards facilitating creative idea generation, no

single approach (symbolic, geometric, or tangible) can be sufficient to cater to all the

requirements that the tool is intended to satisfy. The most important implication in

the design of interactive consideration while designing a virtual interface for ideation

is to infuse the awareness of the currently active context during its usage. We have

learned that the geometric approach is suitable for gradual and reflective processes

such as shape deformation and creation. One the other hand, symbolic interactions

are suitable for contexts such as selecting objects and identifying modeling opera-

tions.

• Value of Geometric Constraints: An important problem in computer-supported

ideation is to determine a minimal set of modeling features that channel the de-

signer’s thinking process towards the variety of ideas while retaining expressiveness
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of their creations. Our focus being the study of spatial interactions, one of the most

important outcomes of this thesis is the demonstration of the fact that a careful selec-

tion of geometric constraints is critical to the investigation of interaction techniques

towards idea generation. For instance, the choice of the pottery metaphor helped

us focus on the geometric characterization of intent and controllability for shape

deformation. Similarly, the assembly based context in MobiSweep allowed for the

exploration of the ideation process. The key insight gained in this respect is that

properly defined geometric constraints can be instrumental for studying the role of

interactions as well as engaging users through carefully defined modeling contexts.

• Levels of Spatiality: For a spatial task there can be several input mechanisms with

different degree-of-freedom (DoF). To this end, we explored two input mechanisms:

(a) purely mid-air (6 DoF) input in symbolic and geometric approaches and (b) com-

bination of multi-touch and 3 DoF orientation control in the tangible approach. The

main differences between these mechanisms is in their utilization of manual effort

(i.e. the extent to which they use and divide bodily effort for a spatial task). On

one hand, even though interactions shown in the symbolic and geometric approaches

were generally liked by users, these interactions also lacked in control and often lead

to arm fatigue. On the other hand, the tangible approach demonstrated a balance be-

tween spatiality and control by constraining the interaction to a 3 DoF control. The

additional use of touch interactions increased the expressiveness in thee ideation pro-

cess. This clearly points to the importance of manual constraints in designing spatial

interactions for virtual tasks.

• Creativity Evaluation: There are several studies in design literature that aim at

quantifying the ideation process [178,179]. In all these case, ideas are visually com-

municated through sketches and are judged by a set of independent reviewers. How-

ever, the quality of sketches severely affects the judgment of early phase design ideas.

Recently, Kudrowitz et al. [180] stated that “correct perspective and realistic propor-

tions are factors of a sketch that can influence the perceived creativity of an idea”.
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Enabling the direct communication of ideas as 3D artifacts, as demonstrated in this

thesis, enables a more realistic and reliable enforcement of the known metrics for

ideation evaluation.

7.3 Future Directions

One of the core goals of this thesis was to demonstrate, through concrete software

prototypes, that spatial interactions can be useful as well as usable for direct creation of 3D

virtual artifacts towards quick idea generation. Below, we identify some directions that can

help guide future research on spatial interactions for design ideation.

• Parametric Design: The contexts presented in this work (e.g. pottery) were primar-

ily defined towards the design of free-form shapes. However, there is still a large

body of work that is required towards the design of parametric shapes using spatial

interactions. In terms of interaction techniques, a deeper investigation of precise spa-

tial input is required in the context of the design of 3D shapes. For instance, methods

for selecting both geometric (e.g. vertex, edge, face) and semantic (e.g. protrusion,

fillet) features on CAD models need be designed and investigated for engineering

designs. Due to parametric interdependencies within 3D engineering models, mod-

ification of one model feature inherently necessitates adjustment of others. This is

analogous to “brushing and linking” commonly studied in information visualization,

where a changes in one form of data representation gets automatically reflected in

others. Drawing from existing HCI guidelines, mobile interaction metaphors can be

explored for representing, visualizing, and controlling these interdependent paramet-

ric relations in 3D models.

• Functional Design and Analysis: While this work focused on the creation of static

geometric designs and 3D assemblies, the functional aspect of early design ideas is

a critical component of the ideation process. Thus, investigating the role of spatial

interactions for defining functional elements to geometric shapes is an important di-

rection for future research. For example, it would be interesting to investigate how
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physical human action could be transformed into the kinematic relationships between

multiple parts of a 3D design. Another example can be the design and evaluation of

spatial methods for annotating attributes such as materials and functions on to shapes

created during an ideation process. Similarly, the physicality of spatial interactions

also lends itself to several novel scenarios for design analysis. Exploring function

based design and analysis would be interesting topics of investigation in future re-

search.

• Comparison of Spatial Input: From the interaction perspective, the generality of

the symbolic and geometric approaches allows for the accommodation of different

representations of three-dimensional user input. For instance, we have seen two fun-

damentally different representations of the hand: a point and a point-cloud. There is

also a third possibility for representing the hand as a skeletal model. On the other

hand, we have also seen a variety of geometric modeling contexts that are possi-

ble just with a single sweep surface representation. Thus, an in-depth evaluation

and comparison of hand representations is an important direction for future research

across the various geometric modeling contexts such as object manipulation, shape

deformation and the creation of new shapes.

• Collaborative Ideation: One of the unexplored functionality provided by our phone-

based tangible approach is that it enables new possibilities for collaborative ideation.

There are several interesting aspects of early phase design collaboration that need to

be investigated in the context of our tangible approach. The spatial design capabili-

ties provided by systems such as MobiSweep can now be used to gain deeper insights

on (a) how users segment design tasks during ideation involving multiple geometric

parts and those involving a single shape, and (b) how collocated and distant collab-

orations occur during spatial design ideation using single large-screen displays and

distributed personal devices respectively.
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7.4 Closing Statement

Fundamentally, any instance of human-computer interaction is a cycle comprised of (a)

input by the user through a hardware system, (b) computation in a software system, and (c)

output to the user by a hardware system again. In the last five years, i.e. since the beginning

of this work, several advancements in mid-air input and output technologies have either

taken place or are in the making. After the Kinect, we have witnessed several other camera

technologies such as PrimeSense Carmine, SoftKinetic, and Leap Motion, leading to the

integration of depth sensors in tablets (Google Tango). We have also witnessed, in paral-

lel, the commercialization of virtual and augmented reality hardware such as Oculus Rift

and Meta SpaceGlass leading to advanced visual technologies such as HoloLens. Amidst

these developments, this thesis dealt with the computational core in the specific context of

ideation. Given the context, the overarching contribution of this work was to shift towards

a new paradigm – what you do is what you get”. Through three concrete embodiments

this paradigm, we learned that creative tasks such as design demand an uninhibited flow

between what a designer is thinking and what the designer is doing to communicate the

thought. We believe that this work took a step towards enabling this flow through embod-

ied interactions for spatial design ideation.
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[70] Jacobson, A., Baran, I., Popović, J., and Sorkine, O. Bounded biharmonic weights
for real-time deformation. ACM Transactions on Graphics (proceedings of ACM
SIGGRAPH), 30(4):78:1–78:8, 2011.



155

[71] Igarashi, T., Moscovich, T., and Hughes, J. F. As-rigid-as-possible shape manipula-
tion. ACM Trans. Graph., 24:1134–1141, July 2005.

[72] Botsch, M. and Kobbelt, L. An intuitive framework for real-time freeform modeling.
ACM Trans. Graph., 23:630–634, August 2004.

[73] Singh, K. and Fiume, E. Wires: a geometric deformation technique. pages 405–414,
1998.

[74] Sederberg, T. W. and Parry, S. R. Free-form deformation of solid geometric models.
SIGGRAPH Comput. Graph., 20:151–160, August 1986.

[75] Hirota, G., Maheshwari, R., and Lin, M. Fast volume-preserving free-form defor-
mation using multi-level optimization. Computer-Aided Design, 32(8-9):499 – 512,
2000.

[76] Barr, A. H. Global and local deformations of solid primitives. SIGGRAPH Comput.
Graph., 18:21–30, January 1984.

[77] Hsu, W. M., Hughes, J. F., and Kaufman, H. Direct manipulation of free-form defor-
mations. In SIGGRAPH ’92: Proceedings of the 19th annual conference on Com-
puter graphics and interactive techniques, pages 177–184, New York, NY, USA,
1992. ACM Press.

[78] Angelidi, A., Canif, M., Wyvill, G., and King, S. Swirling-sweepers: constant-
volume modeling. In Computer Graphics and Applications, 2004. PG 2004. Pro-
ceedings. 12th Pacific Conference on, pages 10 – 15, oct. 2004.

[79] Choi, B. K. and Lee, C. S. Sweep surfaces modelling via coordinate transformation
and blending. Computer-Aided Design, 22(2):87–96, 1990.

[80] Lee, J.-H. Modeling generalized cylinders using direction map representation.
Computer-Aided Design, 37(8):837 – 846, 2005. ¡ce:title¿CAD ’04 Special Issue:
Modelling and Geometry Representations for CAD¡/ce:title¿.

[81] Kim, M.-S., Park, E.-J., and Lee, H.-Y. Modeling and animation of generalized
cylinders with variable radius offset space curves. The Journal of Visualization and
Computer Animation, 5:189–207, 1994.

[82] Hyun, D.-E., Yoon, S.-H., Chang, J.-W., Seong, J.-K., Kim, M.-S., and Jüttler, B.
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