18 research outputs found

    Software Coherence in Multiprocessor Memory Systems

    Get PDF
    Processors are becoming faster and multiprocessor memory interconnection systems are not keeping up. Therefore, it is necessary to have threads and the memory they access as near one another as possible. Typically, this involves putting memory or caches with the processors, which gives rise to the problem of coherence: if one processor writes an address, any other processor reading that address must see the new value. This coherence can be maintained by the hardware or with software intervention. Systems of both types have been built in the past; the hardware-based systems tended to outperform the software ones. However, the ratio of processor to interconnect speed is now so high that the extra overhead of the software systems may no longer be significant. This issue is explored both by implementing a software maintained system and by introducing and using the technique of offline optimal analysis of memory reference traces. It finds that in properly built systems, software maintained coherence can perform comparably to or even better than hardware maintained coherence. The architectural features necessary for efficient software coherence to be profitable include a small page size, a fast trap mechanism, and the ability to execute instructions while remote memory references are outstanding

    Exploiting cache locality at run-time

    Get PDF
    With the increasing gap between the speeds of the processor and memory system, memory access has become a major performance bottleneck in modern computer systems. Recently, Symmetric Multi-Processor (SMP) systems have emerged as a major class of high-performance platforms. Improving the memory performance of Parallel applications with dynamic memory-access patterns on Symmetric Multi-Processors (SMP) is a hard problem. The solution to this problem is critical to the successful use of the SMP systems because dynamic memory-access patterns occur in many real-world applications. This dissertation is aimed at solving this problem.;Based on a rigorous analysis of cache-locality optimization, we propose a memory-layout oriented run-time technique to exploit the cache locality of parallel loops. Our technique have been implemented in a run-time system. Using simulation and measurement, we have shown our run-time approach can achieve comparable performance with compiler optimizations for those regular applications, whose load balance and cache locality can be well optimized by tiling and other program transformations. However, our approach was shown to improve significantly the memory performance for applications with dynamic memory-access patterns. Such applications are usually hard to optimize with static compiler optimizations.;Several contributions are made in this dissertation. We present models to characterize the complexity and present a solution framework for optimizing cache locality. We present an effective estimation technique for memory-access patterns to support efficient locality optimizations and information integration. We present a memory-layout oriented run-time technique for locality optimization. We present efficient scheduling algorithms to trade off locality and load imbalance. We provide a detailed performance evaluation of the run-time technique

    Supporting distributed computation over wide area gigabit networks

    Get PDF
    The advent of high bandwidth fibre optic links that may be used over very large distances has lead to much research and development in the field of wide area gigabit networking. One problem that needs to be addressed is how loosely coupled distributed systems may be built over these links, allowing many computers worldwide to take part in complex calculations in order to solve "Grand Challenge" problems. The research conducted as part of this PhD has looked at the practicality of implementing a communication mechanism proposed by Craig Partridge called Late-binding Remote Procedure Calls (LbRPC). LbRPC is intended to export both code and data over the network to remote machines for evaluation, as opposed to traditional RPC mechanisms that only send parameters to pre-existing remote procedures. The ability to send code as well as data means that LbRPC requests can overcome one of the biggest problems in Wide Area Distributed Computer Systems (WADCS): the fixed latency due to the speed of light. As machines get faster, the fixed multi-millisecond round trip delay equates to ever increasing numbers of CPU cycles. For a WADCS to be efficient, programs should minimise the number of network transits they incur. By allowing the application programmer to export arbitrary code to the remote machine, this may be achieved. This research has looked at the feasibility of supporting secure exportation of arbitrary code and data in heterogeneous, loosely coupled, distributed computing environments. It has investigated techniques for making placement decisions for the code in cases where there are a large number of widely dispersed remote servers that could be used. The latter has resulted in the development of a novel prototype LbRPC using multicast IP for implicit placement and a sequenced, multi-packet saturation multicast transport protocol. These prototypes show that it is possible to export code and data to multiple remote hosts, thereby removing the need to perform complex and error prone explicit process placement decisions

    USING HARDWARE MONITORS TO AUTOMATICALLY IMPROVE MEMORY PERFORMANCE

    Get PDF
    In this thesis, we propose and evaluate several techniques to dynamically increase the memory access locality of scientific and Java server applications running on cache-coherent non-uniform memory access(cc-NUMA) servers. We first introduce a user-level online page migration scheme where applications are profiled using hardware monitors to determine the preferred locations of the memory pages. The pages are then migrated to memory units via system calls. In our approach, both profiling and page migrations are conducted online while the application runs. We also investigate the use of several potential sources of profiles gathered from hardware monitors in dynamic page migration and compare their effectiveness to using profiles from centralized hardware monitors. In particular, we evaluate using profiles from on-chip CPU monitors, valid TLB content and a hypothetical hardware feature. We also introduce a set of techniques to both measure and optimize the memory access locality in Java server applications running on cc-NUMA servers. In particular, we propose the use of several NUMA-aware Java heap layouts for initial object allocation and use of dynamic object migration during garbage collection to move objects local to the processors accessing them most. To evaluate these techniques, we also introduce a new hybrid simulation approach to simulate memory behavior of parallel applications based on gathering a partial trace of memory accesses from hardware monitors during an actual run of an application and extrapolating it to a representative full trace. Our dynamic page migration approach achieved reductions up to 90% in the number of non-local accesses, which resulted in up to a 16% performance improvement. Our results demonstrated that the combinations of inexpensive hardware monitors and a simple migration policy can be effectively used to improve the performance of real scientific applications. Our simulation study demonstrated that cache miss profiles gathered from on-chip hardware monitors, which are typically available in current micro-processors, can be effectively used to guide dynamic page migrations in an application. Our NUMA-aware heap layouts reduced the total number of non-local object accesses in SPECjbb2000 up to 41%, which resulted in up to a 40% reduction in the memory wait time of the workload

    Locality Awareness for Task Parallel Computation

    Get PDF
    The task parallel programming model allows programmers to express concurrency at a high level of abstraction and places the burden of scheduling parallel execution on the run time system. Efficient scheduling of tasks on multi-socket multicore shared memory systems requires careful consideration of an increasingly complex memory hierarchy, including shared caches and non-uniform memory access (NUMA) characteristics. In this dissertation, we study the performance impact of these issues and other performance factors that limit parallel speedup in task parallel program executions and propose new scheduling strategies to improve performance. Our performance model characterizes lost efficiency in terms of overhead time, idle time, and work time inflation due to increased data access costs. We introduce a hierarchical run time scheduler that combines the benefits of work stealing and parallel depth-first schedulers. Matching the scheduler design to the memory hierarchy of multicore NUMA systems limits costly remote data accesses while maintaining load balance and exploiting constructive data sharing among threads that share a cache. We also propose a locality- based scheduling framework based on locality domains and comprising an API for programmers to specify application locality and a scheduler that honors those specifications. Implementations of the hierarchical and locality-based schedulers in our OpenMP run time system exhibit performance improvements on several task parallel benchmark applications over existing scheduling strategies and production OpenMP run time systems.Doctor of Philosoph

    Disaggregated Memory Architectures for Blade Servers.

    Full text link
    Current trends in memory capacity and power of servers indicate the need for memory system redesign. Memory capacity is projected to grow at a smaller rate relative to the growth in compute capacity, leading to a potential memory capacity wall in future systems. Furthermore, per-server memory demands are increasing due to large-memory applications, virtual machine consolidation, and bigger operating system footprints. The large amount of memory required is leading to memory power being a substantial and growing portion of server power budgets. As these capacity and power trends continue, a new memory architecture is needed that provides increased capacity and maximizes resource efficiency. This thesis presents the design of a disaggregated memory architecture for blade servers that provides expanded memory capacity and dynamic capacity sharing across multiple servers. Unlike traditional architectures that co-locate compute and memory resources, the proposed design disaggregates a portion of the serversā€™ memory, which is then assembled in separate memory blades optimized for both capacity and power usage. The servers access memory blades through a redesigned memory hierarchy that is extended to include a remote level that augments local memory. Through the shared interconnect of blade enclosures, multiple compute blades can connect to a single memory blade and dynamically share its capacity. This sharing increases resource efficiency by taking advantage of the differing memory utilization patterns of the compute blades. This thesis evaluates two system architectures that provide operating system-transparent access to the memory blade; one uses virtualization and a commodity-based interconnect, and the other uses minor hardware additions and a high-speed interconnect. The ability to extend and share memory can achieve orders of magnitude performance improvements in cases where applications run out of memory capacity, and similar improvements in performance-per-dollar in cases where systems are overprovisioned for peak memory usage. To complement the evaluation, a hypervisor-based prototype of one system architecture is developed. Finally, by extending the principles of disaggregation to both compute and memory resources, new server architectures are proposed for large-scale data centers that can double performance-per-dollar when considering total cost of ownership compared to traditional servers.PhDComputer Science & EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/76007/1/ktlim_1.pd

    Garbage collection optimization for non uniform memory access architectures

    Get PDF
    Cache-coherent non uniform memory access (ccNUMA) architecture is a standard design pattern for contemporary multicore processors, and future generations of architectures are likely to be NUMA. NUMA architectures create new challenges for managed runtime systems. Memory-intensive applications use the systemā€™s distributed memory banks to allocate data, and the automatic memory manager collects garbage left in these memory banks. The garbage collector may need to access remote memory banks, which entails access latency overhead and potential bandwidth saturation for the interconnection between memory banks. This dissertation makes ļ¬ve signiļ¬cant contributions to garbage collection on NUMA systems, with a case study implementation using the Hotspot Java Virtual Machine. It empirically studies data locality for a Stop-The-World garbage collector when tracing connected objects in NUMA heaps. First, it identiļ¬es a locality richness which exists naturally in connected objects that contain a root object and its reachable setā€” ā€˜rooted sub-graphsā€™. Second, this dissertation leverages the locality characteristic of rooted sub-graphs to develop a new NUMA-aware garbage collection mechanism. A garbage collector thread processes a local root and its reachable set, which is likely to have a large number of objects in the same NUMA node. Third, a garbage collector thread steals references from sibling threads that run on the same NUMA node to improve data locality. This research evaluates the new NUMA-aware garbage collector using seven benchmarks of an established real-world DaCapo benchmark suite. In addition, evaluation involves a widely used SPECjbb benchmark and Neo4J graph database Java benchmark, as well as an artiļ¬cial benchmark. The results of the NUMA-aware garbage collector on a multi-hop NUMA architecture show an average of 15% performance improvement. Furthermore, this performance gain is shown to be as a result of an improved NUMA memory access in a ccNUMA system. Fourth, the existing Hotspot JVM adaptive policy for conļ¬guring the number of garbage collection threads is shown to be suboptimal for current NUMA machines. The policy uses outdated assumptions and it generates a constant thread count. In fact, the Hotspot JVM still uses this policy in the production version. This research shows that the optimal number of garbage collection threads is application-speciļ¬c and conļ¬guring the optimal number of garbage collection threads yields better collection throughput than the default policy. Fifth, this dissertation designs and implements a runtime technique, which involves heuristics from dynamic collection behavior to calculate an optimal number of garbage collector threads for each collection cycle. The results show an average of 21% improvements to the garbage collection performance for DaCapo benchmarks

    Interactive High Performance Volume Rendering

    Get PDF
    This thesis is about Direct Volume Rendering on high performance computing systems. As direct rendering methods do not create a lower-dimensional geometric representation, the whole scientific dataset must be kept in memory. Thus, this family of algorithms has a tremendous resource demand. Direct Volume Rendering algorithms in general are well suited to be implemented for dedicated graphics hardware. Nevertheless, high performance computing systems often do not provide resources for hardware accelerated rendering, so that the visualization algorithm must be implemented for the available general-purpose hardware. Ever growing datasets that imply copying large amounts of data from the compute system to the workstation of the scientist, and the need to review intermediate simulation results, make porting Direct Volume Rendering to high performance computing systems highly relevant. The contribution of this thesis is twofold. As part of the first contribution, after devising a software architecture for general implementations of Direct Volume Rendering on highly parallel platforms, parallelization issues and implementation details for various modern architectures are discussed. The contribution results in a highly parallel implementation that tackles several platforms. The second contribution is concerned with the display phase of the ā€œDistributed Volume Rendering Pipelineā€. Rendering on a high performance computing system typically implies displaying the rendered result at a remote location. This thesis presents a remote rendering technique that is capable of hiding latency and can thus be used in an interactive environment
    corecore