
LOCALITY AWARENESS
FOR TASK PARALLEL COMPUTATION

Stephen Lecler Olivier

A dissertation submitted to the faculty of the University of North Carolina at Chapel Hill
in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the
Department of Computer Science.

Chapel Hill
2012

Approved by

Jan F. Prins, Advisor

James H. Anderson

Bronis R. de Supinski

Robert J. Fowler

Allan K. Porterfield

©2012
Stephen Lecler Olivier

ALL RIGHTS RESERVED

ii

ABSTRACT

STEPHEN LECLER OLIVIER: Locality Awareness for Task Parallel Computation
(Under the direction of Jan F. Prins)

The task parallel programming model allows programmers to express concurrency at a high level

of abstraction and places the burden of scheduling parallel execution on the run time system. Efficient

scheduling of tasks on multi-socket multicore shared memory systems requires careful consideration

of an increasingly complex memory hierarchy, including shared caches and non-uniform memory

access (NUMA) characteristics. In this dissertation, we study the performance impact of these issues

and other performance factors that limit parallel speedup in task parallel program executions and

propose new scheduling strategies to improve performance. Our performance model characterizes

lost efficiency in terms of overhead time, idle time, and work time inflation due to increased data

access costs.

We introduce a hierarchical run time scheduler that combines the benefits of work stealing

and parallel depth-first schedulers. Matching the scheduler design to the memory hierarchy of

multicore NUMA systems limits costly remote data accesses while maintaining load balance and

exploiting constructive data sharing among threads that share a cache. We also propose a locality-

based scheduling framework based on locality domains and comprising an API for programmers

to specify application locality and a scheduler that honors those specifications. Implementations of

the hierarchical and locality-based schedulers in our OpenMP run time system exhibit performance

improvements on several task parallel benchmark applications over existing scheduling strategies

and production OpenMP run time systems.

iii

Deo Optimo Maximo

In memory of Edward Lecler and Gladys Bowen Lecler.

iv

ACKNOWLEDGEMENTS

Throughout my graduate study I have had the support of exceptional colleagues, steadfast friends,

and loving family during the completion of this dissertation. These acknowledgments include only a

small subset of all the people who have helped to make this dissertation possible.

My advisor Jan Prins taught me how to be a researcher and put in countless hours to that end.

Allan Porterfield showed me how to work in the bowels of multithreading libraries, funded me

through his MAESTRO grant, and has been a tireless mentor and advocate. Bronis de Supinski

connected me with the OpenMP community and the broader HPC community. He also directed my

work during my semester at Lawrence Livermore National Laboratory. Jim Anderson taught me

how to reason about concurrency, and Rob Fowler introduced me to counter-based performance

measurement.

I thank the High Performance Computer Modernization Office for their sponsorship of my

National Defense Science and Engineering Graduate Fellowship, which funded me for three years

and gave me the freedom to pursue my research interests. Thanks to the RENCI and UNC Research

Computing for the use of their computing facilities.

The computer science department at Carolina is an exceptional place to work. Thanks especially

to Tim Quigg for making students a priority. Many of my fellow students have become cherished

friends, including Keith Lee, Jamie Snape, Bjoern Brandenburg, Sasa Junusovic, Aaron Block, Russ

Gayle, Srinivas Krishnan, Jason Sewall, Robbie Cochran, Catie Welsh, Cory Quammen, Tabitha

Peck, Todd Gamblin, and Jeff Terrell. I am grateful to the generous alumni whose support of the

Alumni Fellowship has allowed me to focus on my dissertation during my last year.

Coral Kelso and Ron Dupuis first introduced me to computer science back in the Nineties.

Thanks to them, and all my former teachers and professors, for setting me on the path of knowledge.

My best friends Lap Trinh and Denis Gjoni have been a constant source of support, along with

my many other friends back in Texas. I am also greatly indebted to my friends from the UNC

Newman Center, including Cathy McCurry, Eric Burns, Danny Kumar, Kim Burke, Mary Landry,

v

Bryan Davis, and Erin Buller. Thanks especially to Susan Metallo, with whom I’ve shared the ups

and downs of the final stages of graduate school.

My most heartfelt thanks go to my parents, Cindy and Errol Olivier, and my sister Leslie. No

words could express how grateful I am for your constant love and support. Finally, it is to my Lord

Jesus Christ that I owe all that I have and my very being. Doing God’s will is the ultimate goal of

this and all my life’s work.

vi

TABLE OF CONTENTS

LIST OF TABLES . x

LIST OF FIGURES . xi

LIST OF ABBREVIATIONS . xv

1 INTRODUCTION . 1

1.1 Multicore Architectures . 1

1.2 Shared Memory Parallel Programming . 3

1.3 Task Parallel Programming Model . 4

1.4 Thesis . 6

1.5 Contributions. 6

1.6 Organization . 8

2 BACKGROUND AND PRIOR WORK . 9

2.1 Expressing Task Parallelism. 9

2.2 Scheduling Theory . 12

2.2.1 Task Parallel Computations as DAGs . 12

2.2.2 Overview of Task Scheduling Policies . 14

2.2.3 Breadth-first and Greedy Scheduling . 15

2.2.4 Work Stealing . 17

2.2.5 Parallel Depth-first Scheduling . 21

2.2.6 DFDeques . 23

2.2.7 Bounds on Cache Misses . 23

2.2.8 General DAG Scheduling . 26

vii

2.3 Run Time System Implementations . 26

2.3.1 Cilk. 26

2.3.2 OpenMP . 27

2.4 Other Task Parallel Languages and Libraries . 28

2.5 Performance Analysis Tools. 32

3 UTS: STRESS TEST FOR LOAD BALANCING . 34

3.1 The UTS Benchmark . 34

3.2 UTS Implementations . 35

3.3 Performance Evaluation . 39

3.4 Summary . 45

4 CATEGORIZING EXECUTION TIME. 46

4.1 UTS Revisited. 47

4.2 Analysis of BOTS . 49

4.3 Work Time Inflation . 53

4.4 Available Parallelism . 57

4.5 Summary . 58

5 QTHREADS-BASED RUN TIME SYSTEM . 60

5.1 Qthreads . 60

5.2 Compilation . 62

5.3 Execution . 64

6 HIERARCHICAL SCHEDULING . 66

6.1 Limitations of Work Stealing and PDF Schedulers . 66

6.2 Hierarchical Scheduling with MTS . 68

6.3 Scheduler Implementation in Qthreads. 69

6.4 Evaluation . 71

6.4.1 Performance on Intel Nehalem . 72

6.4.1.1 Speedup Results . 74

viii

6.4.1.2 Variability. 85

6.4.1.3 Performance Analysis of MTS . 86

6.4.2 Performance on AMD Magny Cours. 88

6.4.3 Performance on SGI Altix . 92

6.5 Summary . 96

7 LOCALITY-BASED SCHEDULING . 97

7.1 Work Time Inflation in Health and Heat . 97

7.2 First Touch and Scheduling . 99

7.3 A Framework for Locality-Based Scheduling . 102

7.3.1 A Concise API for Programmer-Specified Scheduling . 102

7.3.2 Run Time Scheduling Policy and Implementation . 103

7.4 Evaluation . 106

7.4.1 Performance and Speedup . 106

7.4.2 Performance Counter Measurement . 111

7.4.3 Visualizing Observed Task Schedules . 114

7.5 Summary . 117

8 CONCLUSIONS AND FUTURE DIRECTIONS. 119

8.1 Future Directions . 119

8.2 The Big Picture . 120

BIBLIOGRAPHY . 121

ix

LIST OF TABLES

3.1 Sequential performance on UTS. 39

4.1 Sequential execution times (in seconds) on BOTS. 51

6.1 Scheduler implementations evaluated: five Qthreads implementations,
ICC, and GCC. 71

6.2 Sequential and parallel execution times (in seconds) using ICC, GCC, and
Qthreads MTS. 73

6.3 Variability in performance on the Intel Nehalem using ICC, GCC, MTS,
and WS (standard deviation as a percent of the fastest time). 85

6.4 Number of remote steal operations during execution by Qthreads MTS
and WS schedulers on Intel Nehalem. 86

6.5 Tasks stolen and tasks per steal using the MTS scheduler. Average of ten runs. 87

6.6 Memory performance data for Health using MTS and WS. Average of ten
runs on Intel Nehalem. 87

6.7 Memory performance data for Sort using MTS and WS. Average of ten
runs on Intel Nehalem. 87

6.8 Sequential execution times using ICC and GCC on the AMD Magny Cours. 89

6.9 Variability in performance on AMD Magny Cours using 16 threads (stan-
dard deviation as a percent of the fastest time). 91

6.10 Sequential execution times on the SGI Altix. 92

7.1 Run times (elapsed) on Health. 108

7.2 Run times (elapsed) on Heat. 108

7.3 Data Transferred (GB) over QPI between sockets during sequential and
32-thread executions. 114

x

LIST OF FIGURES

1.1 A typical four-socket X86 multicore system. 3

1.2 Thread parallel matrix multiplication in OpenMP. 4

1.3 Task parallel mergesort in OpenMP. 5

2.1 Calculating Fibonacci numbers in Cilk and OpenMP.. 10

2.2 Counting tree nodes in OpenMP. 11

2.3 Code, task graph, and schedule of fib on two threads. 12

2.4 A taxonomy of task scheduling policies. 14

2.5 Task graph and breadth-first schedule on two threads. 15

2.6 Task graph and work-first schedule on two threads. 18

2.7 Task graph and PDF schedule on two threads. 22

2.8 Counting tree nodes in Cilk and Cilk++. 28

2.9 Categorization of selected task parallel languages and libraries. 31

2.10 Task graph executing on three threads. 33

3.1 Example binomial tree. 36

3.2 Sequential code for UTS traversal function. 37

3.3 UTS using OpenMP tasks. 37

3.4 UTS using Threading Building Blocks. 38

3.5 UTS using Cilk++. 38

3.6 Parallel speedup of UTS using OpenMP Tasks. 40

3.7 Speedup of UTS: OpenMP versus other task parallel languages and libraries. 41

3.8 Tasks executed per thread during UTS execution. 42

3.9 Average moved tasks per thread during UTS execution. 43

3.10 UTS speedup using OpenMP tasks as a function of tasks executed in-place. 44

3.11 UTS speedup (custom implementation) as a function of tasks stolen per steal. 44

xi

4.1 Total time over all threads on a 24-thread UTS execution. 47

4.2 Total time over all threads on UTS (custom implementation) as a function
of tasks stolen per steal. 48

4.3 Simplified code for the two versions of Alignment. 50

4.4 Speedup on BOTS using ICC and GCC with 32 threads. 51

4.5 Total time over all threads on BOTS using ICC with 32 threads. 52

4.6 Total time over all threads on BOTS using GCC with 32 threads. 53

4.7 Topology of the four-socket Intel Nehalem-EX system.. 54

4.8 Total time on BOTS using ICC: Work time inflation. 55

4.9 Total time on BOTS using GCC: Work time inflation. 56

4.10 Speedup limitations due to work time inflation. 57

4.11 Queue length during execution of Sort using a work-first schedule. 58

4.12 Queue length during execution of Sort using a help-first schedule. 59

5.1 Software architecture of Qthreads. 61

5.2 Compilation process using ROSE.. 62

5.3 Code for fib before and after transformation by ROSE. 63

5.4 State diagram for a worker thread during execution. 65

6.1 Task graph for a computation executing on three threads. 67

6.2 Topology of the four-socket Intel Nehalem-EX system.. 68

6.3 Health on 4-socket Intel Nehalem . 74

6.4 Total time over all threads on Health using 32 threads. 75

6.5 Sort on 4-socket Intel Nehalem . 76

6.6 Total time over all threads on Sort using 32 threads. 76

6.7 NQueens on 4-socket Intel Nehalem . 77

6.8 Total time over all threads on NQueens using 32 threads. 78

6.9 Fib on 4-socket Intel Nehalem . 78

6.10 Total time over all threads on Fib using 32 threads. 79

xii

6.11 Alignment-single on 4-socket Intel Nehalem . 79

6.12 Alignment-for on 4-socket Intel Nehalem . 80

6.13 Total time over all threads on Alignment-single using 32 threads. 80

6.14 Total time over all threads on Alignment-for using 32 threads. 81

6.15 SparseLU-single on 4-socket Intel Nehalem . 81

6.16 SparseLU-for on 4-socket Intel Nehalem . 82

6.17 Total time over all threads on SparseLU-single using 32 threads. 82

6.18 Total time over all threads on SparseLU-for using 32 threads. 83

6.19 Strassen on 4-socket Intel Nehalem . 83

6.20 Total time over all threads on Strassen using 32 threads. 84

6.21 Performance on Health using MTS based on the choice of chunk size for
stealing on Intel Nehalem. 87

6.22 Topology of the 2-socket/4-chip AMD Magny Cours. 89

6.23 Six BOTS benchmarks on 2-socket AMD Magny Cours using 16 threads
that show linear or near-linear speedup using Qthreads. 90

6.24 Three BOTS benchmarks on 2-socket AMD Magny Cours using 16 threads
showing sub-linear speedup. 90

6.25 NQueens on SGI Altix . 92

6.26 Fib on SGI Altix . 93

6.27 Alignment-single on SGI Altix . 93

6.28 Alignment-for on SGI Altix . 94

6.29 SparseLU-single on SGI Altix . 94

6.30 SparseLU-for on SGI Altix . 95

6.31 Health, Sort, and Strassen on SGI Altix using 32 threads . 95

7.1 Total time over all threads on Health . 98

7.2 Total time over all threads on Heat . 99

7.3 Simple first-touch initialization under OpenMP. 100

7.4 Analogous initialization for OpenMP tasks. 101

xiii

7.5 A task parallel program using locality-based scheduling. 104

7.6 A mapping of locality domains to a two-socket system. 105

7.7 Total time over all threads for Health. 106

7.8 Speedup on Health. 107

7.9 Total time over all threads for Heat. 108

7.10 Speedup on Heat. 109

7.11 CDF showing data access latency for Health. 110

7.12 Ranges of load latencies (cycles) for Health. 111

7.13 CDF showing data access latency for Heat . 112

7.14 Ranges of load latencies (cycles) for Heat. 113

7.15 Observed schedules of tasks over time on 8 threads on the same chip. 115

xiv

LIST OF ABBREVIATIONS

API Application Programming Interface

BOTS Barcelona OpenMP Tasks Suite

CnC Concurrent Collections

CQ Centralized Queueuing

GCC GNU Compiler Collection

DAG Directed Acyclic Graph

FEB Full/Empty Bit

ICC Intel C Compiler

MTS Multithreaded Shepherds

NUMA Non-Uniform Memory Access

PDF Parallel Depth-First

PGAS Partitioned Global Address Space

QPI QuickPath Interconnect

TBB Threading Building Blocks

UTS Unbalanced Tree Search

WS Work Stealing

xv

CHAPTER 1

INTRODUCTION

Emerging trends in computer hardware present new opportunities and challenges for high

performance scientific computing. In this introductory chapter, we explain how these trends motivate

our work on locality awareness for task parallel computation, assert our thesis, and describe the

contributions and organization of this dissertation.

1.1 Multicore Architectures

In the context of this dissertation, parallel computation is the use of concurrent execution of

operations to achieve performance, i.e., faster execution times, not possible with sequential (non-

concurrent) computation. While parallel computers date back to the earliest electronic computer

systems (Goldstine and Goldstine, 1946), only recently has parallel computation become the primary

route to increased performance. Throughout the second half of the 20th century, computational per-

formance of sequential programs grew exponentially and, from the point of view of the programmer,

transparently. A program written in one year could execute several times faster in succeeding years

with minimal programmer effort due to increases in clock speed frequency and hardware-managed

instruction level parallelism (ILP), such as deep pipelining and multiple arithmetic units.

In the mid-2000’s, power limitations halted the growth in clock speed and ILP. However, demand

for application performance did not diminish. Vendors adopted a radically different approach. They

abandoned complex high frequency microprocessor designs and instead replicated lower frequency

central processing units (CPUs) with shorter pipelines on the same die, an architectural alternative

demonstrated a decade earlier at Stanford University (Olukotun et al., 1996). Each CPU replica is

called a core, and the chip as a whole is called a multicore processor or chip multiprocessor.

Operating at theoretical peak performance, a 1 Ghz four-core processor can perform the same

calculations in the same time using less power than a 4 Ghz single-core processor using the same

instruction set. However, concurrency is required to use all cores and maximize performance. The

operating system can simultaneously launch different applications, or separate instances of a scientific

simulation with different experimental parameters, on each core. In this paradigm, called capacity

computing, the goal is to execute as many sequential application instances as possible in an interval

of time. On the other hand, the operating system can instead launch a single application that uses

all the cores of the chip in a coordinated effort to solve a single large problem, such as a high

resolution simulation. In this paradigm, called capability computing, the goal is to execute the single

application in as short a time as possible. Unlike capacity computing, capability computing requires

the programmer to either write a parallel program or to convert an existing sequential program into a

parallel program, and requires efficient hardware and software infrastructure to coordinate parallel

execution. This dissertation extends the state-of-the-art in software infrastructure for capability

computing on multicore architectures.

The number of cores per chip in production microprocessor designs has increased from one

to sixteen in the period from 2006 to 2012, and Intel has announced a production processor with

more than 50 cores. The complexity of memory subsystems has also increased to keep pace with

concurrent memory requests. In addition to each core’s private instruction and data caches, cores on

the same chip often share a larger last-level cache. Multiple on-chip memory controllers distribute

memory references to banks of memory through multiple memory channels. In many configurations,

two to eight multicore chips are installed on the same motherboard and connected using a high

speed interconnect. Each chip is installed in a socket with direct links to banks of local memory and

additional links to other sockets to access banks of remote memory. Figure 1.1 shows an example

four-socket multicore system with memory attached to each socket.

The enterprise server market drives the development of the hardware technology used in the

smaller scientific computing market. Multi-socket systems serve well as centralized servers for

capacity computing in enterprise applications, but they present a challenge for capability computing

in HPC applications. The distribution of memory banks and controllers throughout a multi-socket

system increases memory concurrency and available bandwidth but introduces differences in data

access times. Despite the presentation of all system memory as a unified global address space,

2

6!The University of North Carolina at Chapel Hill !

Typical SMP System Layout!

2!

5!6!

3!

4!

L3 Cache!

M
em

!
M

em
!

M
em

!
M

em
!

1!0!

7!

2!

5!6!

3!

4!

L3 Cache!

M
em

!
M

em
!

M
em

!
M

em
!

1!0

7!

1!

6! 5!

0!

7!

L3 Cache!

M
em

!
M

em
!

M
em

!
M

em
!

2! 3!

4!

1!

6! 5!

0!

7!

L3 Cache!

M
em

!
M

em
!

M
em

!
M

em
!

2! 3!

4!

Figure 1.1: A typical four-socket X86 multicore system.

differences in access times between remote memory, local memory, and the various caches impact

the efficiency of parallel computations executed on these systems. This dissertation characterizes

these effects and proposes strategies to mitigate them.

1.2 Shared Memory Parallel Programming

Modern operating systems provide support for parallel execution on the multiple cores of a shared

memory computer through multithreading. An application process can comprise multiple threads of

control that share the same code and address space in memory. Each thread has its own program

counter, copy of the registers, and stack. The operating system creates an initial thread for each

application process. Any additional threads are created and managed by calls to the operating system

from the process code, for example using the POSIX threads (Pthreads) application programming

interface (API) (IEEE, 1995). While the Pthreads API gives a high level of control through explicit

thread management and low-level synchronization, e.g., mutual exclusion to guard access to shared

variables, effectively coordinating computational work among the threads often requires considerable

programmer effort and code changes.

3

#pragma omp parallel for
for (i = 0; i < nrows; i++) {

for(j = 0; j < ncols; j++) {
for (k = 0; k < nrows; k++) {

c[i][j] = a[i][k] * b[k][j];
}

}
}

Figure 1.2: Thread parallel matrix multiplication in OpenMP.

The OpenMP API provides a portable higher-level programming environment for shared memory

programming (OpenMP Architecture Review Board, 2008) through the support of the compiler

and a run time system for thread management. The programmer specifies parallel regions, i.e.,

code to be executed by multiple threads. A team of threads is implicitly created to execute the

parallel regions. The OpenMP run time also maintains mutual exclusion for critical sections and

coordinates progress of the team of threads. OpenMP was originally designed for and is particularly

well suited to the expression of loop-level parallelism, in which different iterations of a loop are

executed concurrently. Within parallel regions, the programmer can mark a for loop for parallel

execution. The loop iterations are scheduled among the threads in the team using either a static

schedule determined by the compiler during compilation or a dynamic schedule determined by the

run time system during execution. This programming model has been successfully applied to a large

number of computational problems, e.g., matrix multiplication as shown in Figure 1.2. The iterations

of the outer loop are spread among the threads that execute the program, and elements of the output

matrix c are computed in parallel. 1

1.3 Task Parallel Programming Model

Some forms of application parallelism are not expressed easily using parallel loops. For example,

recursive divide-and-conquer algorithms often create subproblems that can be solved in parallel. In

the mergesort algorithm, the input array is subdivided into smaller arrays that are recursively sorted

and then merged. The control flow of the program is clearly not iterative. The quicksort algorithm

presents an additional challenge in that the division of work between subproblems is frequently

1While this code closely reflects the basic algorithm for matrix multiplication, it is poorly tuned to the memory
hierarchy. A better implementation would use loop interchange and tiling for cache performance.

4

void sort(int a[], int length) {
if (length > 1) {

half = length / 2;
#pragma omp task

sort(a[0] , half);
#pragma omp task

sort(a[half], length - half);
#pragma omp taskwait
merge(a[0], half, a[half], length - half);

}
}

Figure 1.3: Task parallel mergesort in OpenMP.

unequal due to imperfect pivot selection. A still more challenging example is a time-dependent

computation using an oct-tree decomposition of three-dimensional space that changes over time to

reflect the changing locations of objects in space. Not only do different branches of the oct-tree create

subproblems with different amounts of work, but the distribution of work changes over time. The

thread-centric focus of loop-level parallelism does not express the parallelism of these applications

well.

The task parallel programming model is an alternative, complementary model that takes a

problem-centric approach to the expression of parallelism. Rather than considering the division of

code regions and loop nests among the available threads, the programmer only needs to identify

the units of computational work in the application and the dependencies between them. These

computational units, called tasks, express available parallelism and consist of a segment of code and

its data context. Figure 1.3 shows example task parallel code for mergesort. The subproblems that

sort subarrays are indicated as tasks that may execute concurrently.

Problem-centric problem decomposition enables scalability by exposing additional available par-

allelism at larger input sizes. When additional cores are available, that parallelism is exploited without

programmer intervention as the run time system distributes the tasks among more threads for greater

concurrency. In the task parallel model, it is the responsibility of the run time system to determine on

which thread and in what order to schedule each task while respecting the dependencies between tasks.

As a result, scheduling decisions have wide-ranging impact on application performance and scaling.

The significant body of prior work surveyed in the next chapter attests to the difficulty of achieving

high performance on even idealized machine models. The multicore architectures now ubiquitous in

5

scientific and technical computing deployments have much to gain from the productivity potential of

task parallel programming, but their increasing complexity makes performance even more elusive.

This dissertation describes systematic performance analysis techniques to diagnose the sources of

performance loss and new scheduling strategies for efficient execution on these architectures.

1.4 Thesis

Existing performance analysis methods and run time systems that implement the task parallel

programming model are agnostic to characteristics of the target hardware, limiting their efficacy.

These characteristics include increased memory latency to access remote data, cache effects, and

inter-chip synchronization costs. During execution, scheduling decisions that neglect hardware

characteristics result in stalls on load instructions and increased overhead costs. This dissertation

measures the impact of these issues and demonstrates the benefits of techniques that incorporate

knowledge of the machine topology into performance analysis, run time systems, and program code.

Our thesis is as follows.

A run time scheduler informed by knowledge of the hardware architecture and locality

specifications in the application code can improve the performance of task parallel

programs in comparison to performance using uninformed schedulers.

1.5 Contributions

Performance of task parallel programs is limited by overhead costs, load imbalance, and data

access costs due to non-uniform memory access (NUMA) and other related issues in the memory

subsystem. This dissertation contributes to better understanding and mitigation of these issues in the

following ways.

We introduce a component model for performance analysis of task parallel programs that

attributes loss of parallel efficiency to overhead costs, idleness, and data access costs among threads

in the execution. Application of our model to executions of a diverse set of benchmark applications

reveals substantial inefficiencies that motivate the need for improved task scheduling.

6

We demonstrate the trade-off between maintaining load balance and limiting overhead costs.

We define the Unbalanced Tree Search (UTS) benchmark to evaluate load balancing capabilities of

parallel systems. We identify inadequate load balancing strategies, subsequent thread idleness, and

overhead costs as primary factors contributing to poor speedup of task parallel executions of UTS,

and show that better performance is possible using aggregation in load balancing operations.

We define the concept of work time inflation in task parallel executions as the total additional

time spent by all threads on the work of the computation beyond the time required to perform the

same work in a sequential execution. We characterize the performance loss in the execution of task

parallel computations due to work time inflation, which arises from cache misses, memory bandwidth

saturation, and non-local memory accesses on NUMA architectures.

We propose a hierarchical task scheduling strategy that targets modern multi-socket multicore

shared memory systems with NUMA architectures that are not well supported by either work-stealing

schedulers with one queue per core or by centralized schedulers. Our approach combines work

stealing and shared queues for low-overhead load balancing and exploitation of shared caches.

We describe a working prototype OpenMP run time system implementing our hierarchical sched-

uler, as well as other task scheduling strategies. The run time extends the work of collaborators at the

Renaissance Computing Institute (Porterfield et al., 2011) and Sandia National Laboratories (Wheeler

et al., 2008) that enables the compilation and execution of a wide range of task parallel programs

expressed in OpenMP.

We evaluate our hierarchical scheduler for OpenMP tasks on a 32-core Intel system. We compare

against other schedulers implemented in our OpenMP run time and those from GNU and Intel, the

first such performance study on a multi-socket multicore machine. Both improved speedup and

several secondary metrics confirm the benefits of hierarchical scheduling. Evaluations on AMD

and SGI machines show that our methods extend to different processors and interconnects, and we

demonstrate the first scaling of OpenMP tasks on over 100 cores.

We propose a framework that enables locality-based task scheduling to minimize non-local

memory accesses on NUMA architectures. The framework comprises a concise mechanism for

the programmer to specify the placement of tasks on locality domains, and a run time scheduler to

support that mechanism.

7

We evaluate the performance of our locality-based scheduling framework as implemented in

extensions to the hierarchical scheduler of our OpenMP run time system on a multi-socket multicore

NUMA architecture. Both speedup results and performance metrics from hardware performance

counters confirm the effectiveness of the framework.

In addition to the original contributions listed above, our survey of prior work provides an

overview of the landscape of task parallel computation, particularly task scheduling algorithms.

1.6 Organization

The remainder of the dissertation is organized as follows. Chapter 2 reviews prior work on the

task parallel model. Chapter 3 presents an analysis of idleness and overhead costs in task parallel

computation through the UTS load balancing benchmark. Chapter 4 defines our component model of

performance analysis, including work time inflation. Chapter 5 describes the implementation of our

run time system for OpenMP. Chapter 6 describes our hierarchical scheduler and provides a detailed

performance evaluation. Chapter 7 defines our framework for explicit locality-based scheduling.

Chapter 8 offers our final conclusions and some directions for future work.

8

CHAPTER 2

BACKGROUND AND PRIOR WORK

The body of knowledge concerning the task parallel programming model is both broad and

deep. We examine prior work regarding several key aspects: the expression of task parallelism

through language syntax and semantics, theoretical analysis of task scheduling algorithms, run time

systems to support task parallelism, and software tools and methods for performance analysis. A

complete software development environment combines elements of each, and we point out some of

the interrelationships between them.

2.1 Expressing Task Parallelism

Many of the concepts used in task parallel programming languages originated in early attempts

at multithreaded programming using functional languages, e.g., MultiLisp (Halstead, 1985). Cilk

borrowed from and expanded upon these concepts to design and to implement a seminal task parallel

extension to the declarative C programming language (Blumofe et al., 1996; Frigo et al., 1998). Its

authors made several key choices in favor of language simplicity, compiler support, and run time

efficiency that have been widely imitated in more recent task parallel languages such as OpenMP 3.0

and X10, although other implementation choices have not.

A Cilk program is a C program with three additional keywords: cilk, spawn, and sync. The

cilk keyword indicates the declaration of a Cilk procedure, i.e., a function that may be executed in

parallel. Parallel invocations to Cilk procedures are made using the spawn statement. The sync

statement directs the run time to wait for the completion of any outstanding Cilk procedures spawned

by the current procedure up to that point.

Like Cilk, OpenMP’s task parallel model is expressed through a compiler-supported language

extension. Version 3.0 of the OpenMP specification for Fortran and C/C++ shared memory par-

cilk int fib(int n) {
if (n < 2)

return n;
else {

int x, y;

x = spawn fib(n-1);

y = spawn fib(n-2);
sync;
return (x+y);

}
}

int fib(int n) {
if (n < 2)

return n;
else {
int x, y;
#pragma omp task

x = fib(n-1);
#pragma omp task

y = fib(n-2);
#pragma omp taskwait
return (x+y);

}
}

Figure 2.1: Calculating Fibonacci numbers in Cilk and OpenMP.

allel programming added explicit task parallelism to complement its existing data parallel con-

structs (OpenMP Architecture Review Board, 2008). The task and taskwait directives resemble

Cilk spawn and sync statements respectively, as shown in Figure 2.1. However, the OpenMP task

directive generates a task from a statement or structured block, not a procedure. In addition to the

taskwait synchronization, the OpenMP barrier directive also provides task synchronization.

Threads encountering a barrier must complete all outstanding tasks generated by threads in that team

before they may pass the barrier. Data clauses define whether tasks get shared, private, or initialized

private copies of variables from surrounding scopes.

The Cilk language and prior proprietary extensions of OpenMP for task parallelism, e.g., the

Intel work-queueing model (Su et al., 2002), impose strict scheduling restrictions. However, the

OpenMP 3.0 task model allows considerable flexibility in scheduler design (Ayguadé et al., 2009).

This flexibility, along with the wide-spread support of OpenMP among hardware vendors and parallel

programmers, prompted our choice of OpenMP 3.0 as the language to target in our scheduler

implementations.

An unexecuted task may be scheduled onto any thread. OpenMP defines two classes of tasks

based on restrictions of task suspension and rescheduling: tied and untied tasks. They differ in

two important ways. First, a tied task may only be suspended at specific task scheduling points,

e.g., generation of new tasks, taskwait synchronizations, and barriers. An untied task may be

suspended at any point during execution. Second, a tied task can be scheduled initially onto any

thread but is not allowed to migrate between different threads during execution. An untied task

10

...
int nodecount;
#pragma omp threadprivate(nodeCount)

void traverse(Node* node)
{

nodeCount++;
for (i = 0; i < node->numChildren; i++) {

#pragma omp task firstprivate(i)
traverse(node->childNode[i]);

}
}

int main(int argv, char *argc[])
{

int total;
...
#pragma omp parallel
{

#pragma omp single
#pragma omp task

traverse(root);

#pragma omp barrier

#pragma omp atomic
total += nodeCount;

}
printf("Total=%d\n", total);
...

}

Figure 2.2: Counting tree nodes in OpenMP.

may migrate between different threads during execution. Untied tasks allow for greater flexibility

in scheduling, but care must be taken if a threadprivate (thread-local) variable is used in the task.

A threadprivate variable is a global variable of which each thread has a copy. If such a variable is

updated without an atomic directive, a race condition between untied tasks could potentially be

created. The task may be swapped out in favor of another task that also modifies it.

Threadprivate variables enable efficient computation of a global summation. For example,

Figure 2.2 shows an example program that uses tied tasks and a threadprivate variable to count nodes

in a tree. In this program use of the threadprivate variable to count nodes locally on each thread

limits the number of atomic operations to Θ(p), where p is the number of threads and requires no

taskwait synchronizations. An alternative implementation without threadprivate variables would

11

int fib(int n)
{ // A

if (n < 2)
return n;

else
{

int x, y;
#pragma omp task

x = fib(n-1); // B
#pragma omp task

y = fib(n-2); // C
#pragma omp taskwait
return (x+y); // D

}
}

15!The University of North Carolina at Chapel Hill !

A!

B! C!

Time! t0! t1! t2!
Thread 0! A! B! D!
Thread 1! C!

D!

15!The University of North Carolina at Chapel Hill !

A!

B! C!

Time! t0! t1! t2!
Thread 0! A! B! D!
Thread 1! C!

D!

Figure 2.3: Code, task graph, and schedule of fib on two threads.

pass the counts as return values of the function calls, but that would require O(log n) taskwait

synchronizations to wait for the intermediate values to be returned. The generation of the first task in

main occurs within the context of OpenMP parallel and single constructs. The parallel

construct opens a parallel region, creating a team of threads to execute the tasks. The single

construct specifies that only one of those threads should create the first task, leaving the others to

execute descendants of that task.

2.2 Scheduling Theory

A task scheduler assigns each task in the computation to a worker thread for execution, according

to the constraints expressed as dependencies among tasks and the scheduling policy. Because this

dissertation proposes new scheduling strategies for task parallelism, we now examine several existing

task scheduling policies, along with their strengths and weaknesses. 1

2.2.1 Task Parallel Computations as DAGs

The execution of a task parallel computation is viewed as a dynamically unfolding task graph. A

task graph is a directed acyclic graph (DAG) in which each node represents a task instance and each

edge represents a dependency between tasks: a new task creation (spawn edge) or synchronization

1Proofs and proof sketches in this section are condensed forms of the detailed proofs that appear in the papers cited for
each theorem.

12

(join edge). An execution schedule is a mapping of the task graph onto p worker threads for execution

in which each node appears exactly once in the schedule, no node may be scheduled before its

ancestors, and at most p nodes are scheduled concurrently. Figure 2.3 shows the code for a function

fib, a corresponding DAG, and a schedule for an execution of fib on two threads.

The computations that we consider in this dissertation are a subset of the class of all computations

that can be represented as DAGs. In the general case, there can be an edge in a DAG from any vertex

v1 to any vertex v2, as long as there is no path from v2 back to v1. For a computation, this would

represent the possibility that any task may have a dependency on any other task. Instead, we consider

only a set of computations with a restricted set of possible task dependencies. In these computations,

called strict computations, each dependency must be between a task and one of its ancestors. In

a fully strict computation, each dependency must be between a task and its parent (Blumofe and

Leiserson, 1999). A terminally strict computation is a strict task in which each synchronization

dependency is fulfilled upon the completion of the descendent task, not by the completion of some

earlier instruction of the descendent task (Agarwal et al., 2007). The example in Figure 2.3 is both

fully strict, since the two dependencies are both on child tasks, and terminally strict, since those child

task must complete to satisfy the taskwait. This dissertation concerns only computations that are

at least terminally strict.

Perfect nesting required by the shallow scope of Cilk spawn and sync statements ensures that

Cilk computations are both fully strict and terminally strict. However, the fully strict model may

impose constraints on the task graph that are not inherent in the problem. Given a problem in which

only synchronization between the root task and last-level (leaf) tasks is required, the more general

strict model allows parent tasks to complete earlier or later than their child tasks, potentially enabling

earlier deallocation of space than the fully strict model. OpenMP task parallel computations are

fully strict and terminally strict if perfectly nested taskwait synchronizations are used, but only

terminally strict if task synchronization is done using a barrier. The task scheduling policies described

in the following sections are applicable in either case, but the space bounds are conservative, i.e.,

they assume parent tasks are deallocated after their child tasks have completed.

13

26!

Task
Schedulers!

Static! Dynamic!

Breadth-
First! Depth-First!

Parallel
Depth-First!

Locally
Depth-First!

Work-First! Help-First!

Figure 2.4: A taxonomy of task scheduling policies.

2.2.2 Overview of Task Scheduling Policies

Prior to examining particular schedulers in detail, consider the broad taxonomy of scheduling

policies summarized in Figure 2.4. Static scheduling is not applicable for computations in which

tasks are generated dynamically and not known a priori (Johnson et al., 1996). Even for applications

in which the task graph is known a priori, static schedulers fail to provide dynamic load balancing

required for efficient execution of many task parallel programs (Blumofe and Papadopoulos, 1998).

Thus, we do not consider static scheduling in this dissertation.

For dynamic schedulers, the task graph concept allows us the expression of scheduling policies

in terms of the order in which a DAG is traversed. A breadth-first scheduler executes all tasks

at a level n of the task graph before executing tasks at level n+1, if we consider the level of the

root task as the 0-th level. A depth-first scheduler executes all tasks in a single downward path

before backtracking to execute the most recently generated but unexecuted tasks. In the context

of parallel execution, there are two notions of depth-first: In a parallel depth-first (PDF) schedule,

worker threads coordinate to follow a schedule close to the sequential depth-first schedule of the

task graph. In a locally depth-first scheduler, each worker thread proceeds depth-first through a

different subgraph of the overall task graph. Locally depth-first schedulers are further distinguished

by the action taken upon task generation. A work-first scheduler immediately schedules each newly

14

17!The University of North Carolina at Chapel Hill !

A!

B!

D! E!

C!

F! G!

H! I! J! K!

T0!

T0!

T0! T0!

T0!T0! T1! T1!

T1!

T1!

T1!

16!The University of North Carolina at Chapel Hill !

Thread! Steps!

T0! A!B!D! F!H! J!
T1! -! C!E!G! I! K!

BF!

Figure 2.5: Task graph and breadth-first schedule on two threads.

generated task, while a help-first scheduler enqueues each new task and continues execution of the

parent task.

2.2.3 Breadth-first and Greedy Scheduling

In a breadth-first schedule, all tasks at depth i relative to the root are executed before tasks at

depth i+ 1. Figure 2.5 gives an example task graph and a breadth-first schedule for its execution. In

the initial step, thread T0 executes task A. Task A generates tasks B and C. In the next step, thread

T0 executes task B, T1 executes task C, and tasks D, E, F, and G are generated. In the following step,

thread T0 executes task D, thread T1 executes task E, and tasks H and I are generated. Maintaining

breadth-first order, tasks F and G are executed next while tasks H and I remain in memory. Tasks J

and K are generated by task F. In the penultimate step, tasks H and I are executed. Finally, tasks J

and K are executed.

Richard Brent derived a time bound on multithreaded computations that evaluate arithmetic

expressions using a breadth-first schedule (Brent, 1974):

Theorem 2.1 (Brent’s Theorem). For a computation that completes in time T1 on one processor and

in time T∞ with an infinite number of processors available, the time TP required to complete the

computation on P processors is

TP ≤ T∞ +
T1 − T∞

P
. (2.1)

Proof. Let si be the number of operations performed in step i for i = 0, 1, 2, ..., T∞. Then step i

requires time dsi/P e using P threads.

15

TP ≤
T∞∑
i=1

⌈
si
P

⌉
(2.2)

TP ≤
T∞∑
i=1

si + P − 1

P
(2.3)

=

T∞∑
i=1

P

P
+

T∞∑
i=1

si − 1

P
(2.4)

= T∞ +
1

P

(
T∞∑
i=1

si −
T∞∑
i=1

1

)
(2.5)

= T∞ +
T1 − T∞

P
(2.6)

To benefit from parallel execution, a multithreaded computation must have sufficient parallel

slack, defined as T1 � T∞ and T1 � P . In that case, Brent’s Theorem simplifies to

TP ≤ T∞ +
T1
P

(2.7)

and speedup approaches linear speedup, i.e.,

TP ≈
T1
P
. (2.8)

In a greedy scheduler, when p or more tasks are ready to be scheduled in a time step, p tasks are

scheduled. When less than p tasks are ready in a time step, all ready tasks are scheduled (Kleinrock,

1976). Brent’s theorem holds not just for breadth-first schedulers, but for all greedy schedulers. The

time of any greedy schedule for a computation is within a factor of 2 of the time of an optimal

schedule for that computation (Eager et al., 1989).

16

Proof. Let T ?
p be the execution time required to complete a computation using an optimal scheduler

on P threads. Since T∞ time is required even with an infinite number of processors available and

assuming all work in the serial computation must be done, T ?
P = max{T∞, T1/P}.

TP ≤ T∞ +
T1 − T∞

P
(2.9)

≤ T∞ +
T1
P

(2.10)

≤ 2 ·max{T∞,
T1
P
} (2.11)

= 2 · T ?
P (2.12)

Apart from Brent’s work, implementations of the Pthreads multithreading library (IEEE, 1995)

use breadth-first scheduling by default. As observed by Narlikar and Blelloch, attempts to use the

pthread scheduler to schedule fine-grained tasks typically result in out-of-memory errors even for

small programs (Narlikar and Blelloch, 1998). Also, the time bounds in Brent’s Theorem do not

include overhead times. Breadth-first scheduling is most easily implemented using a FIFO centralized

queue, which is prone to contention and fails to exploit cache locality. The suboptimal performance

of breadth-first schedulers in practice due to overhead costs and inefficient use of memory and cache

motivated the development of depth-first schedulers.

2.2.4 Work Stealing

Work stealing is a locally depth-first, globally breadth-first scheduling strategy that matches the

theoretical optimal time bound for greedy schedulers while also mitigating real-world overhead time

and using bounded space. Each worker thread has a local double-ended queue. As long as a worker

thread has tasks in its local queue, it both enqueues tasks onto and dequeues tasks from the tail of

the local queue. This LIFO queueing discipline results in depth-first execution of a subgraph of the

overall task graph. When a worker thread’s queue becomes empty, the thread becomes a thief and

attempts to steal a task from the queue of a victim thread chosen at random. In a successful steal, the

17

18!The University of North Carolina at Chapel Hill !

A!

B!

D! E!

C!

F! G!

H! I! J! K!

T0!

T0!

T0! T0!

T0!T0! T1! T1!

T1!

T1!

T1!

T1!

17!The University of North Carolina at Chapel Hill !

Thread! Time!

T0! A!B!D!H! I! E! -!
T1! -! A!C!F! J!K!G!

WS!

Figure 2.6: Task graph and work-first schedule on two threads.

thief dequeues and executes a task from the head of the victim’s queue. In a failed steal attempt, no

task is available in the victim’s queue. In that case, the thief selects a new victim and again attempts

to steal.

In the work-first class of work stealing schedulers, a worker thread that generates a new task

enqueues the parent task on the local queue and immediately executes the new task. Figure 2.6 gives

an example task graph and a work-first schedule for its execution. In the example, the root task A

is stolen by thread T1 after TO has generated and started execution of task B, so task C and its

descendants are generated on thread T1. A computation using a work-first scheduler completes in

time TP = T1/P + O(T∞), and requires space SP ≤ S1P , i.e., linear in the number of threads

used (Blumofe and Leiserson, 1999). Proof sketches follow.

Theorem 2.2. The time required to execute a computation on P processors using a work-first

scheduler is

TP = T1/P +O(T∞). (2.13)

Proof Sketch. At each time step, a worker thread is either working on a task or stealing. The total

time all threads spend working on tasks is equivalent to T1, the amount of time required to execute

the work on a single thread, assuming overhead costs for task creation do not depend on P .

The topmost task in each thread’s queue is either the root or was stolen from some other thread,

and a thread only steals when its queue is empty. Thus, the topmost task is the ancestor of all tasks

below it in that queue. Then each active path in the computation is rooted at a task at the head of

one of the queues. One of these is the critical path, a path with the longest chain of dependent tasks,

with total path length T∞. Thus each steal operation results in the stealing of the critical path with

18

probability 1/P . Since a stolen task is executed immediately, each steal operation reduces the critical

path by one with probability 1/P . With P expected steal attempts decreasing the critical path by at

least 1, and a total of T∞ steps on the critical path, the total expected stealing time is O(PT∞).

Since there are P processors, the execution time is 1/P of the total time spent working and

stealing by all threads:

TP =
1

P

(
T1 +O(PT∞)

)
(2.14)

= T1/P +O(T∞) (2.15)

�

In practice, online scheduling incurs overhead costs. Work stealing mitigates overheads by

following the work-first principle: “Minimize the scheduling overhead borne by the work of a

computation. Specifically, move overheads out of the work and onto the critical path” (Frigo et al.,

1998). Analysis of the relative impact of overhead costs to the work and critical path supports the

work-first principle. Let c∞ be the smallest constant such that TP = T1/P + c∞T∞. Let TS be

the time required to execute a sequential program that is the serial equivalent of the task parallel

program. We define the work overhead as the factor c1 = T1/TS . Now we can express the time

bound incorporating overhead costs:

TP ≤ c1
TS
P

+ c∞T∞. (2.16)

Assume the computation has sufficient parallel slack, i.e., T1 � T∞. With high probability, only

O(PT∞) steals occur. If the time cost of each steal is much less than T1 then

TP ≈ c1
TS
P

(2.17)

Stealing costs are borne on the critical path. Thus, the remaining constant c1 reflects overhead cost

unrelated to stealing, such as the cost of task creation and destruction. These costs are implementation-

dependent. The authors of Cilk report values of c1 between 1 and 1.25 for most applications (Frigo

et al., 1998). In comparison to a centralized breadth-first scheduler, these costs are generally

19

much lower in a distributed work-first scheduler because local enqueue and dequeue operations are

lower latency than remote queue operations and the queues in a work stealing scheduler are rarely

contended.

Theorem 2.3. The space required to execute a computation on P processors using a work-first

scheduler is

SP ≤ S1P. (2.18)

Proof Sketch. Define a leaf task as a task with no non-completed children. Define a primary leaf task

as a non-completed leaf task generated earlier than any of its non-completed siblings. A schedule

maintains the busy-leaves property if every primary leaf task has a thread working on it. We can

reason by induction that a work-first schedule maintains the busy-leaves property.

Base case: At the start of the computation, the root task is a primary leaf task because it has no

siblings and initially has no children. A thread works on the root task until it generates a child.

Inductive step: Assume the busy-leaves property: each primary leaf task has a thread working

on it. Consider possible schedule actions:

1. A primary leaf task t generates a child task. Then t is no longer a primary leaf task, and it’s

child is now a primary leaf task. The thread working on t immediately suspends t and schedules

its child for execution. The busy-leaves property is maintained.

2. A primary leaf task t completes and t has non-completed siblings. The sibling which was

generated earliest is now a primary leaf task. The thread that was working on t schedules that

sibling for execution. The busy-leaves property is maintained.

3. A primary leaf task t completes and t has no non-completed siblings and its parent is non-

completed and not already executing on some other thread. The parent of t is now a primary

leaf task. The thread that was working on t schedules its parent for execution. The busy-leaves

property is maintained.

4. A primary leaf task t completes and t has no non-completed siblings and its parent is either

completed or executing on some other thread. The thread that was executing t is idle and

begins stealing. The busy-leaves property is maintained.

20

5. A task t that is not a primary leaf task becomes a primary leaf task following a steal. The

thread executing t was idle prior to the steal, so no busy task was left unscheduled on its queue

immediately before the steal. The task t must be scheduled for execution, because it must be

the newest task in the leftmost path on the thread and first in the work-first schedule for that

thread. The busy-leaves property is maintained.

We can associate each non-completed task with a primary leaf task according to the following

rules: If the task is a primary leaf task, it is associated with itself. It the task is non-leaf task, then it

is associated with the same primary leaf task as its earliest non-completed child. If the task is a leaf

task that has earlier non-completed siblings, then it is associated with the same primary leaf task as

its earliest non-completed sibling. The rules apply recursively. The tasks associated with a primary

leaf are a subset of the non-completed tasks in a sequential execution of the computation. Thus,

the total space of these tasks is at most S1, the space of a sequential execution. By the busy-leaves

property, each primary leaf task has a thread working on it. Since there are P threads, there are at

most P primary leaf tasks. Thus, the total space requirement is at most S1P . �

Help-first scheduling is a variant of work stealing in which a worker thread that generates a new

task enqueues the new task on the local queue and continues execution of the parent task. The space

bounds for work-first scheduling are not guaranteed to hold for help-first scheduling. In general,

more space is required for help-first scheduling than for work-first scheduling, since sibling tasks

at each level of the graph can be on the stack at once. However, the earlier generation of sibling

tasks exposes available parallelism earlier in the execution, which can be helpful for task graphs that

are wide and shallow (Guo et al., 2009). Also, help-first scheduling is useful when the migration

of partially completed tasks is disallowed, as with tied tasks in OpenMP. Under that condition, a

partially completed parent task could never be stolen, so a work-first scheduler would serialize the

execution. Newly generated and unexecuted child tasks generated by a help-first scheduler can be

stolen, enabling parallel execution.

2.2.5 Parallel Depth-first Scheduling

Work-first schedules are locally depth-first because each thread dequeues tasks in LIFO order.

The space bound S1P represents the simultaneous presence in memory of allocated tasks on P

21

17!The University of North Carolina at Chapel Hill !

A!

B!

D! E!

C!

F! G!

H! I! J! K!

T0!

T0!

T0! T0!

T0!T0! T1! T1!

T1!

T1!

T1!

18!The University of North Carolina at Chapel Hill !

Thread! Steps!

T0! A!B!D!H! F! J!
T1! -! C!E! I! G!K!

PDF!

Figure 2.7: Task graph and PDF schedule on two threads.

paths of the computation graph. The parallel depth-first (PDF) schedule is an approach designed to

coordinate the threads to execute as close as possible to a single path in the computation, resulting

in a lower memory requirement. The particular single path to be followed is the sequential order.

Because sequential execution is depth-first, concurrent execution according to sequential order can

be approximated using a LIFO queue shared among all threads. A departure from sequential order

is required when there is not enough available parallelism in the current branch of execution to

keep all threads busy. In that case, an idle thread must then schedule a premature task, a task with

predecessors in the serial order that have not all been executed. Figure 2.6 gives an example task

graph and a work-first schedule for its execution. In the example, two tasks, C and G, are executed

prematurely by thread T1. The space bound for a PDF schedule is SP = S1 + O(PT∞), and the

reasoning is based on bounding the number of premature tasks scheduled (Blelloch et al., 1999).

Theorem 2.4. The space required to execute a computation on P processors using a PDF scheduler

is

SP ≤ S1 + PT∞. (2.19)

Proof Sketch. Consider a path in the task graph. Each task along the path and its siblings comprise a

level. The current level is the level that holds the deepest non-completed tasks that occur earliest in

the serial order. In a time step in which a premature task is scheduled, all tasks on the current level

must have been scheduled on or before that time step. Otherwise, unscheduled tasks on the current

level would have been scheduled instead. There must always be at least one task at the current level,

because otherwise it would cease to be the current level and the next level of tasks in the serial order

would be the current level. Thus, at most P − 1 tasks must be scheduled prematurely each time

22

step to keep all threads busy. The longest possible path in the computation is T∞, so there are at

most (P − 1)T∞ premature tasks with space allocated at any time. A schedule exactly following the

sequential order would have space S1, so the total space bound adds to that the maximum space for

premature tasks:

SP ≤ S1 + (P − 1)T∞ (2.20)

SP ≤ S1 + PT∞ (2.21)

�

When P tasks are available on the shared queue, PDF schedules P tasks. When less than P tasks

are available on the shared queue, it schedules all available tasks. Thus, a PDF schedule is a greedy

schedule. By Brent’s Theorem, it has the time bound TP = O(T1/P + T∞) given sufficient parallel

slack. In practice, a PDF scheduler implementation can incur overhead costs due to contention on

the shared task queue.

2.2.6 DFDeques

Work stealing uses individual per-thread task queues rather than the contention-sensitive shared

queue of a PDF scheduler. However, PDF has better space bounds. The DFDeques scheduler

explicitly parameterizes a limit on the amount of space used, allowing sufficient parallelism to be

exposed without exceeding memory capacity or driving up queue contention. As in work stealing,

each thread schedules tasks from a local queue, but the number of queues can exceed the number

of threads. When the memory consumed on a thread exceeds the limit K, the task currently

executing on that thread is suspended, the entire queue is deferred, and a new queue is stolen for

execution. The space bound on DFDeques is SP (K) = S1 + O(KPT∞) and the time bound is

TP = O(T1/P + T∞) (Narlikar, 1999). Work stealing is a special case of DFDeques in which no

queue is ever deferred due to exceeding memory constraints.

2.2.7 Bounds on Cache Misses

Data access time contributes to actual execution time for both sequential and multithreaded

applications. Since data in a cache can be accessed with lower latency than data in main memory, the

23

number of cache misses during an execution should be minimized. There is a class of algorithms,

known as cache oblivious algorithms, that attempt to exploit cache locality using a recursive divide-

and-conquer strategy (Frigo et al., 1999). The subproblem size becomes smaller at each level of

the recursive problem decomposition, and at some level the data for a level fits into cache without

spilling. Also, function calls at adjacent levels of recursion typically use a subset of the same data

that can be resident in cache due to temporal locality. For example, a matrix of size n× n can be

decomposed into four matrices of size n/2× n/2.

Consider a parallelization of divide-and-conquer algorithms using the task parallel model.

Recursive function calls become tasks. Since the sequential strategy has good locality, it is desirable

to schedule the tasks so as to maintain that locality as much as possible. Analogous to the notion

that function calls at adjacent levels of recursion use an overlapping set of data is the notion that a

parent task and its child task use an overlapping set of data. For best maintenance of cache locality,

the parent and child tasks should be scheduled successively and by either the same thread or a set of

threads that share the same cache.

The LIFO queue discipline of work-first scheduling is designed to exploit private (per-core)

caches. The most recently generated tasks are near the tail of the queue, and tasks are dequeued

locally from the tail to be scheduled for execution. When an idle thread steals, the stolen task is

taken from the head of the victim’s queue. It is thus the least recently created task and least likely to

have associated data resident in cache. If the depth of the queue is small, however, a cache miss that

follows the steal is a miss that would not have occurred if the task had not been stolen. The intuition

that the number of cache misses is a function of the number of steals is confirmed by theoretical

analysis (Acar et al., 2000):

Theorem 2.5. The number of cache misses MP in a multithreaded computation scheduled by work

stealing on P threads is

MP ≤M1(C) + 2C · τ (2.22)

where M1(C) is the number of cache misses in a sequential execution of the computation, C is the

cache size, and τ is the number of steals.

Proof Sketch. Define a drifted task to be a task that in a multithreaded computation does not execute

on the same thread as and immediately after the task that precedes it in a single processor execution

24

of the same computation. Each steal results in at most two drifted tasks. The stolen task is a drifted

task. If its parent has a dependency on the stolen task then the join with the parent makes the parent a

drifted task when it is rescheduled. The total number of cache misses is the sum of the cache misses

in a sequential execution, M1(C), and the number of cache misses due to stealing, 2C · τ . �

Recall that in the proof sketch for the time bound on work-first scheduling, we derived the

expected number of steals as a function of critical path length and the number of threads, PT∞. Acar

et al. refine this expected value to include m, the time spent by an instruction that incurs a cache

miss, and s, the time required to perform a steal (Acar et al., 2000). Their analysis gives

τ = O

(⌈
m

s

⌉
· P · T∞

)
. (2.23)

Acar et al. also derive a time bound based on their analysis of the cache misses:

TP = O

(
T1(C)

P
+m ·

⌈
m

s

⌉
· C · T∞ + (m+ s) · T∞

)
. (2.24)

Note that this is a refinement of the bound of Blumofe et al., TP = T1/P + T∞.

While work stealing is well suited to private caches, PDF scheduling is well suited to shared

caches. With the exception of data used by premature nodes, the cache usage of a PDF schedule is

the same as that of a sequential execution. With a shared cache of size CP = C1 + PT∞, where

C1 is the size of the cache used in a single processor execution, a PDF schedule incurs at most M1

misses, the same number of misses as the sequential execution (Blelloch and Gibbons, 2004). The

proof resembles the proof of the space bound on PDF scheduling. Since a work-first schedule has P

active paths in memory, the capacity required in a shared cache to limit the number of misses to the

same number as a single processor execution is linear in the number of threads. With a shared cache

of the same size as the cache used in a single processor execution, the number of cache misses is

MP = M1 +O(PT∞). Empirical studies demonstrate that the shared cache performance of PDF

scheduling outperforms that of work stealing in practice (Chen et al., 2007). On the other hand, PDF

scheduling can cause sharing or false sharing of data in cache lines in a system using private caches,

which causes the cache lines to bounce back and forth between cores.

25

2.2.8 General DAG Scheduling

Computations that are not at least terminally strict, such as those generated in languages that

support futures (Friedman and Wise, 1978; Halstead, 1985), are outside of the scope of this disser-

tation. Such computations with arbitrary dependencies can be scheduled efficiently in time (Arora

et al., 2001). However, some are impossible to schedule efficiently in space (Blumofe and Leiserson,

1998), and the space bounds of schedulers for fully strict and terminally strict computations are not

guaranteed to hold for the set of all possible multithreaded computations representable by DAGs.

2.3 Run Time System Implementations

In addition to the choice of scheduling policy, other design choices and implementation details

impact the efficiency of run time systems. Moreover, each run time system implementation must

conform to the semantics and constraints of the particular task parallel language it supports.

2.3.1 Cilk

The Cilk run time system uses work-first scheduling and attempts to limit overheads on the

work term at the expense of the critical path (Frigo et al., 1998). In concrete terms, that means

task creation and retirement should be fast while steal operations may be slower. To that end, the

compiler generates two versions of each Cilk procedure: a fast clone and a slow clone. The fast clone

resembles a regular C stack frame, while the slow clone has bookkeeping support for parallelism,

e.g., for synchronization with child tasks. The run time instantiates each newly generated task as

a fast clone. In the absence of stealing, the bookkeeping facilities of the fast clone are not needed,

because upon completion of its child it will simply be returned to execution. The sync operation

is free, and the overhead on the work term is only a few cycles. In the event of a steal, the stolen

procedure is converted to its slow clone to support synchronization with child tasks that may be

on different threads. Since the number of procedures converted to slow clones is equivalent to the

number of steals, the cost is borne on the critical path. The reliance of the fast clone / slow clone

scheme on strict adherence to a work-first schedule has limited its use outside of Cilk. Help-first

26

work stealing schedulers cannot use it, and must employ other methods to combat task generation

and synchronization overheads.

Work stealing requires concurrent access to each thread’s task queue. Again, Cilk follows the

work-first principle. To maintain low overheads when enqueuing tasks, the local dequeue operation

requires no locking. The local enqueue operation requires locking only if the queue is nearly

empty. The steal operation always requires locking, but that overhead cost is borne on the critical

path – ideal if executions have parallel slack. The protocol is called T.H.E., after the three variables

used to implement it (Blumofe et al., 1996). The ABP work stealing queue was later developed to

eliminate locking (Arora et al., 2001), and that queue was demonstrated in the contemporary Hood

work stealing library (Blumofe and Papadopoulos, 1998).

2.3.2 OpenMP

The first implementation of OpenMP 3.0 was the open-source Nanos run time developed at

the Barcelona Supercomputing Center (Ayguadé et al., 2007). They evaluated different scheduler

implementations in Nanos, including centralized breadth-first schedulers and work stealing (Duran

et al., 2008b). They observed that tied tasks cannot be scheduled work-first without serialization.

Recall that tied tasks cannot be migrated once they have been partially executed. Thus, a tied parent

task once suspended cannot be migrated to another thread to continue execution. The Nanos groups

also shows that the performance of some applications with very fine-grained tasks can be improved

by serializing tasks beyond some cut-off or threshold depth in the task graph or when the number

of active tasks exceeds the number of threads by some factor. They later developed a scheduler

that estimates cut-offs at run time by measuring application characteristics early in execution and

applying a set of heuristics (Duran et al., 2008a).

Closed-source commercial compilers from Intel, Sun, Cray, and IBM all support OpenMP tasks.

The GNU Compiler Collection (GCC) is the only open-source production compiler with task support.

It uses a breadth-first scheduler implemented as a centralized queue. A completely overhauled

version is under development for future releases of GCC. OpenUH is a research compiler that uses a

help-first work stealing scheduler with two queues per core: a private queue for suspended tied tasks

and a shared queue for untied tasks and unexecuted tied tasks (LaGrone et al., 2011). The developers

27

cilk int traverse(Node* node) {
long nodeCount = 1;
int i;

inlet void accumulate (int result) {
count += result;

}

for (i = 0; i < node->numChildren; i++)
accumulate(spawn traverse(node->child[i]));

sync;
return count;

}
cilk::hyperobject<cilk::reducer_opadd<long> > nodeCount;

void traverse(Node* node)
{

nodeCount()++;
for (int i = 0; i < node->numChildren; i++)

cilk_spawn traverse(node->child[i]);
}

Figure 2.8: Counting tree nodes in Cilk and Cilk++.

proposed locality extensions for OpenMP based on thread sub-teams and demonstrated performance

improvement on parallel loop-based benchmarks in OpenUH (Huang et al., 2010)

ForestGOMP is an OpenMP library that supports thread parallelism but not tasks. It schedules

threads generated from deep loop nests by oversubscription, i.e., generating more threads than

available cores. Groups of threads generated together at the same level form a bubble, and bubbles

are co-scheduled when possible (Thibault et al., 2007). The run time schedules threads using work

stealing at two levels: on-chip and off-chip (Broquedis et al., 2010a).

2.4 Other Task Parallel Languages and Libraries

In addition to Cilk and OpenMP 3.0, a plethora of task parallel languages and libraries are

available to programmers. They differ in the additional features provided, level of compiler support

required, and scheduling restrictions imposed.

Cilk++ and its later incarnation, Intel Cilk Plus, build on the techniques of the Cilk and use

C++ as the base language (Intel Corp., 2010). With the addition of the cilk for construct for

iteration and vector operations, Cilk++ supports both task, loop, and data parallelism. Cilk allows

28

embedded function called inlets that can be used to combine return values from Cilk procedure spawns

atomically, e.g., for reduction operations. Rather than inlets, Cilk++ provides a family of templated

classes called hyperobjects to share and to update concurrent data objects safely. Hyperobjects are

global objects with member functions and overloaded operators to present a well-defined interface to

the implicitly synchronized data (Frigo et al., 2009). Figure 2.8 shows example code to count nodes

in a tree: The top code segment shows the use of a Cilk inlet and the bottom code segment shows the

use of a Cilk++ reducer hyperobject.

Like Cilk++, Intel Thread Building Blocks (TBB) offers data and task parallel programming

constructs based on C++ (Kukanov and Voss, 2007). Unlike Cilk Plus, TBB is a user-level library

that may be used with any C++ compiler. A TBB task is an object of a derived class that extends

the task base class. A constructor of that derived class may be used to initialize data members.

The execute member function contains the user code for the task and returns a pointer to a

task. Tasks are allocated using new and generated using the spawn static member function. The

programmer must set a reference count with a value that is one more than the total number of tasks

to be generated and synchronized. As tasks complete execution, the reference count is decremented.

The wait for all synchronization function waits for the reference count to decrease to one then

resets it to zero. A host of other classes are provided for concurrent data structures, parallel loops,

locks, and mutexes (Reinders, 2007).

Microsoft Task Parallel Library (TPL) operates in the Microsoft .NET programming framework

as part of the software ecosystem for Microsoft Windows systems (Leijen et al., 2009). At the most

basic level, four basic constructs are supported: tasks, futures, replicable tasks, and replicable futures.

A task takes a delegate (anonymous function) at creation and is executed by a single processor as

assigned by the scheduler, and may be waited upon elsewhere in the code by the Wait method. A

future returns a value with a generic type. A replicable task or future may itself be executed on

multiple processors. These constructs are used to create the higher level abstractions of TPL for

iteration. Microsoft has implemented several versions of parallel for loops, including a reduction-like

Aggregate construct.

Other libraries for shared memory include Pfunc, wool, and Java fork-join. The Pfunc library

allows the programmer to specify task priorities and other predicates on tasks to influence task

29

scheduling (Kambadur et al., 2009). Wool is a library-based solution for task parallelism in C (Faxén,

2009). The Java fork-join framework allows the expression of task parallelism in Java (Lea, 2000).

Several projects have applied concepts from Cilk to task parallel computation across distributed

memory, including CilkNOW (Blumofe and Lisiecki, 1997), Satin (van Nieuwpoort et al., 2000),

and kaapi (Gautier et al., 2007) for clusters and ATLAS (Baldeschwieler et al., 1996) for grids. The

Scioto task parallel framework builds upon a software global address space layer for distributed

memory and has been shown to scale to 8k cores on some codes (Dinan et al., 2008, 2009). In Scioto,

tasks are generated and added to a task collection. The explicit tc process() call directs the run

time to execute all initial tasks in a collection and any others spawned by those tasks. While only one

collection may be active at a time, tasks may be added to other collections at any time to support

phased computations.

IBM X10 is a Java-based parallel language designed to meet the dual goals of performance

and productivity specified by the DARPA High Productivity Computing Systems (HPCS) pro-

gram (Charles et al., 2005). X10 targets a distributed cluster of multiprocessor nodes with a Parti-

tioned Global Address Space (PGAS) memory. An async statement creates an activity. Execution

of each activity is fixed to a particular processor or group of processors, called a place. The finish

statement provides deep synchronization: the entire hierarchy of activities created in the scope of

the enclosed code block must be completed before execution moves beyond it. In contrast, Cilk can

only synchronize a hierarchy of spawned procedures by including sync statements at every level.

Deep synchronizations on activities created within the scope of an X10 final statement result in

terminally strict computations that need not be fully strict, but Guo et al. show that work stealing is

still feasible for these computations (Guo et al., 2009).

Habanero Java is a derivative of X10 that allows activities to access data in remote places

directly (Cave et al., 2011), and a particular extension of Habanero Java called Hierarchical Place

Trees allows a hierarchy of places to match the parallel memory subsystem by creating tasks at each

level, e.g., L1 cache, L2 cache, L3, memory (Yan et al., 2010). The Scalable Locality-aware Adaptive

Work-stealing (SLAW) scheduler for Habanero Java dynamically switches between work-first and

help-first schedulers based on available parallelism and space constraints, and it directs off-node

accesses in cluster environments to the correct places (Guo et al., 2010). Concurrent collections

(CnC) is a higher-level programming model supported by Habanero by extending the task scheduler.

30

Shared Memory
 Distributed Memory

Language Integration
 Cilk
 X10, Chapel

Language Extension
 OpenMP

Library
 TBB, MS TPL
 Scioto, Satin

Figure 2.9: Categorization of selected task parallel languages and libraries.

Programs in CnC are combinations of input data streams, labels that select ranges of the input,

and operations to be applied to those inputs, with the scheduling of operations left to the run time

system (Budimlić et al., 2010). Intel has an implementation of CnC for TBB.

Cray’s Chapel language is another HPCS language based on the task parallel model (Chamberlain

et al., 2007). While our work focuses on OpenMP tasks, the Chapel developers at Cray also use the

run time system described in this dissertation to implement support for their language.

Figure 2.9 shows a categorization of some of the task parallel languages and libraries mentioned

above based on the architecture they target and the level of language integration. Explicit task

parallelism is integrated into the shared memory language Cilk and the PGAS languages X10 and

Chapel, which can run on distributed memory. Compiler directives in OpenMP extend C/C++ and

Fortran to support task parallelism on shared memory. TBB and MS TPL are libraries for shared

memory, while Scioto and Satin are libraries for distributed memory.

Supporting task parallelism has also been investigated outside the programming language

community. Scheduler activations, implemented in some versions of NetBSD, support an m : n

mapping of user threads to kernel threads in the operating system (Anderson et al., 1991). At the

hardware level, the Carbon project at Intel proposed the implementation of local and global task

queues in the microprocessor chip itself (Kumar et al., 2007). Another approach, asynchronous

direct messaging (ADM), combines software support for tasks with lower complexity hardware

acceleration on the chip (Sanchez et al., 2010).

31

2.5 Performance Analysis Tools

Improvement in task parallel application performance motivates the need for a software ecosys-

tem of tools and analysis methods for the attribution of less than ideal speedup to particular perfor-

mance issues. In the execution of task parallel applications, what are the actual impacts of overhead

costs? To synchronization overheads in particular? Or to poor locality manifested in excessive

memory access times? Effective performance analysis and tools enable the interpretation of data to

identify performance issues in both applications and the run time system itself. They should assemble

and present both thread-level and task-level data in a meaningful and actionable way. Lacking

suitable tools and methodologies, users often turn to ad hoc performance analysis techniques.

While toolkits for serial and data parallel programming have matured considerably, limited

solutions for task parallel performance analysis exist. A Cilk tool called the Nondeterminator detects

race conditions (Feng and Leiserson, 1997), and Cilk Plus calls its race detector Cilkscreen. Cilkview

is a tool to determine available parallelism given the work and span of a Cilk Plus program (He

et al., 2010). Threadscope allows the display of task graphs, as well as graphs that show memory

usage, enabling the identification of bottlenecks and memory leaks (Wheeler and Thain, 2010).

An experimental extension to the ompP profiling tool allows timing and performance counter

measurement for OpenMP tasks. It runs at user level, allowing portability among run time systems.

However, it is unable to access information at the run time level, limiting its utility when tasks are

allowed to migrate (Fürlinger and Skinner, 2009). Sun’s OpenMP suite allows call stack profiling

and task-related event monitoring with some limited visualizations, but those features are only fully

supported in the Solaris/SPARC platform (Lin and Mazurov, 2009). Intel VTune and Thread Profiler

provide interesting analysis of thread level but not task level timings (Intel Corp., 2011).

Prototype tool support for Cilk is implemented in an experimental extension to the HPCToolkit

performance measurement and analysis suite (Tallent and Mellor-Crummey, 2009). It measures

thread idle times and overhead costs. It also unwinds the stack to collect so-called logical call

path profiles, which generalize call path profiles to enable correct correlation with user code in

multithreaded programs. Consider the example task graph shown in Figure 2.10, which represents a

snapshot during an execution in Cilk after Thread 1 has stolen task A and Thread 2 has stolen task B.

The physical call path on Thread 2 consists solely of tasks executed on Thread 2: (B → E → ...).

32

The University of North Carolina at Chapel Hill 4

A

B C

D E

Thread 0
Thread 1
Thread 2

Figure 2.10: Task graph executing on three threads.

Although task A does not execute on Thread 2, it is considered part of the logical path profile for

Thread 2 (A → B → E → ...) as the parent of task B. Capturing such relationships allows the

collection and presentation of performance data despite the migration of tasks by the Cilk work

stealing scheduler.

Based on the logical path profiles, HPCToolkit measures and displays a breakdown of total

execution time spent by all threads into three categories: work time, idle time, and overhead time.

Work time is spent actually performing the computation within the tasks, idleness results from

load imbalance, and overhead costs are incurred on task creation, scheduling, and synchronization.

They show that overhead time typically can be decreased by coarsening the granularity of tasks

and, conversely, idle time can be decreased by using finer-grained tasks. A further extension to

HPCToolkit allows analysis of lock contention (Tallent et al., 2010).

33

CHAPTER 3

UTS: STRESS TEST FOR LOAD BALANCING∗

Unbalanced Tree Search (UTS) is a synthetic benchmark designed to measure the ability of

diverse parallel architectures and programming environments to support continuous dynamic load

balancing. Since task parallel programming delegates the responsibility of scheduling computation to

the run time system, UTS evaluates the ability of the run time system to accomplish load balancing

efficiently.

3.1 The UTS Benchmark

The UTS problem is to count the number of nodes in an implicitly constructed tree that is

parameterized in shape, depth, size, and imbalance (Prins et al., 2003; Olivier et al., 2007). Implicit

construction means that each node contains all information necessary to construct its children. Thus,

starting from the root, the tree can be traversed in parallel in any order as long as each parent is

visited before its children. The imbalance of a tree is the variation in the size of its subtrees. Highly

unbalanced trees pose significant challenges for parallel traversal because the work required for

different subtrees may vary greatly. Consequently an effective and efficient continuous dynamic load

balancing strategy is required to achieve good performance. This requirement is characteristic of the

class of applications that UTS models, search and optimization problems that must enumerate a large

state space of unknown or unpredictable structure.

The trees are generated using a Galton-Watson process (Harris, 1963), in which the number of

children of a node is a random variable with a given distribution. To create deterministic results,

each node is described by a 20-byte descriptor. The child node descriptor is obtained by application

∗Contents of this chapter previously appeared in preliminary form in Proceedings of the 19th International Workshop
on Languages and Compilers for Parallel Computing (Olivier et al., 2007), Proceedings of the Fifth Workshop on
OpenMP (Olivier and Prins, 2009) and International Journal of Parallel Programming (Olivier and Prins, 2010).

of the SHA-1 cryptographic hash (Eastlake and Jones, 2001) on the pair (parent descriptor, child

index). The node descriptor also is the random variable used to determine the number of children of

the node. Consequently the work in generating a tree with n nodes is n SHA-1 evaluations.

To count the total number of nodes in a tree requires all nodes to be generated; a shortcut is

unlikely as it requires the ability to predict a digest’s value from an input without executing the

SHA-1 algorithm. Success on this task would call into question the cryptographic utility of SHA-1.

Carefully validated implementations of SHA-1 exist that ensure that identical trees are generated

from the same parameters on different architectures. The value r of the root node is specified as a

parameter. Multiple instances of a tree type can be generated by varying this parameter to provide a

check on the validity of an implementation.

A binomial tree is defined as a tree in which each node below the root has m children with

probability q and has no children with probability 1 − q, where m and q are parameters. When

qm < 1, this process generates a finite tree with expected size 1
1−qm . Since all nodes follow the

same distribution, the trees generated are self-similar and the distribution of tree sizes and depths

follow a power law (Leskovec et al., 2005). The variation of subtree sizes increases dramatically

as qm approaches 1, and this variation is the source of the tree’s imbalance. A binomial tree is an

optimal adversary for load balancing strategies, since there is no advantage to be gained by choosing

to move one node over another for load balance: the expected work at all nodes is identical.

A small example binomial tree is shown in Figure 3.1. Most nodes in the tree are in a few

particular subtrees, while some nodes very high in the tree have no children at all. This tree has a

total of 7079 nodes and a maximum depth of 142 nodes. In our experiments we use a much larger

input: a tree of 4.1 million nodes with a depth of more than 1572 nodes.

3.2 UTS Implementations

Consider the example sequential code for the UTS traversal function shown in Figure 3.2. The

required inputs, a pointer to the parent of the tree node to be explored and its child number (unique

among its siblings), are used to generate the description of the current node using the SHA-1 hash.

Then the number of children of the current node is determined by sampling a binomial distribution

with probability q at the point defined by the node description. If the result of the sampling is 1 then

35

Figure 3.1: Example binomial tree.

the node has m children, but if the result is 0 then it has no children. For each child, the traversal

function is called recursively. As each recursive call returns, its result is added to a running total

count of nodes. When all children have been explored, the count is returned.

A parallel solution to UTS using OpenMP tasks is shown in Figure 3.3. The code resembles

the serial code in structure, with recursive function calls marked as tasks. Since the exploration of

each node is a task, the underlying run time system is responsible for performing load balancing

as needed. Each task consists of a function that returns the count of nodes in the subtree rooted at

its node, recursively creating tasks to count the subtrees rooted at each of its children. In order to

accumulate the results correctly, the partialCount array is maintained in the function to hold

36

long Generate_and_Traverse(Node* parentNode, int childNumber) {
Node currentNode = generateID(parentNode, childNumber);
int numChildren = m with prob q, 0 with prob 1-q
long nodeCount = 1;

for (i = 0; i < numChildren; i++)
nodeCount += Generate_and_Traverse(currentNode, i);

return nodeCount;
}

Figure 3.2: Sequential code for UTS traversal function.

long Generate_and_Traverse(Node* parentNode, int childNumber) {
Node currentNode = generateID(parentNode, childNumber);
int numChildren = m with prob q, 0 with prob 1-q
long partialCount[numChildren], nodeCount = 1;

for (i = 0; i < numChildren; i++) {
#pragma omp task untied firstprivate(i)

partialCount[i] = Generate_and_Traverse(currentNode, i);
}
#pragma omp taskwait

for (i = 0; i < numChildren; i++)
nodeCount += partialCount[i];

return nodeCount;
}

Figure 3.3: UTS using OpenMP tasks.

the result of the subtasks. The task must then suspend and wait for all descendent tasks to complete

using a taskwait statement before manually combining the results to arrive at the sum to return.

The implementation of UTS in Threading Building Blocks (TBB) requires the definition of a new

class that extends the task class with the execute() function overloaded to perform the work of

node generation and traversal, as shown in Figure 3.4. As in the OpenMP tasks implementation, an

array of partial sums stores the count returned by each subtree. Other languages have constructs that

abstract out this two-step collection of results, e.g., reducers in Cilk++ (Frigo et al., 2009). Figure 3.5

shows a reducer implementation. In this example, synchronization for safe concurrent access to the

reducer object is managed by the Cilk++ run time.

37

class Generate_and_Traverse: public task {
public:

Node *parentNode;
int childNumber;
long* const nodeCount;
Generate_and_Traverse(Node *parentNode_,

int childNumber_, long* nodeCount_) :
parentNode(parentNode_), childNumber(childNumber_),
nodeCount(nodeCount_) {}

task* execute() {
long partialCount[numChildren];
parTreeSearchTask* tArr[numChildren];
Node currentNode = generateID(parentNode, childNumber);
int numChildren = m with prob q, 0 with prob 1-q
for (i = 0; i < numChildren; i++) {

partialCount[i] = 1;
tArr[i] = new(allocate_child()) Generate_and_Traverse

(currentNode, childNumber, &partialCount[i]);
spawn(*tArr[i]);

}
set_ref_count(numChildren+1);
wait_for_all();
for (i = 0; i < numChildren; i++)

*nodeCount += partialCount[i];
}

}

Figure 3.4: UTS using Threading Building Blocks.

cilk::hyperobject<cilk::reducer_opadd<long> > nodeCount;

long Generate_and_Traverse(Node* parentNode, int childNumber) {
Node currentNode = generateID(parentNode, childNumber);
int numChildren = m with prob q, 0 with prob 1-q

nodeCount()++;
for (i = 0; i < node->numChildren; i++)

cilk_spawn traverse(node->child[i]);
}

Figure 3.5: UTS using Cilk++.

38

Compiler ICC 11.1 Sun C 5.11 PGI 10.4 GCC 4.4.4
Execution Time (Sec.) 1.37 1.47 2.27 1.61
Rate (M. Nodes / Sec.) 3.00 2.79 1.81 2.56

Table 3.1: Sequential performance on UTS.

3.3 Performance Evaluation

Since UTS is designed as a stress test for load balancing, we hypothesize that a task parallel run

time that fails to accomplish load balancing efficiently among threads in an execution will fail to

achieve near-linear speedup on UTS. To test this hypothesis, we evaluate UTS performance on a

24-core Dell PowerEdge M905 shared memory system. The system consists of four six-core AMD

Opteron 8425 HE processors running at 2.1 Ghz. 64KB 2-way associative L1 data cache, 64KB

2-way associative instruction cache, and 512MB 16-way associative L2 cache per core. The six cores

on each chip share a 6MB 48-way associative L3 cache. The processors are connected by the AMD

HyperTransport interconnect, and a total of 32GB of DRAM is distributed among the processors

(8GB linked to each chip’s memory controller).

We compare the ICC 11.1 compiler from Intel, the Sun Ceres C 5.11 compiler from Oracle

SolarisStudio, the GCC 4.4.4 compiler from GNU, and the PGI 10.4 compiler. For comparison

with TBB and Cilk++, we use the Cilk Arts distribution of Cilk++ 1.0 (based on GCC) and Intel

Thread Building Blocks 2.2 (compiled and used with ICC 11.1). The -O3 option is always used, and

with the Intel compiler we also use -ipo to enable interprocedural optimization, which in the other

compilers is implied by -O3. Unless otherwise noted, reported results represent the lowest time out

of 10 trials.

In our evaluation, we consider a tree with input parameters of root branching factor b0 = 2000,

non-root branching factor m = 8, probability of a node generating children q = 0.124875, and

random seed r = 42. Due to the determinism of the SHA-1 hash, these parameters generate the same

tree each time a correct UTS implementation is executed. Since q ·m = 0.999 < 1.0, the tree is

guarantied to be finite. Since qm is close to 1.0, the tree exhibits severe imbalance. A full traversal

shows that the resulting tree has 4.1 million nodes total and a maximum depth of 1572 nodes, and

that over 99% of the nodes are descended from only one particular child of the root node.

39

0	

2	

4	

6	

8	

10	

12	

1	
 2	
 4	
 8	
 16	
 24	

Sp
ee
du

p	

Number	
 of	
 Threads	

ICC	
 Sun	
 PGI	
 GCC	

Figure 3.6: Parallel speedup of UTS using OpenMP Tasks.

Table 3.1 shows the sequential performance of the four compilers using the implementation

shown in Figure 3.2. The first row gives the execution time in seconds, and the second row gives the

execution rate expressed as millions of nodes explored per second. The executable produced by the

Intel compiler achieves the fastest time, followed by those from Sun, GCC, and PGI

Figure 3.6 shows the speedup gained on the task parallel implementations using OpenMP 3.0, as

measured against the sequential performance data given in Table 3.1. Only the Intel run time system

delivers any significant speedup, and even it fails to achieve 45% efficiency. These results raise two

questions: Is it even possible to achieve near-linear speedup on the UTS problem? What is the Intel

run time system doing differently than the Sun, PGI, and GCC?

In answer to the first question, we compare the performance of the Intel OpenMP run time with

TBB, Cilk++, and a custom work stealing implementation that we constructed on top of OpenMP

threads and complied with ICC. The results are shown in Figure 3.7. TBB consistently outperforms

the ICC OpenMP run time. Cilk++ fails to complete with less than 16 threads because the Cilk++

run time does not allow a large enough task queue per thread to support the number of active tasks

needed for UTS. With 16 threads, TBB outperforms ICC OpenMP, but it falls short with 24 threads.

The custom work stealing implementation on OpenMP threads performs the best, reaching 21X

40

0	

4	

8	

12	

16	

20	

24	

1	
 2	
 4	
 8	
 16	
 24	

Sp
ee
du

p	

Number	
 of	
 Threads	

ICC	
 TBB	
 Cilk++	
 WS	
 Threads	

Figure 3.7: Speedup of UTS: OpenMP versus other task parallel languages and libraries.

speedup with 24 threads. Thus, high performance on UTS can be acheived. We will explain later

how the custom implementation supports this level of performance.

Meanwhile, we return to our second question: Why is ICC the only run time to achieve even a

modest parallel speedup? We hypothesized that UTS performance requires efficient load balancing.

The work of each task in UTS is the same, one SHA-1 hash calculation. Thus, in an execution that

successfully balances load, each thread should execute the same number of tasks, or equivalently,

explore the same number of nodes in the tree. We instrumented UTS to measure this, and the results

are shown in Figure 3.8. For each combination of compiler and number of threads used, we ran 10

trials. Each point displayed represents the number of tasks executed (and number of nodes visited) on

a particular thread. Thus, in the ICC graph on the upper left-hand side, each of the 10 blue diamonds

represents the one thread in each execution that executed all 4.1million tasks, visiting all tree nodes.

Each of the 20 red squares represents one of the two threads in each execution and the roughly 2

million tasks executed by each thread. Likewise, there are 40 green triangles representing the threads

in the 10 executions using four threads, and so on. In a perfectly load balanced execution, all threads

would execute the same number of tasks, tree size/number of threads, and all points of the same

color and shape would form a single horizontal line. The graph for ICC, which achieved the best

speedup among the OpenMP run times, comes closest to this ideal load balance. The Sun run time

41

1000	

10000	

100000	

1000000	

10000000	

Ta
sk
s	

Ex
ec
ut
ed

	

ICC	

1	
 thread	

2	
 threads	

4	
 threads	

8	
 threads	

16	
 threads	

24	
 threads	

1000	

10000	

100000	

1000000	

10000000	

Ta
sk
s	

Ex
ec
ut
ed

	

Sun	

1	
 thread	

2	
 threads	

4	
 threads	

8	
 threads	

16	
 threads	

24	
 threads	

1000	

10000	

100000	

1000000	

10000000	

Ta
sk
s	

Ex
ec
ut
ed

	

GCC	

1	
 thread	

2	
 threads	

4	
 threads	

8	
 threads	

16	
 threads	

24	
 threads	

1000	

10000	

100000	

1000000	

10000000	

Ta
sk
s	

Ex
ec
ut
ed

	

PGI	

1	
 thread	

2	
 threads	

4	
 threads	

8	
 threads	

16	
 threads	

24	
 threads	

Figure 3.8: Tasks executed per thread during UTS execution.

shows more uneven distribution of tasks, and GCC shows even more. The PGI run time shows a

fixed pattern of imbalance. Note that these results are plotted on a logarithmic scale.

When some threads perform millions of SHA-1 executions while others perform less than ten

thousand, load balancing is either nonexistent, ineffective, or inefficient. We further instrumented

UTS to record the instances in which a task executed on a different thread than its parent, or resumed

execution on a different thread after a suspension. Although migration of suspended tasks is allowed

for untied tasks in OpenMP, we did not observe any such migrations. We did observe many instances

of tasks executing on different threads than their parents, indicating load balancing operations made

by the run time scheduler. Figure 3.9 shows the average number of tasks moved per thread, again

on a logarithmic scale. The order of magnitude of the moved tasks per thread for the ICC run time

is relatively consistent for ICC, Sun, and GCC. Sun performs fewer load balancing operations than

ICC. GCC performs an order of magnitude fewer load balancing operations than ICC. PGI performs

42

10	

100	

1000	

10000	

2	
 4	
 8	
 16	
 24	

M
ov
ed

	
 T
as
ks
	
 P
er
	
 T
hr
ea
d	

Number	
 of	
 Threads	

ICC	
 SUN	
 PGI	
 GCC	

Figure 3.9: Average moved tasks per thread during UTS execution.

two orders of magnitude fewer load balancing operations than ICC. By inspection, these results

correspond roughly with the imbalance graphs in Figure 3.8.

Another factor that contributes to suboptimal performance is time spent on overhead costs in the

run time system that arise from task creation, synchronization, and load balancing operations. The

same load balancing operations required to succeed on the UTS problem divert time from the work

of the computation. These costs could be reduced partially by executing some tasks in place, but at

the expense of load balance. The if clause on the OpenMP task directive forces a task to execute

in place. We modified UTS to execute a fraction of the tasks in place using ICC. Figure 3.10 shows

speedup results for executions using 24 threads as a function of percent tasks executed in-place. The

results show a negative impact of in-place execution. Executing even a small fraction of tasks in-place

limits the run time’s capability to mitigate the extreme imbalance inherent in the UTS problem.

Recall from Figure 3.7 that much better performance was achieved using our custom work

stealing implementation of UTS built atop OpenMP threads. The approach to controlling overhead

costs in that implementation is to aggregate tasks during load balancing. Instead of stealing a single

task at a time as in Cilk, an idle thread steals k tasks, where k is a tunable parameter. Figure 3.11

shows speedup using this implementation using 24 threads for various choices of k. When k is small,

too many steal operations occur and overhead costs are high. When k is large, too few successful

43

0	

2	

4	

6	

8	

10	

12	

0	
 20	
 40	
 60	
 80	
 100	

Sp
ee
du

p	

Percent	
 of	
 Tasks	
 Executed	
 In-­‐place	

Figure 3.10: UTS speedup using OpenMP tasks as a function of tasks executed in-place.

0	

4	

8	

12	

16	

20	

24	

1	
 10	
 100	
 1000	

Sp
ee
du

p	

Tasks	
 Stolen	
 per	
 Steal	
 Opera1on	

Figure 3.11: UTS speedup (custom implementation) as a function of tasks stolen per steal.

steals occur to maintain load balance. Peak performance occurs in the middle of the range. The

center and range of this “sweet spot” is a function of processor speed, memory access time, and

the implementation choices of the stealing protocol used. A peak range of k near the vertical axis

indicates low memory access time and/or low overhead costs for stealing, while a peak range of k

44

further away indicates processor speed that outpaces memory access time and/or an inefficient

stealing protocol.

3.4 Summary

Explicit task parallelism provided in OpenMP 3.0 enables the simple expression of unbalanced

applications as can be seen from the simplicity and clarity of the task parallel UTS implementations.

However, the UTS benchmark exposes deficiencies in load balancing capabilities of run time systems

for task parallelism. Among production OpenMP run time systems, only Intel’s achieves any

significant speedup, although less than half of ideal speedup. UTS exhibits a fundamental trade-off

between maintaining load balance and limiting overhead costs, but we have shown that our custom

work stealing implementation succeeds by aggregating tasks during steal operations. We shall

examine these ideas further in the chapters that follow.

45

CHAPTER 4

CATEGORIZING EXECUTION TIME

Ideally, parallel execution of a task parallel application achieves linear speedup, i.e., the execution

time with p threads is TS/P where TS is the sequential execution time of a serial equivalent of the

application. UTS is designed to be a stress test, but more mundane applications also frequently

fail to achieve linear or even near-linear speedup. According to Amdahl’s Law, the speedup of a

program using multiple processors is limited by the time needed for the sequential fraction of the

program (Amdahl, 1967). Indeed, any period of the execution time in which any thread is not engaged

in the computational work of the application, at an equal or faster rate as sequential execution of the

same computational work, limits parallel speedup. A thread may contribute to performance loss for

several reasons:

• Overhead: The thread is not be engaged in computational work because it is executing instruc-

tions in the run time system, such as task creation and bookkeeping for task synchronization.

• Idleness: The thread is idle due to inherent lack of available parallelism in the application or

failure of the scheduler to supply ready tasks for all threads.

• Work Time Inflation: The thread is executing some sequence of instructions in the computa-

tional work at a slower rate than a sequential execution of the same instructions. The data

needed to supply the operands to those instructions is a shared resource in multithreaded

execution, and a common cause of work time inflation is increased latency to access that data.

Performance analysis methods that explain how these three factors contribute to the performance gap

between linear speedup and observed speedup in task parallel programs can inform improvements

in application development, scheduler design, run time system implementation, and deployment of

hardware resources.

0	
 50	
 100	
 150	
 200	

ICC	

SUN	

PGI	

GCC	

Total	
 Time	
 (sec.)	

Work	
 Overhead	
 Idle	
 Undifferen;ated	

Figure 4.1: Total time over all threads on a 24-thread UTS execution.

Our Component Model of execution time for task parallel applications comprises work time,

overhead time, and idle time. Together these times account for the total time spent by all threads. If

the execution time is TP using P threads, the total time is

P · TP =
P−1∑
i=0

work(i) +
P−1∑
i=0

ovh(i) +
P−1∑
i=0

idle(i) (4.1)

where work(i) is the time spent by thread i on the instructions of the application’s computational

work, ovh(i) is the time spent by thread i on overhead costs for operations in the run time system,

and idle(i) is the time spent idle by thread i. Locking can be a source of overhead costs, idleness,

or both, depending on the level of contention between tasks competing for lock access and the

implementation of locking operations.

4.1 UTS Revisited

We can apply the component-based analysis to the UTS problem. Using HPCToolkit (Adhianto

et al., 2010), we recorded the amount of time spent in the various functions and libraries during

execution. Although the commercial run time systems are closed source, the function names in

their OpenMP libraries typically denote their function clearly. Figure 4.1 shows a comparison of

47

0	

5	

10	

15	

20	

1	
 2	
 4	
 8	
 12
	

16
	

24
	

32
	

48
	

64
	

96
	

12
8	

19
2	

25
6	

38
4	

51
2	

To
ta
l	
 T
im

e	

(s
ec
.)
	

Tasks	
 Stolen	
 per	
 Steal	
 Opera5on	

Work	
 Overhead	
 Idle	

Figure 4.2: Total time over all threads on UTS (custom implementation) as a function of tasks stolen
per steal.

the distribution of total time over all 24 threads of an execution categorized as work, overhead, and

idle time. In an execution with near-linear speedup, the contribution of overhead and idle time must

be negligible. Instead, overhead and idle time dwarf the time spent doing the actual work of the

computation. GCC is the least efficient. Open source reveals its unscalable implementation: a single

centralized task queue with global metadata updated on a per-task basis. Overhead costs in the PGI

run time are lower, but idle time is nearly as bad. Time in the Sun run time system is dominated

by opaque calls to pthreads-based functions, labelled on the chart as “undifferentiated.” They may

include wait and yield operations that constitute idle time, or synchronization, i.e., mutex operations

that constitute overhead time. The run time calls that are transparent are categorizable as overhead.

Recall that the Intel run time is the only run time that delivers any significant speedup and gives

reasonable load balance, manifest here in the comparatively small measured idle time. However,

overhead time dominates, accounting for the 14X lost speedup that we observed in Figure 3.6.

We can also break down the time using our custom work stealing implementation. As we saw in

Figure 3.11, it achieves speedup of 21X on 24 threads by stealing multiple tasks per steal operation.

Figure 4.2 shows the distribution of time over all threads for executions with various choices of the

k parameter (tasks stolen per steal operation). As expected, overhead times are greatest when k is

48

small, but work time is also substantially greater that the observed work time of the executions with

larger k. Each steal operation disturbs the locality of the computation, so that stealing one task at a

time results in more cache misses. We shall study this issue in greater detail later. As k increases

beyond 64, stealing is not fine-grained enough to maintain load balance. Total time is minimal in the

ideal range (k = 24, 32, 64), as are the contributions of each individual component–work, overhead,

and idle time.

4.2 Analysis of BOTS

We now apply our model to applications from the Barcelona OpenMP Tasks Suite (BOTS),

version 1.1, available online (Duran and Teruel, 2011). The suite comprises a set of task parallel

applications from various domains with varying computational characteristics (Duran et al., 2009).

Our experiments used the following benchmark components and inputs:

• Alignment: Aligns sequences of proteins using dynamic programming (100 sequences)

• Fib: Computes the nth Fibonacci number using brute-force recursion (n = 50)

• Health: Simulates a national health care system over a series of timesteps (144 cities)

• NQueens: Finds solutions of the n-queens problem using backtrack search (n = 14)

• Sort: Sorts a vector using parallel mergesort transitioning to sequential quicksort and insertion

sort (128M integers)

• SparseLU: Computes the LU factorization of a sparse matrix (10000×10000 matrix, 100×100

submatrix blocks)

• Strassen: Computes a dense matrix multiply using Strassen’s method (8192 x 8192 matrix)

For the Fib, Health, and NQueens benchmarks, the default manual cut-off configurations provided

in BOTS are enabled to prune the generation of tasks manually below a prescribed point in the task

hierarchy. Because these applications are much more balanced than UTS, this technique is applicable.

For Sort, cutoffs are set to transition at 32K integers from parallel mergesort to sequential quicksort

and from parallel merge tasks to sequential merge calls. For Strassen, the cut-off giving the best

performance for each implementation is used.

49

#pragma omp single
for (si = 0; si < nseqs; si++)

for (sj = i+1; sj < nseqs; sj++)
#pragma omp task firstprivate(si, sj)

compare(seq[si], seq[sj]);
#pragma omp for schedule(dynamic)

for (si = 0; si < nseqs; si++)
for (sj = si+1; sj < nseqs; sj++)

#pragma omp task firstprivate(si, sj)
compare(seq[si], seq[sj]);

Figure 4.3: Simplified code for the two versions of Alignment.

For both the Alignment and SparseLU benchmarks, BOTS provides two different parallel

implementation. Simplified code given in Figure 4.3 illustrates the distinction between the two

versions of Alignment. In the first (Alignment-single) the loop nest that generates the tasks is

executed sequentially by a single thread. This version creates only task parallelism. In the second

(Alignment-for) the outer loop is executed in parallel, creating both loop-level parallelism and

task parallelism. Likewise, the two versions of SparseLU are one in which tasks are generated

within single-threaded loop executions and another in which tasks are generated within parallel loop

executions.

The hardware test system for the following experiments is a Dell PowerEdge M910 quad-socket

blade with four Intel x7550 2.0GHz 8-core Nehalem-EX processors installed for a total of 32 cores.

The processors are fully connected using Intel QuickPath Interconnect (QPI) links. Each processor

has an 18MB shared L3 cache and each core has a private 256KB L2 cache as well as 32KB L1 data

and instruction caches. The blade has 64 dual-rank 2GB DDR3 memory sticks (16 per processor

chip) for a total of 132GB. It runs CentOS Linux with a 2.6.35 kernel. Although the x7550 processor

supports HyperThreading (Intel’s simultaneous multithreading technology), we pinned only one

thread to each physical core for our experiments.

All executables using the Intel run time were compiled with ICC 11.1 and -O2 -xHost -ipo

optimization. Executables using the GCC run time was compiled with GCC 4.4.4 with -g and -O2

optimization. Unless otherwise stated, reported results are the best of ten executions.

Table 4.1 shows sequential execution times for BOTS. For the most part, the sequential times are

reasonably close between executables compiled with ICC and GCC. Results of parallel executions

using 32 threads are shown in Figure 4.4. The ICC executables with the Intel run time achieves

50

Run Time Alignment Fib Health NQueens Sort SparseLU Strassen
ICC 28.33 100.4 15.07 49.35 20.14 117.3 169.3
GCC 28.06 83.46 15.31 45.24 19.83 119.7 162.7

Table 4.1: Sequential execution times (in seconds) on BOTS.

0	

4	

8	

12	

16	

20	

24	

28	

32	

A
lig
nm

en
t	

si
ng
le
	

A
lig
nm

en
t	

fo
r	

Fi
b	

H
ea
lth

	

N
Q
ue

en
s	

So
rt
	

Sp
ar
se
LU

	

si
ng
le
	

Sp
ar
se
LU

	

fo
r	

St
ra
ss
en

	

Sp
ee
du

p	

ICC	
 GCC	

Figure 4.4: Speedup on BOTS using ICC and GCC with 32 threads.

24.8X-31.1X speedup on four benchmarks (both Alignment versions, Fib, and NQueens. On Sort,

the two SparseLU versions, and Strassen, they reach just 14.8X-16.7X speedup. On the Health

benchmark, speedup is only 9X. GCC substantially outperforms ICC only on the single version

of SparseLU, where it achieves 26.5X speedup. On SparseLU-for, the GCC OpenMP runs were

stopped after exceeding the sequential time; thus data is not reported. Speedup results are close

between ICC and GCC on Sort and Strassen, but GCC speedup lags on the remaining benchmarks.

Speedup is particularly poor on Fib (16.8X), and absolutely dismal on Health (2X).

We again consider the time spent by all threads on work, overhead, and idle. Figure 4.5 shows the

results of executions using ICC with 32 threads. In most of the benchmarks, overhead and idle times

51

0	

50	

100	

150	

200	

250	

300	

350	

Ali
gn
me
nt
	
 Si
ng
le	

Ali
gn
me
nt
	
 Fo
r	

Fib
	

He
alt
h	

Nq
ue
en
s	

So
rt	

Sp
ar
se
LU
	
 Si
ng
le	

Sp
ar
se
LU
	
 Fo
r	

Str
as
se
n	

To
ta
l	
 T
im

e	

(s
ec
.)
	

Work	
 Overhead	
 Libc	
 Idle	

Figure 4.5: Total time over all threads on BOTS using ICC with 32 threads.

are negligible compared to work time. Time spent on calls to libc is shown separately. Non-work

time is significant but not dominant for Fib and both versions of SparseLU. Only in the Strassen

benchmark do overhead and idle times contribute a very large portion of the total time. Figure 4.5

gives the results of the same experiments using GCC. In addition to Strassen, the GCC run time also

incurs large idle time on Fib and Health, and overhead time is also quite high on Sort.

A comparison of the speedup results from Figure 4.4 and the time breakdowns from Figures 4.5

and 4.6 partially validates the ability of the model to diagnose the source of poor speedup. Good

speedup on the two versions of Alignment is consistent with low overhead and idle times with both

ICC and GCC. Less impressive speedup on Fib is roughly consistent with non-negligible overhead

and libc time in ICC and excessive idle times in GCC. Large overhead time and massive idle times

help to explain the particularly poor speedup on Health with GCC, but disappointing speedup using

52

0	

50	

100	

150	

200	

250	

300	

350	

Ali
gn
me
nt
	
 Si
ng
le	

Ali
gn
me
nt
	
 Fo
r	

Fib
	

He
alt
h	

Nq
ue
en
s	

So
rt	

Sp
ar
se
LU
	
 Si
ng
le	

Str
as
se
n	

To
ta
l	
 T
im

e	

(s
ec
.)
	

Work	
 Overhead	
 Libc	
 Idle	

Figure 4.6: Total time over all threads on BOTS using GCC with 32 threads.

ICC is not evident in the time breakdown. The same is true of the remaining benchmarks, for both

GCC and ICC. As it stands, the model clearly fails to pinpoint the factors responsible for the lost

speedup.

4.3 Work Time Inflation

A quick glance at Table 4.1 reveals that the sequential execution times for the Health benchmark

were 15.1 and 15.3 seconds using ICC and GCC respectively. In timing breakdowns of 32 thread

executions shown in Figures 4.5 and 4.6, the work times on the same benchmark are over 40 seconds.

However, the amount of computational work is the same. We call this phenomenon work time

inflation.

53

6!The University of North Carolina at Chapel Hill !

Typical SMP System Layout!

2!

5!6!

3!

4!

L3 Cache!

M
em

!
M

em
!

M
em

!
M

em
!

1!0!

7!

2!

5!6!

3!

4!

L3 Cache!

M
em

!
M

em
!

M
em

!
M

em
!

1!0

7!

1!

6! 5!

0!

7!

L3 Cache!

M
em

!
M

em
!

M
em

!
M

em
!

2! 3!

4!

1!

6! 5!

0!

7!

L3 Cache!

M
em

!
M

em
!

M
em

!
M

em
!

2! 3!

4!

Figure 4.7: Topology of the four-socket Intel Nehalem-EX system.

Work-time inflation can result from the increasing demands placed on the memory system and

caches by concurrent memory references. Non-uniform memory access times reflect the physical

reality of memory organization; some memory devices are closer to some referencing processors

than to others. For example, the four-socket Intel system we use for the BOTS experiments has a

topology as shown in Figure 4.7. Data in memory linked directly to one of the four chips is more

quickly accessible by that chip than data in memory linked to the other chips in the system. Besides

fundamental latency constraints, memory device and processor to memory interconnection network

bandwidth constrain the number of concurrent references that can be sustained (Mandal et al., 2010).

In addition, substantial memory subsystem overheads and latency costs are incurred to maintain

coherence of memory references in the presence of a parallel cache hierarchy.

We now refine our model to reflect the contribution of work time inflation by splitting work

time into two components, workseq and workinf . The amount of time to complete the work in a

sequential execution of a serial equivalent of the program is workseq. Additional time spent on the

computational work during parallel executions is workinf . Thus we have the refined equation for

total time across all threads:

54

0	

50	

100	

150	

200	

250	

300	

350	

Ali
gn
me
nt
	
 Si
ng
le	

Ali
gn
me
nt
	
 Fo
r	

Fib
	

He
alt
h	

Nq
ue
en
s	

So
rt	

Sp
ar
se
LU
	
 Si
ng
le	

Sp
ar
se
LU
	
 Fo
r	

Str
as
se
n	

To
ta
l	
 T
im

e	

(s
ec
.)
	

Seq	
 Time	
 Work	
 InflaCon	
 Overhead	
 Libc	
 Idle	

Figure 4.8: Total time on BOTS using ICC: Work time inflation.

P · TP =
P−1∑
i=0

workseq(i) +
P−1∑
i=0

workinf (i) +
P−1∑
i=0

ovh(i) +
P−1∑
i=0

idle(i) (4.2)

Figures 4.8 and 4.9 give a clearer picture of lost performance using the refined model for ICC

and GCC respectively. The results are from the same executions as Figures 4.5 and 4.6, but with the

sequential work time and work time inflation shown separately. With both run times, only the two

versions of Alignment have negligible work time inflation. With ICC, we see significant work time

inflation in Health, Sort, both versions of SparseLU, and Strassen. With GCC, work time inflation is

most extreme in Health, Sort, and Strassen.

When we consider overheads, idle time, and work time inflation, we account for the entirety

of the lost time that is manifest in poor speedup and can work to improve it. Take for example the

55

0	

50	

100	

150	

200	

250	

300	

350	

Ali
gn
me
nt
	
 Si
ng
le	

Ali
gn
me
nt
	
 Fo
r	

Fib
	

He
alt
h	

Nq
ue
en
s	

So
rt	

Sp
ar
se
LU
	
 Si
ng
le	

Str
as
se
n	

To
ta
l	
 T
im

e	

(s
ec
.)
	

Seq	
 Time	
 Work	
 InflaCon	
 Overhead	
 Libc	
 Idle	

Figure 4.9: Total time on BOTS using GCC: Work time inflation.

Health benchmark, on which both run times perform most poorly. Threads in the GCC run time

spend an enormous amount of time idle and on overheads during the execution of this benchmark.

With both run times, the work time inflation in Health is even greater than the sequential work time,

meaning that in 32 thread execution the computational work takes up over twice the amount of time.

Clearly, improvement on Health requires the elimination of work time inflation.

We obtained these results on a quadsocket Intel platform with the Quick Path Interconnect (QPI).

Many other Non-Uniform Memory Access (NUMA) systems exhibit similar pronounced differences

in latencies to local and remote memory. IBM reports reports longer latencies to access remote data

in POWER7i systems (Funk and Peterson, 2010). In addition to the latency inherent in such remote

link traversals, contention on links and saturation of the buffers that serve them can also impact

performance negatively. AMD reports completion times on AMD memory microbenchmarks with

56

 0

 4

 8

 12

 16

 20

 24

 28

 32

 0 4 8 12 16 20 24 28 32

M
ax

im
um

 P
os

si
bl

e
Sp

ee
du

p

Number of Threads

Ideal Speedup
r = 1.25

r = 1.5
r = 2.0
r = 3.0

Figure 4.10: Speedup limitations due to work time inflation.

remote access cross-traffic that are frequently double the completion times when only local accesses

occur (AMD Inc., 2006).

As we have observed in the benchmarks, work time inflation limits the maximum potential

parallel speedup of an application. Let r be the ratio of the total work time of a p-processor parallel

execution to the sequential work time. The lowest potential execution time is r/p and the highest

potential parallel speedup is p/r. For executions using 32 threads, the health simulation yields

r > 3. Figure 4.10 shows the maximum potential speedup for various levels of work inflation

(r = 1.25 to 3.0). Even with a relatively small NUMA impact of r equal to 1.25, we observe a

maximum speedup of under 26X with 32 threads. Actual speedups will be even lower given non-zero

overheads and potential load imbalance.

4.4 Available Parallelism

The Cilk Plus analysis tool, Cilkview (He et al., 2010), estimates upper and lower bounds for

speedup based on the overall available parallelism in the application and expected run time overhead

costs. In the OpenMP executions of UTS and BOTS, we have observed that overhead costs vary

not only by run time system but also depending on the application. Available parallelism changes

57

Figure 4.11: Queue length during execution of Sort using a work-first schedule.

throughout the execution of a task parallel program and also depends on the choice of scheduling

policy. Figures 4.11 and 4.12 show queue length over time during executions of BOTS Sort using

our custom work stealing implementation with four threads using work-first and help-first schedules,

respectively. Higher queue lengths in the executions with help-first scheduling indicate greater

available parallelism. The regular four-fold pattern shown in the graphs corresponds to the division

of work into quarters in each recursive call to Sort, and the amount of parallelism varies as tasks are

generated and retired.

4.5 Summary

The goal of ideal speedup for task parallel programs can be evasive, as we have seen with UTS

and BOTS. Our performance model identifies the causes of poor speedup by categorizing the time

spent by all threads in the execution into work, overhead, and idle times. We further divide work

58

Figure 4.12: Queue length during execution of Sort using a help-first schedule.

time into two parts, equivalent sequential time and work time inflation, an important distinction

not captured in earlier task parallel performance analysis research, for example in the Cilk-oriented

extensions to HPCToolkit (Tallent and Mellor-Crummey, 2009) and the OpenMP profiling tool

ompP (Fürlinger and Skinner, 2009). Unlike Cilkview (He et al., 2010), our model is not specific to

a particular run time implementation and does not rely on the notion of overall available parallelism.

After observing disappointing speedup results and identifying the sources of lost performance, the

next logical question is how to improve performance. The following chapters of the dissertation

describe the development of our own OpenMP run time, and techniques to mitigate overhead costs,

idleness, and work time inflation.

59

CHAPTER 5

QTHREADS-BASED RUN TIME SYSTEM∗

Our main thesis claims that scheduling and run time system implementation used to support task

parallel execution should reflect the hardware topology. Evaluation of this claim on actual hardware

necessitates a prototype run time system for evaluation. In this chapter we describe the design and

implementation of our particular OpenMP run time system, extensions of which appear in Chapters 6

and 7.

5.1 Qthreads

Qthreads is a library designed to provide portable, high performance massive multithread-

ing (Wheeler et al., 2008). It is modeled on the Tera MTA system (Alverson et al., 1992), which

supports many simultaneous lightweight threads in hardware by providing a large number of register

sets and interleaving instructions from the various active threads. The Qthreads library instead

supports lightweight threads in software by providing compact stacks for each and fast context

switching between them (Wheeler et al., 2008). The library is cross-platform, supporting IA32, IA64,

X86-64, PowerPC, and SPARC architectures.

Figure 5.1 illustrates the software architecture of Qthreads. Each lightweight thread is called

a qthread. Qthreads are scheduled onto a small set of heavyweight worker threads created using

the POSIX threads (pthreads) library (IEEE, 1995). A qthread is the smallest schedulable unit of

work, such as a set of loop iterations or an OpenMP task, and execution of an application generates

many more qthreads than it has worker pthreads. Each worker pthread is pinned to a processor core

and assigned to a group, called a shepherd. Whereas Qthreads previously allowed only one worker

∗The prototype run time system described in this chapter extends the work of our collaborators at the Renaissance
Computing Institute and Sandia National Laboratories. Kyle B. Wheeler is the primary author of Qthreads, and Allan K.
Porterfield is the primary author of the XOMP interface to Qthreads.

!"#$%&'(

!"#$%&'(
!"#$%&'(

)#%*#%$'(

+,$-%$((

.**/01&2,3(

+,$-%$((+,$-%$((+,$-%$((+,$-%$((+,$-%$((

!"#$%&'(

!"#$%&'(
!"#$%&'(

)#%*#%$'(

Figure 5.1: Software architecture of Qthreads.

pthread per shepherd, we added support for multiple worker pthreads per shepherd. This support

enables us to map shepherds to different architectural components, e.g., one shepherd per core, one

shepherd per shared L3 cache, or one shepherd per processor socket.

Like the MTA system, synchronization in Qthreads is supported by full/empty bit (FEB) opera-

tions, originally developed for the Heterogeneous Element Processor (HEP) machine (Smith, 1981).

In the FEB scheme, a bit is associated with each word in memory. A thread can wait on the condition

that a word’s bit is full or empty either in a blocking or non-blocking operation. When qthreads block,

e.g., when performing an FEB operation, a context switch is triggered. Because this context switch is

done in user-space via function calls and requires neither signals nor saving a full set of registers, it

is less expensive than an operating system or interrupt-based context switch. This technique allows

qthreads to execute uninterrupted until blocked, and, once blocked, allows the scheduler to keep

workers busy by switching to other qthreads.

The Qthreads library includes multithreaded loop execution, built upon the core threading

components. The API provides three basic parallel loop behaviors: one to create a separate qthread

61

!""#$%&'()*
+(,-%.*/(0.**

1/2/33*4$56*
7".)89:*

;-&)<=(->.0*
+(,-%.*/(0.*
4$56*?789*

/&##<*
@A.%,5&B#.*
/(0.*=(-*

!""#$%&'()*
C56-.&0<*

D$B-&-E*4$56*
?789*

F)5.-=&%.*

G7+@*1+(,-%.**
5(+(,-%.*

/(>"$#&'():*
H&'I.**
*/(>"$#.**
&)0*D$)J*

Figure 5.2: Compilation process using ROSE.

for each iteration, one that divides the iteration space evenly among all shepherds, and one that uses a

queue-like structure to distribute subranges of the iteration space to enable self-scheduled loops. We

use these loop configurations to support OpenMP loop parallelism. The self-scheduling configuration

is also the starting point for our task scheduling implementations. The worker pthreads serve as

OpenMP threads, and qthreads serve as OpenMP tasks.

5.2 Compilation

In order to execute OpenMP applications using Qthreads, the application source code must

first be compiled. Compilation is a two-phase process using both the ROSE source-to-source

compiler and the native C++ compiler, as summarized in Figure 5.2. ROSE performs syntactic

and semantic analysis on the code and transforms the OpenMP directives into function calls in

an API called XOMP (Liao et al., 2010). XOMP defines a common interface for OpenMP 3.0,

abstracting out internal implementation details of the run time system. Using a run time library with

ROSE is as simple as creating XOMP wrappers for the library, and the ability to hot-swap different

implementations of our own run time system enables fast development and testing. In the second

compilation stage, the transformed source code is compiled into executable code by the native C++

compiler and linked with the Qthreads library, which implements the XOMP functions. A benefit

of this two-step compilation is ease of porting applications: Since the transformed code is standard

C++, it is possible to compile the original source code using ROSE on a development system then

compile the transformed code using the native compiler on another system with a different ISA.

62

int fib(int n) {
int x, y;
if (n < 2) return n;
#pragma omp task shared(x) untied

x = fib(n - 1);
#pragma omp task shared(y) untied

y = fib(n - 2);
#pragma omp taskwait
return x + y;

}

struct 1_data {
int n;
void *x_p;

};

static void OUT__1(void *__out_argv) {
int n = (int)(((struct 1_data *)__out_argv) -> 1_data::n);
int *x = (int *)(((struct 1_data *)__out_argv) -> 1_data::x_p);
int _p_n = n;

*x = fib((_p_n - 1));
}

struct 2_data {
int n;
void *y_p;

};

static void OUT__2(void *__out_argv) {
int n = (int)(((struct 2_data *)__out_argv) -> 2_data::n);
int *y = (int *)(((struct 2_data *)__out_argv) -> 2_data::y_p);
int _p_n = n;

*y = fib((_p_n - 2));
}

int fib(int n) {
int x, y;
if (n < 2) return n;
struct 1_data __out_argv1;
__out_argv1.1_data::x_p = ((void *)(&x));
__out_argv1.1_data::n = n;
XOMP_task(OUT__1,&__out_argv1,0,sizeof(struct 1_data),4,1,1);
struct 2_data __out_argv2;
__out_argv2.2_data::y_p = ((void *)(&y));
__out_argv2.2_data::n = n;
XOMP_task(OUT__2,&__out_argv2,0,sizeof(struct 2_data),4,1,1);
XOMP_taskwait();
return x + y;

}

Figure 5.3: Code for fib before and after transformation by ROSE.

63

Figure 5.3 shows a code example for the recursive calculation of the n-th Fibonacci number,

before and after transformation by ROSE.1 The task and taskwait directives are transformed

into calls to XOMP task() and XOMP taskwait(), respectively. Arguments to XOMP task()

include a function that wraps the work to be executed in the task, a structure that contains the data

context, and relevant flags, e.g., to indicate if the task is tied or untied. For shared variables, e.g., x

and y, a pointer to the variable is stored in the corresponding member of the structure. For firstprivate

variables, e.g., n, only the value is stored. Similar XOMP functions are defined for loops, sections,

barriers, etc.

5.3 Execution

The implementation of XOMP task() consists principally of two steps: a new qthread is created

and initialized with the function, data context, and flags provided in the arguments, and the new

qthread is either enqueued or scheduled for execution, depending on the scheduling policy. Recall

that under a help-first task scheduling policy, each new task is enqueued, while under a work-first

policy, each new task is scheduled for execution immediately on the thread where it is generated.

In the remainder of this discussion, we refer to tasks rather than qthreads both for simplicity and

because the scheduling concepts that we describe are applicable to other task-parallel languages and

libraries.

The behavior of the worker threads in the run time system can be modeled as a finite state

machine, as shown in Figure 5.4. For some span of time, the thread is actively executing a task. The

following events may occur:

• A new child task is generated. Either the child task or the parent task is scheduled, according

to the task scheduling policy.

• The task suspends, e.g., waiting at a synchronization point or lock. Control returns to the

scheduler to select a ready task to execute.

1The transformed code has been partially sanitized for simplicity.

64

!"#$%&#'
$%((#)&'&*+,'

-(#*&#'$.)&#"&'
/.('$0123'&*+,'

4.5#'&*+,'&.'
6*17)8'9%#%#'

:#*('3.6)'
&*+,'$.)&#"&'

;<)$'61&0'
=*(#)&'&*+,'

4.5#'=*(#)&'&*+,'
&.'(#*3<'9%#%#''

;#2#$&')#"&'&*+,'
/(.>''(#*3<'9%#%#''

?)5.,#'2.*3'
@*2*)$1)8'

:*+,'$(#*7.)' :*+,''+<)$'A'2.$,' :*+,'(#7(#3'

;<)$'(#9%1(#3'

B*+&'$0123'1)'

!>=&<'9%#%#'C#6'&*+,D+E'
.@&*1)#3'

;$0#3%2#')#"&'&*+,'
/.('#"#$%7.)'

;$0#3%2#'$0123'&*+,'
.('=*(#)&'&*+,'

Figure 5.4: State diagram for a worker thread during execution.

• The task completes and is torn down. If required, i.e., the parent task includes a taskwait,

the task synchronizes with its parent. If this task is the last outstanding child of the parent task,

the parent task is enabled for rescheduling. Control returns to the scheduler.

Task scheduling continues according to the task scheduling policy until the task queue is empty. At

that point, load balancing is invoked, if available. The implementation of load balancing depends on

the scheduling policy.

Our OpenMP library also includes implementations of the other XOMP functions and OpenMP

run time functions, e.g., omp num threads() and omp thread num(), either through existing

Qthreads functionality or new extensions to Qthreads.

65

CHAPTER 6

HIERARCHICAL SCHEDULING∗

In Chapter 2, we presented a survey of scheduling policies for task parallelism, including

theoretical bounds on time, space, and cache misses. However, we observed in Chapters 3 and 4 that

overhead costs, load imbalance, and work time inflation limit application speedup using existing run

time systems in practice. We posit that these issues are exacerbated on multi-socket multicore HPC

systems due to NUMA and cache effects, and that a hierarchical scheduler matched to the hardware

topology mitigates them for improved performance.

6.1 Limitations of Work Stealing and PDF Schedulers

Figure 6.1 shows a snapshot of the task graph that executes a computation on three threads

according to a work stealing schedule. Consider the implications of the cache configuration for

this execution. If each thread has its own cache, then the data associated with the subgraph that is

executed will reside in its cache. Since tasks running on each thread are from different subgraphs of

the task graph, they also use data on different cache lines, minimizing coherence misses. However, if

the three threads share a cache, then a fraction of that cache must be used to hold data from each of

the three subgraphs of the task graph.

Consider instead an execution of the same task graph using the PDF schedule. The entire

subgraph shown in light green would be executed before the other graphs. If each of the threads

has its own cache, then coherence misses will occur as cache lines that contain data shared by tasks

nearby in the task graph move between the individual caches. If the three threads share a cache, then

tasks nearby in the task graph will execute concurrently as the data shared among them is resident

∗Contents of this chapter previously appeared in preliminary form in Proceedings of the First Workshop on Run Time
and Operating Systems for Supercomputers (Olivier et al., 2011).

Figure 6.1: Task graph for a computation executing on three threads.

in the shared cache (the constructive cache sharing effect (Chen et al., 2007)). In terms of the task

graph shown in Figure 6.1, to have all needed data resident in a shared cache (after the inevitable

initial cold cache misses) using a PDF schedule would require capacity for only one of the colored

subgraphs at once. Using a work stealing schedule, sufficient capacity in the shared cache for data

from each of the colored subgraphs would be needed. Of course, insufficient cache capacity would

result in capacity misses.

Consider the cache behavior of work stealing and PDF schedulers on a multi-socket multicore

system such as the 32 core, four-socket Intel Nehalem system introduced in Section 4.2 and shown

in Figure 6.2. Cores on each processor chip share an integrated memory controller and local memory

with a shared cache, and access via the interconnect to the processor chips and memory on the other

sockets. Each core also has private caches. A work stealing scheduler exploits the private cache

well. However, the combined capacity of the private caches is smaller than the shared cache, and the

penalty for a miss in the shared cache is much less than a penalty for a miss in the private cache that

hits in the shared cache. Local off-chip access takes at least 100 cycles and remote accesses multiple

67

6!The University of North Carolina at Chapel Hill !

Typical SMP System Layout!

2!

5!6!

3!

4!

L3 Cache!

M
em

!
M

em
!

M
em

!
M

em
!

1!0!

7!

2!

5!6!

3!

4!

L3 Cache!

M
em

!
M

em
!

M
em

!
M

em
!

1!0

7!

1!

6! 5!

0!

7!

L3 Cache!

M
em

!
M

em
!

M
em

!
M

em
!

2! 3!

4!

1!

6! 5!

0!

7!

L3 Cache!

M
em

!
M

em
!

M
em

!
M

em
!

2! 3!

4!

Figure 6.2: Topology of the four-socket Intel Nehalem-EX system.

hundreds of cycles compared to only tens of cycles for L3 hits (Levinthal, 2009). A PDF scheduler

more efficiently uses the combined capacity of the shared caches on all the chips, but incurs frequent

and expensive inter-chip coherence misses as cache lines are shared between different chips.

Work stealing and PDF schedulers are also challenged by the cost of load balancing operations.

In a work stealing scheduler, steals between threads on the same chip are inexpensive, but steals

between threads on different threads incur high latency. A PDF scheduler is implemented through a

centralized shared queue, so many task enqueue and dequeue operations on multi-socket system are

costly remote accesses. Latency costs are compounded by inter-chip locking overheads and resulting

queue contention.

6.2 Hierarchical Scheduling with MTS

To overcome the limitations of work stealing and centralized shared queues on multi-socket

multicore and NUMA systems, we propose a hierarchical approach: multithreaded shepherds, MTS.

It is designed to combine the benefits of work stealing and PDF schedulers: low-overhead load

balancing, isolation of subgraphs that execute on different chips, and constructive sharing of shared

cache for tasks that execute on cores of the same chip.

68

In the MTS scheduler, one shepherd serves all cores on the same chip. These cores share a

cache, typically L3, and all are proximal to a local memory attached to that socket. Within each

shepherd, we map one pthread worker to each core. Among workers in each shepherd, a shared

LIFO queue provides depth-first scheduling close to serial order to exploit the shared cache. Thus,

load balancing happens naturally among the workers on a chip and concurrent tasks have possible

overlapping localities that can be captured in the shared cache.

Between shepherds work stealing is used to maintain load balance. Each time the shepherd’s

task queue becomes empty, only the first worker to find the queue empty sets a flag and commences

stealing. The other workers in the shepherd spin on cached copies of the flag until the steal is

complete and the stealing thread resets the flag. The thief thread steals enough tasks from another

shepherd’s queue to supply the workers in its shepherd with work. The number of tasks stolen

per steal is a tunable parameter, but stealing one per worker in the shepherd ensures that at least

immediately following the steal all threads have a task to execute. In practice, we have observed this

heuristic to be effective, and Section 6.4.1.3 shows how performance varies for different choices of

this parameter. If fewer tasks are available then the thief steals all available tasks on the victim’s

queue. The stolen tasks are dequeued and collected into a small linked list then enqueued at the

thief’s queue. If the steal attempt fails because no tasks are available, then the thief thread selects a

new victim and begins another steal attempt.

Centralized task queueing for workers within each shepherd reduces the need for remote stealing

by providing local load balance. By allowing only one representative worker to steal at a time, in

bulk for all workers in the shepherd, communication overheads are reduced. While a shared queue

can be a performance bottleneck, the number of cores per chip is bounded, and intra-chip locking

operations are fast.

6.3 Scheduler Implementation in Qthreads

The Qthreads scheduler, henceforth called Q, supports only one worker pthread per shepherd,

and each shepherd maintains a non-blocking FIFO queue. Newly generated tasks are enqueued onto

the queues according to a round-robin policy, a suitable strategy for the loop-level parallelism it was

originally designed to support.

69

The first step toward support of MTS, is to replace the FIFO queue of the Q scheduler with a LIFO

queue. A challenge posed by our hierarchical scheduling strategy is the need for a queue that supports

concurrent access on both ends, since workers within a shepherd share a queue. Most existing

lock-free queues for work stealing, such as the Arora, Blumofe, and Plaxton (ABP) queue (Arora

et al., 1998) and resizable variants (Hendler et al., 2006; Chase and Lev, 2005), allow only one thread

to execute push() and pop() operations. Completely lock-free doubly-ended queues (deques)

generalize the ABP queue to allow for concurrent insertion and removal on both ends of the queue.

Lock-free deques have been implemented with compare-and-swap atomic primitives (Michael, 2003;

Sundell and Tsigas, 2005), but speed is limited by their use of linked lists. The ideal non-blocking

queue implementation would be array-based and support lock-free concurrent access at both ends.

Our present solution is to use a lock-based queue, which forgoes the non-blocking properties of

lock-free implementations.

In a modified scheduler, L, the LIFO scheduling policy allows the improved locality for child

tasks that operate on subsets of the data sets used by their parent tasks. Although the lock-protected

enqueue and dequeue operations support concurrent access at both ends, L retains the round robin

scheduling of new tasks among the queues so that effects of the improved locality can be observed

independently in our evaluation.

The final steps toward MTS support are to change the placement policy for new tasks so that

they are enqueued on the queue of the local shepherd and to implement work stealing between the

shepherds. These changes allow the flexibility to support several different scheduling strategies

depending on the number of shepherds and the number of worker pthreads per shepherd. For PDF

scheduling, we chose a configuration with only one shepherd and as many worker pthreads in that

shepherd as there are cores on the system. We designate this centralized shared queue configuration

CQ. For work stealing with one queue per core, WS, chose a configuration with as many shepherds

as there are cores on the system and only one pthread worker per shepherd. For our hierarchical

scheduler, MTS, chose a configuration with as many shepherds as there are chips and as many pthread

workers per shepherd as there are cores on each chip. These configurations can be set and reset using

environment variables, so that neither the application nor the run time library require recompilation

to change them.

70

Qthreads Implementations, compiled Rose/GCC -O2 -g
Version Scheduler Number of Task Internal External
Name Implementation Shepherds Placement Queue Access Queue Access

Q Stock one per core round robin FIFO (lock-free) none
L LIFO one per core round robin LIFO (blocking) none

CQ Central Queue one N/A LIFO (blocking) N/A
WS Work Stealing one per core local LIFO (blocking) FIFO stealing

MTS Multithreaded one per chip local LIFO (blocking) FIFO stealing
Shepherds

ICC Intel 11.1 OpenMP, compiled -O2 -xHost -ipo -g
GCC GCC 4.4.4 OpenMP, compiled -O2 -g

Table 6.1: Scheduler implementations evaluated: five Qthreads implementations, ICC, and GCC.

6.4 Evaluation

To evaluate the performance of our hierarchical scheduler and the other Qthreads schedulers,

we present an evaluation using seven scheduler implementations: five versions of Qthreads1, the

GNU GCC OpenMP implementation, and the Intel ICC OpenMP implementation, as summarized in

Table 6.1. The Qthreads implementations are as follows.

• Q is the original version of Qthreads and defines each core to be a separate locality domain

or shepherd. It uses a non-blocking FIFO queue to schedule tasks within each shepherd

(individual core). Each shepherd only obtains tasks from its local queue, although tasks are

distributed across shepherds on a round robin basis for load balance.

• L incorporates a simple double ended locking LIFO queue to replace the original non-blocking

FIFO queue. Concurrent access at both ends is required for work stealing, though L retains

round robin task distribution for load balance rather than work stealing.

• CQ uses a single shepherd and centralized shared queue to distribute tasks among all cores in

the system. This approach should provide load balance, but contention for the queue limits

scalability for fine-grained tasks.

• WS provides a shepherd (and individual queue) for each core, and idle shepherds steal tasks

from the shepherds running on the other cores. Initial task placement is not round robin

1all compiled with GCC 4.4.4 -O2

71

between queues, but onto the local queue of the shepherd where it is generated, exploiting

locality among related tasks.

• MTS assigns one shepherd to every processor memory locality (shared L3 cache on chip and

attached DIMMs). Each core on a chip hosts a worker thread that shares its shepherd’s queue.

Only one core is allowed to actively steal tasks on behalf of the queue at a time and tasks are

stolen in chunks large enough to keep all cores busy.

The benchmarks for our evaluation are from BOTS (Duran and Teruel, 2011), the suite of

benchmarks that we analyzed in Section 4.2:

• Alignment: Aligns sequences of proteins using dynamic programming (100 sequences)

• Fib: Computes the nth Fibonacci number using brute-force recursion (n = 50)

• Health: Simulates a national health care system over a series of timesteps (144 cities)

• NQueens: Finds solutions of the n-queens problem using backtrack search (n = 14)

• Sort: Sorts a vector using parallel mergesort transitioning to sequential quicksort and insertion

sort (128M integers)

• SparseLU: Computes the LU factorization of a sparse matrix (10000×10000 matrix, 100×100

submatrix blocks)

• Strassen: Computes a dense matrix multiply using Strassen’s method (8192 x 8192 matrix)

The configuration of the benchmark applications,.e.g., the for and single task generation

variants of Alignment and SparseLU and the use of cut-offs, were described in more detail in

Section 4.2.

6.4.1 Performance on Intel Nehalem

The first hardware test system for our experiments is the same system described in Section 4.2

and shown in Figure 6.2: a Dell PowerEdge M910 quad-socket blade with four Intel x7550 2.0GHz

8-core Nehalem-EX processors installed for a total of 32 cores. The processors are fully connected

using Intel QuickPath Interconnect (QPI) links. Each processor has an 18MB shared L3 cache and

each core has a private 256KB L2 cache as well as 32KB L1 data and instruction caches. The blade

72

Configuration Alignment Fib Health NQueens Sort SparseLU Strassen
ICC -O2 -xHost -ipo Serial 28.33 100.4 15.07 49.35 20.14 117.3 169.3

GCC -O2 Serial 28.06 83.46 15.31 45.24 19.83 119.7 162.7
ICC 32 threads 0.9110 4.036 1.670 1.793 1.230 7.901 10.13
GCC 32 threads 0.9973 5.283 7.460 1.766 1.204 4.517 10.13

Qthreads MTS 32 workers 1.024 3.189 1.122 1.591 1.080 4.530 10.72

Table 6.2: Sequential and parallel execution times (in seconds) using ICC, GCC, and Qthreads MTS.

has 64 dual-rank 2GB DDR3 memory sticks (16 per processor chip) for a total of 132GB. It runs

CentOS Linux with a 2.6.35 kernel. Although the x7550 processor supports HyperThreading (Intel’s

simultaneous multithreading technology), we pinned only one thread to each physical core for our

experiments.

All executables using the Qthreads and GCC run times were compiled with GCC 4.4.4 with

-g and -O2 optimization, for consistency. Executables using the Intel run time were compiled with

ICC 11.1 and -O2 -xHost -ipo optimization. Reported results are from the best of ten runs unless

otherwise specified.

Overall the GCC compiler and ICC compiler produce executables with similar serial performance

on the various applications, as shown in Table 6.2. For Alignment and SparseLU, the best time

between the two parallel variants (single and for) is shown. These sequential execution times

provide a basis for us to compare the relative speedup of the various benchmarks. If the -ipo and

-xHost flags are not used with ICC on SparseLU, the GCC serial executable runs 3x faster than the

ICC executable compiled with -O2 alone. The significance of this difference will be clearer in the

presentation of parallel performance on SparseLU in Section 6.4.1.1. Several other benchmarks also

run slower with those ICC flags omitted, though not by such a large margin.

Qthreads MTS 32 core performance is faster or comparable to the performance of ICC and GCC.

In absolute execution time, MTS runs faster than ICC for 5 of the 7 benchmarks by up to 74.4%. It is

over 6.6x faster for one benchmark than GCC and up to 65.6% faster on 4 of the 6 others. On two

benchmarks MTS runs slower: for Alignment, it is 12.4% slower than ICC and 2.7% slower than

GCC and for Strassen it is 5.8% slower than both (although WS equaled GCC’s performance [see

discussion on Strassen in sec. 6.4.1.1]). Thus even as a research prototype, ROSE/Qthreads provides

competitive OpenMP task execution.

73

0	

4	

8	

12	

16	

20	

24	

28	

32	

4	
 8	
 16	
 32	

Sp
ee
du

p	

Number	
 of	
 Threads	

MTS	
 WS	
 CQ	
 L	
 Q	
 ICC	
 GCC	

Figure 6.3: Health on 4-socket Intel Nehalem

6.4.1.1 Speedup Results

Differences in achieved speedup on the various benchmarks reveal the strengths and weaknesses

of each scheduling approach based on application needs for locality and load balance.

The Health benchmark, Figure 6.3, shows significant diversity in performance and speedup.

GNU performance is slightly superlinear for 4 cores (4.5x), but peaks with only 8 cores active (6.3x)

and by 32 cores the speedup is only 2x. Intel also has scaling issues and performance flattens to 9x

at 16 cores. Stock Qthreads Q scales slightly better (9.4x), but just switching to the LIFO queue L

to improve locality between tasks allows speedup on 32 cores to reach 11.5x. Since the individual

tasks are relatively small, CQ experiences contention on its task queue that limits speedup to 7.7x

on 16 cores, with performance degrading to 6.1x at 32 cores. When work stealing, WS, is added

to Qthreads the performance improves slightly and speedup reaches 11.6x. MTS further improves

locality and load balance on each processor by sharing a queue across the cores on each chip, and

speedup increases to 13.6x on 32 cores. This additional scalability allows Qthread MTS a 17.3%

faster execution time on 32 cores than any other implementation, much faster than ICC (48.7%) and

GCC(116.1%). Health provides an excellent example of how both work stealing and queue sharing

74

0	

50	

100	

150	

200	

250	

300	

ICC	
 GCC	
 MTS	
 WS	
 CQ	

To
ta
l	
 T
im

e	

(s
ec
.)
	

Seq	
 Time	
 Work	
 Infla9on	

Overhead	
 Libc	

Idle	

Figure 6.4: Total time over all threads on Health using 32 threads.

within a system can independently and together improve performance, though the failure of any run

time to reach 50% efficiency on 32 cores shows that there is room for improvement.

In addition to measuring the parallel speedup, we also used the performance model from

Chapter 4 to identify the contributions of idle time, overhead time, sequential equivalent time, and

work time inflation to the total time spent by all threads. Figure 6.4 shows the results using 32 threads

for ICC, GCC, and the MTS, WS, and CQ Qthreads configurations. The GCC run time and CQ suffer

from excessive overheads and idleness. Work time inflation is the dominant source of inefficiency for

MTS, WS, and the ICC run time, but MTS exhibits the least work time inflation among all schedulers.

The work time inflation in Health arises from remote memory accesses and coherence misses that

occur more often than necessary, a pathology that is magnified with increasing thread counts. Health

is a time-dependent simulation that uses a divide-and-conquer approach to simulate disease-related

events (infected population, patients, hospitals) in small villages and to propagate the effects across

geographic areas over time. The geographic areas are organized hierarchically so the communication

is often localized. In fact, only 2% of patients are transferred between hospitals in different regions.

Thus the algorithmic design of Health can exploit locality, and we explore this direction further in

the next chapter.

75

0	

4	

8	

12	

16	

20	

24	

28	

32	

4	
 8	
 16	
 32	

Sp
ee
du

p	

Number	
 of	
 Threads	

MTS	
 WS	
 CQ	
 L	
 Q	
 ICC	
 GCC	

Figure 6.5: Sort on 4-socket Intel Nehalem

0	

5	

10	

15	

20	

25	

30	

35	

40	

45	

ICC	
 GCC	
 MTS	
 WS	
 CQ	

To
ta
l	
 T
im

e	

(s
ec
.)
	

Seq	
 Time	
 Work	
 Infla:on	

Overhead	
 Libc	

Idle	

Figure 6.6: Total time over all threads on Sort using 32 threads.

The benefits of hierarchical scheduling can also be seen in Figure 6.5. Sort, for which we used a

manual cutoff of 32K integers to switch between parallel and serial sorts, achieved speed up of about

16x for 32 cores on ICC and GCC, but just 11.4x for the base version of Qthreads, Q. The switch

to a LIFO queue, L, improved speedup to 13.6x by facilitating data sharing between a parent and

child. Independent changes to add work stealing, WS, and improve load balance, CQ, both improved

76

0	

4	

8	

12	

16	

20	

24	

28	

32	

4	
 8	
 16	
 32	

Sp
ee
du

p	

Number	
 of	
 threads	

MTS	
 WS	
 CQ	
 L	
 Q	
 ICC	
 GCC	

Figure 6.7: NQueens on 4-socket Intel Nehalem

speedup to 16x. By combining the best features of both work stealing and multiple threads sharing

a queue, MTS increased speedup to 18.4x and achieved a 13.8% and 11.4% reduction in overall

execution time compared to ICC and GCC OpenMP versions.

The break-down of total time across all threads is shown in Figure 6.6. GCC suffers from

excessive idleness and all schedulers exhibit work time inflation, though MTS and GCC have the

least. Sort permutes the elements of a vector, which inherently leads to remote data accesses. Tasks

primarily compare values in two sublists of the vector, which lacks computational intensity. Efficient

execution depends on the ability of the memory subsystem to supply the values, a difficult challenge

as the thread count increases. On our test machine, the available memory bandwidth per thread

decreases when more than 12 threads are used. Ensuring adequate memory concurrency for Sort and

other bandwidth-limited applications is critical, especially as the number of cores per chip increases.

Locality effects allow NQueens to achieve slightly super-linear speedup for 4 and 8 cores using

Qthreads. As seen in Figure 6.7, speedup is near-linear for 16 threads and only somewhat sub-linear

for 32 threads on all OpenMP implementations. By adding load balancing mechanisms to Qthreads,

its speedup improved significantly (24.3x to 28.4x). CQ and WS both improved load balance beyond

what the LIFO queue (L) provides but little is gained by combining them together in MTS. The

additional scaling of these three versions results in a execution time 12.6% faster than ICC and 10.9%

77

0	

10	

20	

30	

40	

50	

60	

70	

ICC	
 GCC	
 MTS	
 WS	
 CQ	

To
ta
l	
 T
im

e	

(s
ec
.)
	

Seq	
 Time	
 Work	
 Infla<on	
 Overhead	
 Libc	
 Idle	

Figure 6.8: Total time over all threads on NQueens using 32 threads.

0	

4	

8	

12	

16	

20	

24	

28	

32	

4	
 8	
 16	
 32	

Sp
ee
du

p	

Number	
 of	
 Threads	

MTS	
 WS	
 CQ	
 L	
 Q	
 ICC	
 GCC	

Figure 6.9: Fib on 4-socket Intel Nehalem

faster than GCC. The break-down of total time across all threads is shown in Figure 6.8. Despite the

small working set of the program, compulsary cache misses induced by load balancing operations

causes some work time inflation with all schedulers.

Fib, Figure 6.9, uses a cut-off to stop the creation of very small tasks, and thus has enough work

in each task to amortize the costs of queue access. CQ yields performance 2-3% faster than MTS and

78

0	

20	

40	

60	

80	

100	

120	

140	

160	

180	

ICC	
 GCC	
 MTS	
 WS	
 CQ	

To
ta
l	
 T
im

e	

(s
ec
.)
	

Seq	
 Time	
 Work	
 Infla:on	

Overhead	
 Libc	

Idle	

Figure 6.10: Total time over all threads on Fib using 32 threads.

0	

4	

8	

12	

16	

20	

24	

28	

32	

4	
 8	
 16	
 32	

Sp
ee
du

p	

Number	
 of	
 Threads	

MTS	
 WS	
 CQ	
 L	
 Q	
 ICC	
 GCC	

Figure 6.11: Alignment-single on 4-socket Intel Nehalem

the other versions of Qthreads, since load balance is good and no time is spent looking for work. The

load balancing versions of Qthreads (26.1x - 26.7x) scale better than Intel at 24.9x. Both systems

beat GCC substantially at only 15.8x. Overall, the scheduling improvements resulted in MTS running

26.5% faster than ICC and 28.8% faster than GCC but 2.0% slower than CQ. The break-down of total

time across all threads is shown in Figure 6.10. As in NQueens, compulsary cache misses induced

79

0	

4	

8	

12	

16	

20	

24	

28	

32	

4	
 8	
 16	
 32	

Sp
ee
du

p	

Number	
 of	
 Threads	

MTS	
 WS	
 CQ	
 L	
 Q	
 ICC	
 GCC	

Figure 6.12: Alignment-for on 4-socket Intel Nehalem

0	

5	

10	

15	

20	

25	

30	

35	

ICC	
 GCC	
 MTS	
 WS	
 CQ	

To
ta
l	
 T
im

e	

(s
ec
.)
	

Seq	
 Time	
 Work	
 Infla9on	

Overhead	
 Libc	

Idle	

Figure 6.13: Total time over all threads on Alignment-single using 32 threads.

by load balancing operations causes some work time inflation with all schedulers. GCC exhibits

excessive idleness.

The next two applications Alignment and SparseLU, each have two versions. For Alignment,

Figures 6.11 and 6.12, speedup was near-linear for all versions and execution times between GCC

and Qthreads were close (GCC +2.7% single initial task version; Qthreads +0.5% parallel loop

80

0	

5	

10	

15	

20	

25	

30	

35	

ICC	
 GCC	
 MTS	
 WS	
 CQ	

To
ta
l	
 T
im

e	

(s
ec
.)
	

Seq	
 Time	
 Work	
 Infla9on	

Overhead	
 Libc	

Idle	

Figure 6.14: Total time over all threads on Alignment-for using 32 threads.

0	

4	

8	

12	

16	

20	

24	

28	

32	

4	
 8	
 16	
 32	

Sp
ee
du

p	

Number	
 of	
 Threads	

MTS	
 WS	
 CQ	
 L	
 Q	
 ICC	
 GCC	

Figure 6.15: SparseLU-single on 4-socket Intel Nehalem

version). ICC scales better than GCC or Qthreads MTS, WS, CQ, with 12.4% lower execution time.

Since Alignment has no taskwait synchronizations, we speculate that ICC scales better on this

benchmark because it maintains fewer bookkeeping data structures in the absence of synchronization.

The break-down of total time across all threads is shown in Figures 6.13 and 6.14. None of the

schedulers exhibit excessive overheads or idle time, but all exhibit some work time inflation.

81

0	

4	

8	

12	

16	

20	

24	

28	

32	

4	
 8	
 16	
 32	

Sp
ee
du

p	

Number	
 of	
 Threads	

MTS	
 WS	
 CQ	
 L	
 Q	
 ICC	

Figure 6.16: SparseLU-for on 4-socket Intel Nehalem

0	

50	

100	

150	

200	

250	

ICC	
 GCC	
 MTS	
 WS	
 CQ	

To
ta
l	
 T
im

e	

(s
ec
.)
	

Seq	
 Time	
 Work	
 Infla8on	

Overhead	
 Libc	

Idle	

Figure 6.17: Total time over all threads on SparseLU-single using 32 threads.

On both SparseLU versions, ICC serial performance improved nearly 3x using the -ipo and

-xHost flags rather than using -O2 alone. The flags also improved parallel performance, but by

only 60%, so the improvement does not scale linearly. On SparseLU-single, Figure 6.15, the

performance of GCC and the various Qthreads versions is effectively equivalent, with speedup

reaching 26.2x. Due to the aforementioned scaling issues, ICC speedup reaches only 14.8x. The

82

0	

50	

100	

150	

200	

250	

ICC	
 MTS	
 WS	
 CQ	

To
ta
l	
 T
im

e	

(s
ec
.)
	

Seq	
 Time	
 Work	
 Infla7on	

Overhead	
 Libc	

Idle	

Figure 6.18: Total time over all threads on SparseLU-for using 32 threads.

0	

4	

8	

12	

16	

20	

24	

28	

32	

4	
 8	
 16	
 32	

Sp
ee
du

p	

Number	
 of	
 Threads	

MTS	
 WS	
 CQ	
 L	
 Q	
 ICC	
 GCC	

Figure 6.19: Strassen on 4-socket Intel Nehalem

execution times differ by 0.3% between GCC and MTS with both about 74.4% faster than ICC. On

SparseLU-for, Figure 6.16, the GCC OpenMP runs were stopped after exceeding the sequential

time; thus data is not reported. ICC again scales poorly (14.8x), and Qthreads speedup improves

due to the LIFO work queue and work stealing, reaching 22.2x. MTS execution time is 46.3% faster

than ICC. The break-down of total time across all threads is shown in Figures 6.17 and 6.18. The

83

0	

100	

200	

300	

400	

500	

600	

ICC	
 GCC	
 MTS	
 WS	
 CQ	

To
ta
l	
 T
im

e	

(s
ec
.)
	

Seq	
 Time	
 Work	
 Infla;on	

Overhead	
 Libc	

Idle	

Figure 6.20: Total time over all threads on Strassen using 32 threads.

large amount of work time inflation in ICC is a results of the broken compiler optimizations. The

other schedulers exhibit significantly more overhead time, idle time, and work time inflation in the

execution of SparseLU-for than in the execution of SparseLU-single.

Strassen, Figure 6.19, performs recursive matrix multiplication using Strassen’s method. We

used the cutoff setting that gave the best performance for each implementation: coarser (128) for CQ

and MTS and the default setting (64) for the others. The execution times of GCC, and WS are within

1% of each other on 32 cores, and Intel scales slightly better (16.7x vs 16.1x). For MTS, in which

only 8 threads share a queue (rather than 32 as in CQ) the speedup reaches 15.2x. For CQ, however,

the performance hit due to queue contention is substantial, as speedup peaks at 9.7x. Q performance

suffers from the FIFO ordering: not enough parallel work is expressed at any one time, and speedup

never exceeds 4x.

The break-down of total time across all threads is shown in Figure 6.20. All schedulers exhibit

substantial work time inflation. Strassen uses an algorithm that has lower asymptotic time complexity

(O(N2.807)) than standard matrix multiplication (O(N3)). The matrices are recursively decomposed

into submatrices, and only seven multiplication operations among the submatrices are required for

each submatrix result (compared to eight). However, Strassen’s algorithm has reduced reference

locality, which leads to less effective cache use and high-latency remote memory accesses. Proposed

84

Configuration Alignment Alignment Fib Health NQueens Sort SparseLU SparseLU Strassen
(single) (for) (single) (for)

ICC 32 threads 4.4 2.0 3.7 2.0 3.2 4.0 1.1 3.9 1.8
GCC 32 threads 0.11 0.34 2.8 0.35 0.77 1.8 0.49 N/A 1.4
MTS 32 workers 0.28 1.5 3.3 1.3 0.78 1.9 0.15 0.16 1.9
WS 32 shepherds 0.035 1.8 2.0 0.29 0.60 0.90 0.060 0.24 3.0

Table 6.3: Variability in performance on the Intel Nehalem using ICC, GCC, MTS, and WS (standard
deviation as a percent of the fastest time).

techniques to improve locality include switching to standard matrix multiplication at the base of

the recursion and changing the data layout to the more cache-friendly Morton ordering, but data

reordering itself incurs some costs (Thottethodi et al., 1998).

6.4.1.2 Variability

One interesting feature of a work stealing run time is an idle thread’s ability to search for work

and the effect that overhead has on performance in regions of limited parallelism or load imbalance.

Table 6.3 gives the standard deviation of 10 runs as a percent of the fastest time for each configuration

tested with 32 threads. Both Qthreads implementations with work stealing (WS and MTS) have very

small variation in execution time for 3 of the 9 programs. For 8 of the 9 benchmarks, both WS and

MTS show less variability than ICC.

In three cases (Alignment-single, Health, SparseLU-single), Qthreads WS variability was

much lower than MTS. Since MTS enables only one worker thread per shepherd at a time to steal a

chunk of tasks, we expect this granularity to be reflected in execution time variations. Overall, we

see less variability with WS than MTS in 6 of the 9 benchmarks. We speculate that normally having

all the threads looking for work leads to finding the last work quickest and therefore less variation

in total execution time. However, for some programs (Alignment-for, SparseLU-for, Strassen),

stealing multiple tasks and moving them to an idle shepherd results in faster execution during periods

of limited parallelism. WS also shows less variability than GCC in 6 of the 8 programs for which we

have data. No data is shown for SparseLU-for on GCC, as explained in the previous section.

85

Benchmark MTS WS
Steals Failed Steals Failed

Alignment (single) 1016 88 3695 255
Alignment (for) 109 122 1431 286

Fib 633 331 467 984
Health 28948 10323 295637 47538

NQueens 102 141 1428 389
Sort 1134 404 19330 3283

SparseLU (single) 18045 8133 68927 24506
SparseLU (for) 13486 11889 68099 32205

Strassen 227 157 14042 823

Table 6.4: Number of remote steal operations during execution by Qthreads MTS and WS schedulers
on Intel Nehalem.

6.4.1.3 Performance Analysis of MTS

Limiting the number of inter-chip load balancing operations is central to the design of our

hierarchical scheduler (MTS). Consider the number of remote (off-chip) steal operations performed

by MTS and by the flat work stealing scheduler WS, shown in Table 6.4. These counts exclude the

number of on-chip steals performed by WS, and recall that MTS uses work stealing only between

chips. We observe that WS steals more than MTS in almost all cases, and some cases by an order of

magnitude. Health and Sort are two benchmarks where MTS wins clearly in terms of speedup. WS

steals remotely over twice as many times as MTS on Sort and nearly twice as many times as MTS on

Health. The number of failed steals is also significantly higher with WS than with MTS. A failed steal

occurs when a thief’s lock-free probe of a victim indicates that work is available but upon acquisition

of the lock to the victim’s queue the thief finds no work to steal because another thread has stolen

it or the victim has executed the tasks itself. Thus, both failed and completed steals contribute to

overhead costs.

The MTS scheduler aggregates inter-chip load balancing by permitting only one worker at a time

to initiate bulk stealing from remote shepherds. Figure 6.21 shows how this improves performance

on Health, one of the benchmarks sensitive to load balancing granularity. If only one task is stolen

at time, subsequent steals are needed to provide all workers with tasks, adding to overhead costs.

Our test machine has eight cores per socket, thus eight workers per shepherd, and a target of eight

tasks stolen per steal request. This arrangement coincides with the peak performance: When the

86

0.9	

1	

1.1	

1.2	

1	
 2	
 4	
 8	
 16	
 32	
 64	
 Pe
rf
or
m
an

ce
	
 re

la
,
ve
	

	
 to
	
 c
hu

nk
	
 s
iz
e	

1	

Chunk	
 size	
 (number	
 of	
 tasks	
 stolen	

	
 per	
 steal	
 opera,on)	

Figure 6.21: Performance on Health using MTS based on the choice of chunk size for stealing on
Intel Nehalem.

Stolen Alignment Alignment Fib Health NQueens Sort SparseLU SparseLU Strassen
Tasks (single) (for) (single) (for)
Total 5900 450 2181 159386 423 5214 93117 38198 1355

Per Steal 5.8 4.1 3.4 5.5 4.1 4.6 5.1 2.8 6.0

Table 6.5: Tasks stolen and tasks per steal using the MTS scheduler. Average of ten runs.

Metric MTS WS %Diff
L3 Misses 1.16e+06 2.58e+06 38

Bytes from Memory 8.23e+09 9.21e+09 5.6
Bytes on QPI 2.63e+10 2.98e+10 6.2

Table 6.6: Memory performance data for Health using MTS and WS. Average of ten runs on Intel
Nehalem.

Metric MTS WS %Diff
L3 Misses 1.03e+7 3.42e+07 54

Bytes from Memory 2.27e+10 2.53e+10 5.5
Bytes on QPI 4.35e+10 4.87e+10 5.6

Table 6.7: Memory performance data for Sort using MTS and WS. Average of ten runs on Intel
Nehalem.

target number of tasks stolen corresponds to the number of workers in the shepherd, all workers in

the shepherd are able to draw work immediately from the queue as a result of the steal.

Frequently the number of tasks available to steal is less than the target number to be stolen.

Table 6.5 shows the total number of tasks stolen and the average number of tasks stolen per steal

operation, given a target of 8 tasks per steal. Across all benchmarks, the range of tasks actually stolen

87

per steal is 2.8 to 6.0. The numbers skew downward due to a scarcity of work during start-up and

near termination, when only one or few tasks are available at a time. Note the lower number both

of total steals and tasks per steal for the for versions of Alignment and SparseLU compared to the

single versions. Loop parallel initialization provides good initial load balance so that fewer steals

are needed, and those that do occur sporadically are near termination and synchronization phases.

Another benefit of the MTS scheduler is better L3 cache performance, since all workers in a

shepherd share the on-chip L3 cache. The WS scheduler exhibits poorer cache performance, and

subsequently, more reads to main memory. Tables 6.6 and 6.7 show the relevant metrics for Health

and Sort as measured using hardware performance counters, averaged over ten runs. They also show

more traffic on the Quick Path Interconnect (QPI) between chips for WS than for MTS. QPI traffic

occurs when data is requested and transferred from either remote memory or remote L3 cache, i.e.,

attached to a different socket of the machine. Not only are remote accesses higher latency, but they

also result in remote cache invalidations of shared cache lines and subsequent coherence misses.

Increased QPI traffic in WS reflects more remote steals and more accesses to data in remote L3 caches

and remote memory. In summary, MTS gains advantage by exploiting locality among tasks executed

by threads on cores of the same chip, making good use of the shared L3 cache to access memory less

frequently and avoid high latency remote accesses and coherence misses.

6.4.2 Performance on AMD Magny Cours

We also evaluate the Qthreads schedulers against ICC and GCC on a 2-socket AMD Magny

Cours system, one node of a cluster at Sandia National Laboratories. Each socket hosts an Opteron

6136 multi-chip module: two quad-core chips that share a package connected via two internal

HyperTransport (HT) links. The remaining two HT links per chip are connected to the chips in the

other socket, as shown in Figure 6.22. Each chip contains a memory controller with 8GB attached

DDR3 memory, a 5MB shared L3 cache, and four 2.4 MHz cores with 64kb L1 and 512kb L2

caches. Thus, the machine has a total of 16 cores and 32GB memory, evenly divided among four

HyperTransport-connected NUMA nodes (one per chip, two per socket). The system runs Cray

compute-node Linux kernel 2.6.27, and we used the GCC 4.6.0 with -O3 optimization and ICC 12.0

with -O3 -ipo -msse3 -simd optimization.

88

7!The University of North Carolina at Chapel Hill !

Typical SMP System Layout!

2!
L3

Cache!

M
em

!

M
em

! 1!0!

3! 3!
L3

Cache!

M
em

!

M
em

!0! 1!

2!

2!
L3

Cache!

M
em

!

M
em

! 1!0!

3! 3!
L3

Cache!

M
em

!

M
em

!0! 1!

2!

Figure 6.22: Topology of the 2-socket/4-chip AMD Magny Cours.

Configuration Alignment Fib Health NQueens Sort SparseLU Strassen
ICC 23.93 107.9 10.18 60.56 18.51 156.0 214.9
GCC 29.77 105.0 10.67 58.16 17.72 153.4 211.1

Table 6.8: Sequential execution times using ICC and GCC on the AMD Magny Cours.

We ran the same benchmarks with the same parameters used in the Intel Nehalem evaluation.

We report sequential execution times in Table 6.8. Again, interprocedural optimization (-ipo) in ICC

was essential to match the GCC performance; execution time was more than 500 seconds without it.

The greatest remaining difference between the sequential times is on Alignment, where GCC is 20%

slower than ICC.

We obtained speedup results using 16 threads for Qthreads configurations with one shepherd

per chip, MTS (4Q); one shepherd per socket, MTS (2Q); one shepherd per core (flat work stealing),

WS; ICC; and GCC. At least one of the Qthreads variants matches or beats ICC and GCC on all

but one of the benchmarks. Moreover, the Qthreads schedulers achieve near-linear to slightly super-

linear speedup on 6 of the 9 benchmarks, shown in Figure 6.23: the two versions of Alignment,

Fib, NQueens, and the two versions of SparseLU. Of those, speedup using ICC is 22% and 23%

lower than Qthreads on the two versions of Alignment, 10% and 18% lower on the two versions of

SparseLU, 9% lower on NQueens and 7% lower on Fib. GCC is 42% lower than Qthreads on Fib,

89

0	

2	

4	

6	

8	

10	

12	

14	

16	

Alignment	

single	

Alignment	

for	

Fib	
 NQueens	
 SparseLU	

single	

SparseLU	

for	

Sp
ee
du

p	

MTS	
 (4Q)	
 MTS	
 (2Q)	
 WS	
 CQ	
 ICC	
 GCC	

Figure 6.23: Six BOTS benchmarks on 2-socket AMD Magny Cours using 16 threads that show
linear or near-linear speedup using Qthreads.

0	

2	

4	

6	

8	

10	

12	

14	

16	

Health	
 Sort	
 Strassen	

Sp
ee
du

p	

MTS	
 (4Q)	
 MTS	
 (2Q)	
 WS	
 CQ	
 ICC	
 GCC	

Figure 6.24: Three BOTS benchmarks on 2-socket AMD Magny Cours using 16 threads showing
sub-linear speedup.

9% and 27% lower on the two versions of SparseLU, and close on NQueens and both versions of

Alignment.

90

Config Alignment Alignment Fib Health NQueens Sort SparseLU SparseLU Strassen
(single) (for) (single) (for)

ICC 2.2 0.80 1.3 14 1.1 8.2 0.62 0.31 2.5
GCC 0.035 0.27 5.4 0.38 0.96 3.5 0.016 0.025 1.1

MTS (4Q) 0.25 0.63 1.5 0.17 0.13 1.1 0.012 0.16 0.98
MTS (2Q) 0.46 0.68 1.4 0.069 0.24 0.30 0.015 0.081 0.87

WS 0.21 1.3 1.5 0.15 0.13 1.8 0.036 0.094 1.4

Table 6.9: Variability in performance on AMD Magny Cours using 16 threads (standard deviation as
a percent of the fastest time).

On three of the benchmarks, shown in Figure 6.24, no run time achieves ideal speedup. Strassen

is the only benchmark on which ICC and GCC outperform Qthreads, and even ICC falls just short

of 10X. On Sort, the best performance is with Qthreads WS, MTS(4Q), and GCC all at roughly

8x. Speedup is lower with Qthreads MTS (2Q) and still lower with CQ, indicating that centralized

queueing beyond the chip level is counterproductive. ICC speedup lags behind the other schedulers

on this benchmark. Speedup on Health peaks at 3.3x on this system using the Qthreads schedulers,

with even worse speedup using ICC and GCC.

The variability in execution times is shown in Table 6.9. The standard deviations for all

benchmarks on the MTS and WS Qthreads implementations are below 2% of the best case execution

time. On all but two of the benchmarks, the MTS standard deviation is less than 1%.

The Magny Cours results demonstrate that the competitive, and in many cases superior, perfor-

mance of our Qthreads schedulers against ICC and GCC is not confined to the Intel architecture.

Differences in performance using the various Qthreads configurations seem less pronounced than

they were on the four socket Intel machine. However, those differences were strongest on the Intel

machine at 32 threads, and the AMD system only has 16 threads. Some architectural differences

go beyond the difference in core count. MTS is designed to leverage locality in shared L3 cache,

but the Magny Cours has much less L3 cache per core than the Intel system (1.25MB/core versus

2.25MB/core). Less available cache also accounts for worse performance on the data-intensive Sort

and Health benchmarks. Considering the whole of the Magny Cours results, the key observations

are that the performance of the Qthreads schedulers is not limited to Intel platforms and that the

hierarchical scheduler does not degrade performance.

91

Configuration Alignment Fib Health NQueens Sort SparseLU Strassen
GCC 53.96 139.2 45.60 63.62 33.59 632.7 551.3

Table 6.10: Sequential execution times on the SGI Altix.

0	

30	

60	

90	

120	

150	

16	
 32	
 64	
 96	
 128	
 192	

Sp
ee
du

p	

Number	
 of	
 Threads	

MTS	
 WS	
 CQ	
 GCC	

Figure 6.25: NQueens on SGI Altix

6.4.3 Performance on SGI Altix

We evaluate scalability beyond 32 threads on an SGI Altix 3700. Each of the 96 nodes contains

two 1.6MHz Intel Itanium2 processors and 4GB of memory, for a total of 192 processors and 384GB

of memory. The nodes are connected by the proprietary SGI NUMALink4 network and run a

single system image of SuSE Linux kernel 2.6.16. We used the GCC 4.5.2 compiler as the native

compiler for our ROSE-transformed code and the GCC OpenMP run time for comparison against

Qthreads. The version of ICC on the system is not recent enough to include support for OpenMP

tasks. Sequential execution times, given in Table 6.10, are slower than those of the other machines,

because the Itanium2 is an older processor, runs at a lower clock rate, and uses a different instruction

set (IA64).

The best observed performance on any of the benchmarks is on NQueens, shown in Figure 6.25.

WS achieves 115x on 128 threads (90% parallel efficiency) and reaches 148x on 192 threads. MTS

reaches 134x speedup. On this machine, the MTS configuration has two threads per shepherd to

match the two processors per NUMA node. CQ tops out at 77x speedup on 96 threads, beyond

92

0	

30	

60	

90	

120	

150	

16	
 32	
 64	
 96	
 128	
 192	

Sp
ee
du

p	

Number	
 of	
 Threads	

MTS	
 WS	
 CQ	
 GCC	

Figure 6.26: Fib on SGI Altix

0	

30	

60	

90	

120	

150	

16	
 32	
 64	
 96	
 128	
 192	

Sp
ee
du

p	

Number	
 of	
 Threads	

MTS	
 WS	
 CQ	
 GCC	

Figure 6.27: Alignment-single on SGI Altix

which overheads from queue contention become overwhelming. GCC gets up to only 40x speedup.

Although no run time achieves linear speedup on the full machine, they all reach 30x to 32x speedup

with 32 threads; this underscores the importance of testing at higher processor counts to evaluate

scalability. On the Fib benchmark, shown in Figure 6.26, MTS almost doubles the performance of

CQ and GCC on 192 threads, with a maximum speedup of 97x. CQ peaks at 68x speedup on 128

93

0	

30	

60	

90	

120	

150	

16	
 32	
 64	
 96	
 128	
 192	

Sp
ee
du

p	

Number	
 of	
 Threads	

MTS	
 WS	
 CQ	
 GCC	

Figure 6.28: Alignment-for on SGI Altix

0	

30	

60	

90	

120	

150	

16	
 32	
 64	
 96	
 128	
 192	

Sp
ee
du

p	

Number	
 of	
 Threads	

MTS	
 WS	
 CQ	
 GCC	

Figure 6.29: SparseLU-single on SGI Altix

threads and WS exhibits its worst performance relative to MTS, maxing out at 77x speedup on 96

threads.

We see better peak performance on Alignment-for (Figure 6.28) than Alignment-single

(Figure 6.27). WS reaches 116x speedup on 192 threads and MTS reaches 107x, with CQ and GCC

performing significantly worse. On the other hand, SparseLU-single (Figure 6.29) scales better

94

0	

30	

60	

90	

120	

150	

16	
 32	
 64	
 96	
 128	
 192	

Sp
ee
du

p	

Number	
 of	
 Threads	

MTS	
 WS	
 CQ	
 GCC	

Figure 6.30: SparseLU-for on SGI Altix

0	

4	

8	

12	

16	

20	

24	

28	

32	

Health	
 Sort	
 Strassen	

Sp
ee
du

p	

MTS	
 WS	
 CQ	
 GCC	

Figure 6.31: Health, Sort, and Strassen on SGI Altix using 32 threads

than SparseLU-for (Figure 6.30). Peak speedup on SparseLU-single is 89x with MTS and 86x

with WS, while SparseLU-for achieves a peak speedup of 60x. As was the case on the 4-socket

Intel machine, GCC is unable to complete after a timeout equal to the sequential execution time.

For three of the benchmarks, no improvement in speedup was observed beyond 32 threads:

Health, Sort, and Strassen. As shown in Figure 6.31, none exceed 10x speedup on the Altix. These

95

benchmarks were also observed to be the most challenging on the four-socket Intel and two-socket

AMD systems. Still, the Qthreads MTS and WS schedulers match or exceed GCC in performance.

6.5 Summary

Through the combination of shared LIFO queues and work stealing, our hierarchical scheduler

maintains good load balance while supporting effective cache performance and limiting overhead

costs. With our MTS scheduler implementation, applications using the Qthreads OpenMP run

time achieve speedup as high or higher on Intel Nehalem and AMD Magny Cours machines than

commonly available production OpenMP 3.0 implementations. Measurements using hardware

performance counters confirm improved cache performance and decreased inter-socket traffic in

executions using hierarchical scheduling. The scalability results on the SGI Altix go beyond previous

BOTS evaluations (Duran et al., 2009) that only present results on up to 32 cores. Several benchmarks

reach speedup of 90X-150X on 196 cores. Overall, our performance study reveals the strengths

and limitations of hierarchical scheduling on multi-socket multicore architectures and demonstrates

that mirroring the hierarchical nature of the hardware in the run time scheduler can indeed improve

application performance. As we shall see in Chapter 7, our hierarchical run time system also provides

a structural foundation for additional strategies to exploit locality in challenging data-intensive

applications such as the Health benchmark.

96

CHAPTER 7

LOCALITY-BASED SCHEDULING

In this chapter, we propose a framework for locality-based scheduling of task parallel programs

using programmer annotations to the application code. We extend Qthreads MTS to implement a

scheduler that honors such annotations, enabling performance improvements in applications that

otherwise exhibit work time inflation due to excessive non-local data accesses.

7.1 Work Time Inflation in Health and Heat

Recall that we introduced the concept of work time inflation in Chapter 4. In this section, we

study the impact of work time inflation on two example applications, in particular as a function of the

number of threads engaged in the computation.

First consider the Health benchmark from the BOTS (Duran and Teruel, 2011) suite of task

parallel benchmark applications, a simulation of a nation-wide heath system, to demonstrate how

NUMA effects can increase work time. This simulation uses a divide-and-conquer approach to

simulate events in small villages and to propagate the effects across wider and wider geographic areas

over time. The program is parallelized using the task model from OpenMP 3.0 by encapsulating

each recursive call as an explicit task for execution by an available thread. On the four-socket Intel

Nehalem-EX system using the Intel OpenMP compiler and run time system, we observe a sequential

execution time of 15.1 seconds and a parallel execution time of about 1.7 seconds. In Chapter 6,

we observed that using our hierarchical scheduling strategy as implemented in the Qthreads MTS

scheduler improved the performance of this application, but the parallel execution is still well short

of ideal speedup.

Figure 7.1, shows a break-down of the execution time across all threads for parallel executions

of the health simulation with the manual cutoff set. The time is summed across threads so perfect

-­‐15	

0	

15	

30	

45	

60	

1	
 8	
 16	
 24	
 32	
 Ec
ec
u%

on
	
 T
im

e	

in
	
 S
ec
on

ds
	

(T
ot
al
	
 o
ve
r	

al
l	
 t
hr
ea
ds
)	

Number	
 of	
 Threads	

Non-­‐Work	

Time	
 	

Work	
 Time	

Infla8on	

Sequen8al	

Work	
 Time	

Figure 7.1: Total time over all threads on Health

scaling would require this time to be constant as the number of threads increases. We observe instead

that work time dominates the total overall time. We can view the work time as the sum of two parts:

The amount of time equal to the sequential execution time, and the amount of time spent in excess of

the sequential execution time. This excess time, the work time inflation, accounts for the observed

performance gap in the health simulation. Work time increases substantially as we use more threads

although we use the same input problem size throughout, i.e., we evaluate strong scaling.

Figure 7.2 shows the execution time break-down for another application, a two-dimensional

heat diffusion simulation, Heat, from the Cilk example set. The simulation uses five-point stencil

computations and, like the health simulation, is parallelized by generating tasks in a divide-and-

conquer problem decomposition with a cutoff threshold for granularity control. Similarly to the

health simulation, this heat simulation achieves speedup (11.2X) and parallel efficiency (35%) on a

32-thread execution that are well short of the ideal values. We observe some work time inflation (2.8

seconds) even in a single-threaded execution of the OpenMP executable. This inflation is an artifact

of parallel code limiting the efficacy of compiler optimizations, a cause of work time inflation that is

outside the scope of this dissertaton. The remaining work time inflation, which increases as we use

more threads, is again due to NUMA effects and memory performance.

98

0	

5	

10	

15	

20	

25	

1	
 8	
 16	
 24	
 32	
 Ec
ec
u%

on
	
 T
im

e	

in
	
 S
ec
on

ds
	

(T
ot
al
	
 o
ve
r	

al
l	
 t
hr
ea
ds
)	

Number	
 of	
 Threads	

Non-­‐Work	

Time	
 	

Work	
 Time	

Infla8on	

Sequen8al	

Work	
 Time	

Figure 7.2: Total time over all threads on Heat

Consider some measurements we gathered using hardware performance counters during a

sequential and a 32-thread parallel execution of the 2D heat simulation. Both times, the number

of bytes read from memory was 13.6GB. However, the parallel execution generates 43GB of

interconnect traffic, over 500 times the volume seen in the sequential execution. This interconnect

traffic represents expensive remote loads and cache invalidations that cause work time inflation.

7.2 First Touch and Scheduling

OpenMP offers no inherent means to express locality for data to threads or tasks. Thus,

performance-oriented users must rely on non-portable solutions such as operating system tools

(e.g., libnuma in Linux), third party libraries (e.g., hwloc (Broquedis et al., 2010b)), or heuristics.

Integrated OpenMP locality support would overcome the inconvenience of these methods. However,

a common programming idiom for NUMA systems exploits the first-touch page placement pol-

icy (Bolosky et al., 1991; Nikolopoulos et al., 2001; Marathe and Mueller, 2006). We now examine

how this heuristic is used with parallel loops and how current task schedulers fail to support an

equivalent idiom for task parallel programs, a role that our locality framework fills.

99

#pragma omp parallel
{

#pragma omp for schedule(static)
for (i = 0; i < n; i++)

init(data[i]);

for (step = 0; step < nsteps; step++)
#pragma omp for schedule(static)

for (i = 0; i < n; i++)
compute(data[i]);

}

Figure 7.3: Simple first-touch initialization under OpenMP.

This idiom assumes an identical schedule of loop iterations in the initialization and computational

loops. The first-touch policy places a memory page in memory attached to the socket of the processor

that executes the thread that first accesses the page. If the data use in the computational loop iterations

mirrors the data use in the initialization loop iterations and if we bind threads to processors with

the OMP PROC BIND environment variable, memory accesses are local. We show an example of

this pattern in Figure 7.3, where each thread initializes n/p elements of data and computes on

those elements during each simulation step. This results in primarily local data accesses on NUMA

systems with first-touch policy.

Figure 7.4 shows the analogous code for an OpenMP task parallel divide-and-conquer program

with tree-structured data, which uses barriers to ensure that the initialization tasks complete before

the compute tasks execute. Task parallelism in recursive init() spreads the data across

memory banks. However, we have no mechanism (not even a non-portable one) to guarantee

that recursive compute() task placement mirrors that of recursive init(). Thus, a

corresponding recursive compute() task may be scheduled on a different thread that runs on

a different socket, in which case we incur non-local accesses and, thus, work time inflation. The lack

of a task scheduling analog is unfortunate, since task parallel computations allow easy expression of

key computation patterns, such as oct-tree decompositions, for which a flat 1-D loop distribution is

not well suited.

100

void recursive_init(data_t *data) {
init(data);
if (!is_leaf(data)) {

#pragma omp task
recursive_init(data->left);

#pragma omp task
recursive_init(data->right);

#pragma omp taskwait
}

}

void recursive_compute(data_t *data) {
if (!is_leaf(data)) {

#pragma omp task
recursive_compute(data->left);

#pragma omp task
recursive_compute(data->right);

#pragma omp taskwait
}
compute(data, data->left, data->right);

}

#pragma omp parallel
{

#pragma omp single
#pragma omp task

recursive_init(top);
#pragma omp barrier

for (step = 0; step < nsteps; step++) {
#pragma omp single

#pragma omp task
recursive_compute(top);

#pragma omp barrier
}

}

Figure 7.4: Analogous initialization for OpenMP tasks.

101

7.3 A Framework for Locality-Based Scheduling

Our framework for locality-based scheduling builds on the notion of a locality domain consisting

of several components:

• Logically, one or more threads and associated storage;

• Physically, one or more cores and physical memory close to them (e.g., a multicore chip and

its directly attached memory) to which the system maps the threads;

• An associated (set of) task queue(s) that are distinct from the queues associated with other

locality domains;

• A unique integer identifier, its locality domain identifier.

The remainder of this section describes our extensions to OpenMP to support locality-based

scheduling for task-based programs and our prototype implementation of those extensions.

7.3.1 A Concise API for Programmer-Specified Scheduling

We add the following API calls to OpenMP to allow the programmer to access information about

locality domains and to specify placement of tasks on them.

• omp child task affinity(locality domain id) sets an internal control variable

(ICV) that indicates the locality domain on which the run time should place tasks that the

currently executing task generates. The locality domain id identifier specifies the

locality domain. This call overrides default placement of child tasks, which is the parent task’s

locality domain.

• omp get num locality domains() returns the total number of locality domains in the

system.

• omp get locality domain num() returns the locality domain identifier on which the

task is executing.

102

The code in Figure 7.5 shows how a programmer can use these calls to distribute tasks and data

according to a predictable locality-based schedule for the tasks: 1

The code above omits the recursive compute() function, which is similar in structure to

recursive init(). If the run time presents four locality domains, then each iteration places the

top task on locality domain 0, the first split tasks on locality domains 0 and 1, and the second split

tasks on locality domains 0, 1, 2, and 3. We place each remaining task on the locality domain of

the task that generates it. Thus, a thread in the same domain during initialization and during each

simulation time step executes the subtree of tasks that each second split task generates. While this

pattern is one possible task layout, our run time calls can also schedule more irregular and dynamic

ones, such as those generated by adaptive methods.

7.3.2 Run Time Scheduling Policy and Implementation

The OpenMP specification (OpenMP Architecture Review Board, 2008) places few restrictions

on the scheduling of tasks. Thus, implementers have flexibility in run time scheduler design and

implementation. Our extensions naturally suit a scheduler design that has a logical queue per locality

domain. Our implementation uses physically separate queues for each locality domain. A scheme in

which all locality domains share a single central queue with each task marked for and dispatched to

the appropriate locality domain is possible but is unlikely to scale well.

We need a scheduling policy between and within locality domains. In general, the API call

omp child task affinity() only specifies initial task placement, but the task could be mi-

grated to another locality domain for load balancing purposes. However, such migrations may lead to

non-local data accesses and, thus, work time inflation. Thus, we provide a strict mode that disallows

migrations between locality domains although it does not preclude load balancing within each locality

domain.

Our prototype implementation extends the Qthreads hierarchical task scheduler that we described

in Chapter 6. Qthreads probes the hardware topology of the system on which it runs using one of

several portable or architecture-specific libraries. We configure it to use hwloc (Broquedis et al.,

2010b), a library with good support for x86 NUMA machines. Recall that using the Qthreads MTS

1The log2 and pow functions actually require a cast to int, but we omit it for simplicity and readability.

103

void recursive_init(data_t *data, int nsplits) {
init(data);
if (!is_leaf(data)) {

#pragma omp task
recursive_init(data->left, nsplits-1));

if(nsplits > 0) {
int currDom = omp_get_locality_domain_num();
int nextDom = currDom + pow(2, nsplits);
omp_child_task_affinity(nextDom);

}
#pragma omp task

recursive_init(data->right, nsplits-1));
#pragma omp taskwait

}
}

int ndomains = omp_get_num_locality_domains();
int nsplitsTotal = log2(ndomains);

#pragma omp parallel
{

#pragma omp single
{

omp_child_task_affinity(0);
#pragma omp task

recursive_init(top, nsplitsTotal);
}
#pragma omp barrier

for (step = 0; step < nsteps; step++) {
#pragma omp single
{

omp_child_task_affinity(0);
#pragma omp task

recursive_compute(top, nsplitsTotal);
}
#pragma omp barrier

}
}

Figure 7.5: A task parallel program using locality-based scheduling.

104

6!

CORE! CORE! CORE! CORE! CORE! CORE! CORE! CORE!

CHIP 0! CHIP 1!

MEMORY! MEMORY!

TASK!
QUEUE! TASK!

QUEUE!

LOCALITY DOMAIN 0! LOCALITY DOMAIN 1!

Figure 7.6: A mapping of locality domains to a two-socket system.

hierarchical scheduler, all threads that run on cores on the same chip share a task queue scheduled in

a LIFO discipline, which promotes constructive L3 cache sharing among those threads and provides

natural load balance among those threads. Load balancing between chips in MTS is accomplished by

work stealing.

We map locality domains to the Qthreads representation of the NUMA topology and use per-

socket shared queues, as shown in Figure 7.6. By default, when a task is generated, it is queued on

the shared queue that the thread executing the parent task is using. However, if the child task affinity

ICV of the parent task’s ICV has been set to another locality domain, the new task is placed on that

domain’s queue. If the strict mode is set, then we disable work stealing between the task queues.

Otherwise, tasks may migrate between the queues. The run time calls to return the total number of

locality domains and the current locality domain map directly to existing Qthreads functions.

105

 0.00

 10.00

 20.00

 30.00

 40.00

 50.00

 60.00

Se
q 8 16 24 32 Se
q 8 16 24 32 Se
q 8 16 24 32 Se
q 8 16 24 32

To
ta

l T
im

e
(s

ec
.)

Intel Qthreads Q Spread init Q Locality

Non work Time
Work Time

Figure 7.7: Total time over all threads for Health.

7.4 Evaluation

To evaluate our framework, we apply the techniques described in Section 7.3 to the example

problems described in Section 7.1. The test system for our experiments is the four-socket Intel

Nehalem-EX machine used in Chapter 6, the Dell PowerEdge M910 quad-socket blade with four

Intel x7550 2.0GHz 8-core processors.

7.4.1 Performance and Speedup

We use the GNU C/C++ 4.4.4 compiler with −O2 optimization to obtain sequential times to

compare against our framework, and as the native compiler for the code transformed by ROSE

0.9.5a. We use the Intel 11.1 compiler with −O2 −xHost −ipo optimization and the Intel OpenMP

run time system for comparison. The difference in sequential time between the two compilers is

negligible on the health simulation and more pronounced on the 2D heat diffusion simulation. For a

comparison of parallel executions on absolute terms, we give a comparison of elapsed execution time

106

 0

 4

 8

 12

 16

 20

 24

 28

 32

 0 4 8 12 16 20 24 28 32

Sp
ee

du
p

Number of Threads

Ideal Speedup
Qthreads Locality-based

Qthreads Spread-init
Qthreads

Intel

Figure 7.8: Speedup on Health.

for each application. Timing and speedup results represent the best of ten trials for each configuration,

unless otherwise noted.

Figure 7.7 shows the execution time break down for the health simulation using several different

configurations. The first set of bars shows results for executions using the locality-oblivious Intel run

time, as we showed previously in Figure 7.1. The second set, labeled Qthreads, shows results obtained

using the Qthreads MTS hierarchical scheduler with no locality-based scheduling. The sequential

times for Intel and GCC are very close for this problem (14.9 and 15.2 seconds, respectively). The

timing results for the parallel executions show more non-work time spent, i.e., combined idle and

overhead time, compared to the Intel run time. However, the work time inflation is much lower for

Qthreads (12 seconds), due to the hierarchical scheduler, than for Intel (33 seconds). The third set,

labeled Q Spread-init, shows that we achieve further improvement by using our framework to spread

the initialization of the program data across locality domains but without the use of locality-based

scheduling in the simulation. This change further reduces work time inflation through better use of

107

 0.00

 5.00

 10.00

 15.00

 20.00

 25.00

Se
q 8 16 24 32 Se
q 8 16 24 32 Se
q 8 16 24 32

To
ta

l T
im

e
(s

ec
.)

Intel Qthreads Q Locality

Non work Time
Work Time

Figure 7.9: Total time over all threads for Heat.

Threads 8 16 24 32
Intel 2.46 1.71 1.64 1.69
Q Locality 1.83 0.890 0.646 0.540
% Decrease 25.6 48.0 60.6 68.0

Table 7.1: Run times (elapsed) on Health.

Threads 8 16 24 32
Intel 1.36 0.799 0.654 0.617
Q Locality 1.30 0.763 0.566 0.520
% Decrease 4.4 4.5 13.5 15.7

Table 7.2: Run times (elapsed) on Heat.

memory concurrency. The fourth set, Q Locality, uses the spread initialization and also locality-based

scheduling in the strict mode to ensure that each task is scheduled on a thread in the locality domain

to which the data that the task uses is associated. The full and contention-free use of all available

cache and memory bandwidth without undue L3 cache invalidations results in work time equivalent

to roughly half of the sequential time. The tradeoff is increased non-work time due to a lack of load

balancing between locality domains.

108

 0

 4

 8

 12

 16

 20

 24

 28

 32

 0 4 8 12 16 20 24 28 32

Sp
ee

du
p

Number of Threads

Ideal Speedup
Qthreads Locality-based

Qthreads
Intel

Figure 7.10: Speedup on Heat.

Figure 7.7 presents the sum of the total times spent by all threads in an execution. Alternatively,

Figure 7.8 shows the parallel speedup achieved, using ICC and GCC sequential times for the Intel

and Qthreads schedulers respectively, and the elapsed times for the parallel executions. The speedup

using Intel flattens at 16 threads. The speedup using the Qthreads locality-oblivious scheduler is

better, but still flattens at 24 threads. The use of spread initialization in Qthreads results in further

improvement, but even it reaches only 18X speedup on 32 threads. Only the Qthreads locality-based

scheduling achieves near-linear speedup, even exhibiting slightly super-linear speedup at 16 threads.

Table 7.1 gives a comparison of the elapsed times for the Intel and locality-based schedulers.

Figure 7.9 shows a time break down for the 2D heat diffusion simulation. In this case, sequential

execution is significantly faster using ICC (6.9 sec.) than GCC (9.7 sec.). Despite this gap, work

times for parallel executions that use the same number of threads with Intel and the Qthreads locality-

oblivious scheduler are close. Work time inflation on 32 threads is close to 100% using Qthreads and

170% using the Intel run time. Again, non-work time is higher using Qthreads. The heat simulation

109

������

����	

�� �� �� ��� ��� ��� ����
�	��

�	��

�	��

�	
�

�	
�

�	
�

�	
�

�	
�

�	��

��
�������

������������

��������

�����

���	�� !!"

��������������������#������"

!
$
%
$
��
��
&
�
�'
��
�
���
�
��
(�
)
�
�
�
�
�
�
�
�!
�
%
�
��
��
�

�����

�����	 	

			�

�����	

��
 ��
���

Figure 7.11: CDF showing data access latency for Health.

uses parallel initialization to spread the data, so the vehicle for further improved performance must

be locality-based scheduling during the simulation to schedule tasks near the data that they access.

We observe from the Q Locality results that this scheduling eliminates some but not all work time

inflation, with similar non-work times. On 32 threads, it reduces work time inflation by more than

half compared to the locality-oblivious scheduler. Since the heat simulation uses stencils that require

exchanges of data at the boundaries of the grid, some non-local data is inevitably accessed. Thus,

even with locality-based scheduling some work time inflation remains. Despite the difference in

sequential times using GCC and ICC, the total execution times using locality-based scheduling are

lower across the board, as shown in Table 7.2. The speedup improvements, which Figure 7.10 shows,

are significant although none of the schedulers achieve ideal speedup.

110

������

����	

���������	

���

��������
��������
���

������
���

��

���

���

���

���

 ���

! "#

�!$%! �

 �&%�!�

�!% ��

""%��

 $%"�

&% �

!%��
�
�
��
�'
(
��
�
�
��
�
�)
�
��

Figure 7.12: Ranges of load latencies (cycles) for Health.

7.4.2 Performance Counter Measurement

To obtain a more complete understanding of run time behavior, we used hardware counters to

measure performance characteristics of executions that use locality-oblivious and locality-based

scheduling. Since we posit that memory latency incurred on non-local accesses is the driving force

behind work time inflation, we measured load latency during the execution of our two examples.

This metric is measured using Intel’s Precise Event Based Sampling (PEBS). Figure 7.11 plots a

cumulative distribution function (CDF) for latency using each scheduler with 32 threads, along with

results from a sequential execution. The interpretation is as follows: for a point (x, y) on the graph,

y is the cumulative fraction of loads that have completed in x cycles or less. We observe that for all

the schedulers, at least 85% of loads complete in 16 cycles or less. Micro-benchmarking studies of

the Nehalem cache hierarchy and memory subsystem by Molka et al. (Molka et al., 2009) indicate

that latencies in this range represent hits in the core’s L1 and L2 caches. As we proceed across the

x-axis, we note the regimes in which accesses represent on-chip L3 cache hits (and hits in L2 caches

of cores on the same chip), accesses to memory on the same socket, and finally, accesses to remote

L3 caches and memory on other sockets.

Starting from the left side of the graph, the first difference between the results for the different

schedulers is that the sequential execution best uses the per-core L1 and L2 caches. Since multi-

111

!"#$

%#&"'(

!" #$ "% !$& $'" '!$!($%
()*#

()*%

()*'

()*"

()*+

()*&

()**

!)((

,-./012345

,467819:

;<482

=8>)-?@AAB

.148<05-3<-05028:-?2/C-:0128B

A
D
E
D
21
43
F
8
-G
71
0
43/
<
-/
H-
I
0
0
8
:
:
8
:
-A
/
E
J
28
48
9

!"#!$

!%&'())

)))!*

!%&'()

+,- .,-%/,

Figure 7.13: CDF showing data access latency for Heat

threaded executions introduce coherence misses, we expect this phenomenon. Moreover, threads on

the same chip in the Qthreads schedulers share a queue, and shared queues are cache-friendly for

shared caches, e.g., the Nehalem L3, but not but individual caches, e.g., L1 and L2. Although we

cannot examine its run time source code, we suspect that Intel uses per-core work stealing, which is

cache-friendly for individual caches. The benefit of the per-chip shared queues to exploit the shared

L3 caches manifests in the sharp increase in accesses completed by 64 cycles using Qthreads. The

locality-aware scheduler achieves a higher number of cumulative completions in this range than even

the sequential execution, as it effectively exploits the full L3 cache of the machine with minimal

coherence misses between sockets. This scheduler also outperforms Intel’s and sequential executions

in the range of local memory accesses by engaging the full memory bandwidth of the machine with

minimal accesses to memory on remote sockets. The data points at 256 cycles and beyond represent

remote memory accesses. The sequential execution, since it is only executed on a single core on

a single socket, only shows a negligible number of such remote memory accesses, which can be

112

����

������

� � �� �� �� ��� ��� ��� ���� ���� ��	� ��	� ����� ��
��

�����

�����

�����

�����

�����

�����

�����

�
��������

�
��������

�
��������

�
��������

����
����� ����� ��� ��!" �
��������
�#

��#

��#

��#

��#

���#

���$

��
%���

��	%���

��%���

��%��

�
%��

	%��

�%��
�
�
�
�&

'
��
�
�

�
�

(

�
��

�

Figure 7.14: Ranges of load latencies (cycles) for Heat.

attributed to I/O or system processes. The completion rates of the Qthreads and Intel schedulers line

up in the same order as the speedup graphs, led by the locality-based scheduler. However, can the

remaining accesses, which account for less than 2% of the total number of accesses sampled, really

matter?

The relative impact of accesses in each range is a function of not only the number of accesses

in the range, but also the number of cycles per access in that range. For example, one access that

requires 256 cycles to complete contribute the same number of cycles to the total as 16 accesses of

16 cycles. Figure 7.12 shows the relative contribution of the different ranges of access times, using a

conservative estimate: number of accesses times the low end of the range, e.g., assume all accesses in

the range of 33-64 cycles take 33 cycles. The vast majority of access time in the sequential execution

is spent on loads in the local memory regime (129-256). For the locality-oblivious schedulers,

accesses of greater than 256 cycles in duration account for almost half of the total latency using

Qthreads and over 60% using Intel. In addition to low contributions to total latency from high latency

loads, locality-based scheduling also shows a much higher contribution of L3 regime loads (about

40%) than any of the other schedulers, and again betters the sequential execution in that range.

Figure 7.13 shows a CDF of load latency sampled during executions of the 2D heat diffusion

simulation. The sequential execution experiences the lowest latency in all regimes. While the

113

Seq. (gcc) Intel Qthreads Q Locality
Health 0.067 34 26 1.0
Heat 0.077 31 31 0.34

Table 7.3: Data Transferred (GB) over QPI between sockets during sequential and 32-thread execu-
tions.

latencies incurred with locality-based scheduling are much higher, they are still significantly lower

than those incurred with the locality-oblivious schedulers (Qthreads and Intel). This observation

is consistent with our speedup results: locality-based scheduling outperforms locality-oblivious

scheduling but falls short of ideal speedup. Figure 7.14 shows the relative contribution of the

different latency ranges. A marked difference between the health and heat simulations is evident just

from comparing the sequential results: Contributions from L1 and L2 accesses are less than 10% in

executions of the heath simulation but 70% in the executions of the heat simulation. The locality-

based Qthreads scheduler sees a lower contribution of high latency loads then the locality-oblivious

schedulers.

Another interesting metric is QPI traffic, i.e., the amount of data transferred between sockets

during execution. Table 7.3 shows the measured volumes in gigabytes. The interconnect is quiet

during sequential execution, as we might expect. The significant observation is the order of magnitude

reduction in QPI traffic from the locality-oblivious schedulers of Intel and Qthreads to the locality-

based Qthreads scheduler.

7.4.3 Visualizing Observed Task Schedules

Instrumentation to log actual schedules gives a micro-level view of scheduler behavior to allow

a detailed evaluation of the impact of scheduler decisions. We use the Jedule tool (Hunold et al.,

2010) to generate visualizations of task schedules, as Figure 7.15 shows. The three recorded partial

schedules are taken from 32 core executions of the health simulation using three different schedulers,

with a uniform time axis spanning about 3.1 milliseconds. In each execution, we record the start

and end times of each leaf task in the 100th iteration of the simulation loop, along with the thread

number on which the task executes and the locality domain in which the data it uses is located.

The vertical axis represents the threads (for the first eight of 32 threads) and the horizontal axis

represents time. The threads shown (threads 0-7) are all tied to cores on the chip in socket 0. Each

114

(a) Locality-oblivious scheduling

(b) Non-strict locality-based scheduling

(c) Strict locality-based scheduling

Figure 7.15: Observed schedules of tasks over time on 8 threads on the same chip.

115

box is a task. The numbers and colors on each task indicate the number of the socket that is directly

linked to the memory bank that contains the data used in that task: yellow, blue, green, and red for

sockets 0, 1, 2, and 3, respectively. Thus, the tasks numbered 0 and colored yellow use data that

resides in memory attached to socket 0 and perform only local memory and cache accesses when

executed on threads 0-7. The tasks bearing other numbers and colors use data local to the other three

sockets (not shown in the diagram) and the other threads (8-15, 16-23, and 24-31, respectively).

Figure 7.15(a) illustrates locality-oblivious scheduling. In the early part of the execution, the

threads in this locality domain work on tasks that access data that is local to locality domain 3. Later

in the execution, tasks that access local data are stolen. These tasks generally execute more quickly,

as indicated by the smaller boxes. Eventually, the threads steal more tasks that access data in locality

domains 1, 2, and 3.

Figure 7.15(b) shows a schedule from locality-based scheduling in non-strict mode, i.e., with

work stealing allowed between locality domains. This schedule completes in slightly less time than

the locality-oblivious schedule. Initially, the threads execute tasks that access data local to the locality

domain. Just more than half way through, a thread on another locality domain steals the remaining

work, and in turn thread 4 steals tasks from locality domains 3 and 2, and a couple from 1. This

behavior occurs due to instantaneous work imbalances that occur even in computations that are on

the whole balanced, especially in the later stages of execution. Near the end of the computation,

thread 3 reacquires some tasks that access local data, but they require more time now, because their

data has been cached in the L3 caches in the other locality domains and must now be invalidated.

Strict locality-based scheduling, shown in Figure 7.15(c), results in a much faster execution.

Threads 0-7 only execute tasks that access local data. When a thread goes idle and no tasks are on the

queue, the thread is forbidden to steal from other locality domains and must wait for one of the other

threads in its own locality domain to generate more work. The short tasks near the beginning and

end of the execution indicate another benefit of executing only local tasks: better locality between

the simulation steps. Local caches are not polluted by non-local data, and, conversely, local data

does not end up in remote caches. In contrast, with locality-oblivious scheduling, and even non-strict

locality-based scheduling, each simulation step can begin with a significant amount of interconnect

cross-traffic and cache invalidations.

116

7.5 Summary

The locality-based task scheduling framework that we propose comprises the concept of distinct

locality domains, programmer annotations to application source code, and a scheduler that honors

those annotations. The example applications to which we applied the model in our evaluation have

important similarities and differences. As simulation codes, both applications have significant data

reuse across iterations of the outer simulation loop. In both cases, much of their work time inflation

is attributable to non-local data accesses. For both applications, global dynamic load imbalance is a

much smaller contributor to performance loss than work time inflation, enabling effective use of the

strict scheduling mode. In the health simulation, data accesses are almost completely confined to the

bounds of the locality domain. This access pattern enables a doubling of speedup using locality-based

scheduling. In the heat simulation, some data must be shared between the locality domains when

the stencil is applied to points near the boundary of the subspaces assigned to two locality domains.

Accordingly, a smaller performance improvement is observed on Heat than on Health.

Applicability. Locality-based scheduling does not improve performance of all task parallel

applications. The BOTS Sort benchmark is memory-bandwidth bound and performs unavoidable data

exchanges on the whole input. For such an application, essentially no scheduling strategy can improve

performance beyond the limits of memory concurrency on the target machine (Mandal et al., 2010).

For these applications, and those limited by similar shared resource constraints, e.g., I/O or network

bandwidth, reducing the number of worker pthreads on each locality domain and powering down the

cores on which they run may enable power savings without degrading performance. Applications

with little data reuse, such as UTS and the BOTS Fib benchmark, do not benefit from locality-based

scheduling because the proximity of tasks to local data is not a primary concern compared to other

issues such as overheads and load imbalance.

Limitations and Future Work. In Health and Heat, the assignment of tasks to locality domains

follows the same pattern in each iteration. In our future work, we will consider applications in which

tasks are assigned dynamically to locality domains as the simulation progresses. Hybrid Reciprocal

Velocity Obstacle (HRVO) is an algorithm for multi-agent navigation designed to minimize collisions

and oscillation (Snape et al., 2011). In this problem, n agents are required to navigate between

individual start and end positions on the plane. Each individual agent acts independently to reach

117

its goal and avoid other agents in its environment. In each time step of the simulation, each agent

determines which other agents are near enough to influence its choice of velocity, calculates a new

velocity based on the HRVO algorithm, updates its velocity and position, and determines if the goal

has been reached.

Consider a 2D decomposition of the plane into a grid, enabling a quick division along the x and

y axes to assign grid cells to locality domains. Each agent belongs to the grid cell corresponding

to its position. In each time step, we create a task for each agent to compute its new velocity based

on the velocities of nearby agents. Then a synchronization ensures that all agents have finished

computing their new velocities before a second task is created for each agent to update its velocity

and position. In a locality-oblivious implementation, tasks are scheduled onto threads according

to the scheduling policy of the run time system. In a locality-based implementation, each task is

assigned to the locality domain corresponding to its grid cell. The tasks corresponding to each agent

in different iterations of the simulation loop are reassigned to different locality domains when the

agent crosses from one quadrant to another in that time step.

Applications such as the adaptive Fast Multipole Algorithm (FMA) for n-body simulation have a

changing and unbalanced locus of work that requires global dynamic load balancing. The imbalance

in such applications precludes the use of the strict scheduling mode, and the assignment of subgraphs

of the task graph to locality domains may be irregular and changing. Future work will extend

our framework to overcome these limitations. A weighting function could be devised to control

stealing based on the trade-off between load balance and locality for each application. Alternatively,

particular tasks could be reassigned between simulation iterations to different locality domains than

surrounding tasks to improve load balance and respond to a shift in the work.

118

CHAPTER 8

CONCLUSIONS AND FUTURE DIRECTIONS

In defense of our thesis, the preceding chapters present our case that schedulers using hardware

topology information and user-specified information about application locality can improve the

performance of task parallel applications. Our analysis of load balancing overheads and work time

inflation illustrates the impact of those issues. Our MTS hierarchical scheduler provides transparent

performance improvements by limiting remote load balancing applications and exploiting shared

caches. Our locality-based scheduling framework, while nontransparent, provides a concise program-

mer API to specify explicit task placement, enabling performance improvements in applications in

which remote data accesses are the primary sources of performance loss and data reuse is significant.

Our implementation of these schedulers in the Qthreads run time allows comparison with prior

scheduling policies and production run time systems. These evaluations using OpenMP applications

and actual hardware demonstrate the performance improvements possible with hierarchical and

locality-based scheduling.

8.1 Future Directions

This dissertation has focused on scheduling task parallelism on shared memory NUMA systems.

Locality and overhead costs can have an even higher impact on distributed memory systems, where

network latency costs are incurred for communication between nodes. We discussed several task

parallel languages and libraries for distributed memory in Chapter 2. Languages such as Chapel and

X10 would be most suited for a distributed memory adaptation of our scheduling methods because

they present a Partitioned Global Address Space (PGAS). While developing a scalable distributed

memory implementation of the UTS benchmark with user-level work stealing in UPC, we introduced

several strategies for dynamic load balancing, including efficient stealing protocols and termination

detection (Olivier and Prins, 2008). We also observed a benefit from bulk stealing, in common with

the MTS scheduler. To schedule tasks on a cluster of multicore nodes, hierarchical and locality-based

scheduling could be extended to include a new top level of the hierarchy differentiating between

cluster nodes.

Graphics Processing Units (GPUs) and other accelerators have become key components of

HPC systems. Latency costs to transfer data across the bus between the host processor (CPU) and

accelerator can cause major performance bottlenecks. As part of the trend of relaxing constraints

on accelerator programming, individual words in host memory are now accessible by pointers in

GPU code where explicit copies were previously required. This system-managed pointer access

effectively makes the CPU and GPU NUMA nodes in a shared memory system from the application

programmer’s point of view. Hierarchical scheduling and locality-based scheduling may improve

performance on these systems for applications structured to use task parallelism on the CPUs with

leaf tasks that execute on the GPU. Some GPUs also support the creation of new tasks on the GPU,

so hierarchical scheduling and locality-based scheduling could be extended onto the GPU itself.

8.2 The Big Picture

This dissertation reflects the reality that parallel computing is an exercise in balancing elegance

and performance. Existing task scheduling techniques, while elegant and sound in theory, assume

a simple model of the memory hierarchy that does not match the complexity of multicore NUMA

systems. Our schedulers incorporate some of that complexity into the run time system. The use

of only minimal language constructs, e.g., task and taskwait or spawn and sync, to express

parallelism in the task parallel programming model underscores its elegance, as well its accessibility.

However, it provides little information to the run time system about data usage among the tasks. Our

concise API for explicit tasks placement adds slightly to the complexity of the application code but

enables the users to provide information to enable locality-based scheduling. Beyond this particular

work, we posit that the trade-off between elegance and complexity will be a recurring theme of

parallel computing research well into the future.

120

BIBLIOGRAPHY

Acar, U. A., Blelloch, G. E., and Blumofe, R. D. (2000). The data locality of work stealing. In SPAA
’00: Proc. 12th ACM Symposium on Parallel Algorithms and Architectures, pages 1–12. ACM.

Adhianto, L., Banerjee, S., Fagan, M., Krentel, M., Marin, G., Mellor-Crummey, J., and Tallent,
N. R. (2010). HPCToolkit: Tools for performance analysis of optimized parallel programs.
Concurrency and Computation: Practice and Experience, 22(6):685–701.

Agarwal, S., Barik, R., Bonachea, D., Sarkar, V., Shyamasundar, R. K., and Yelick, K. (2007).
Deadlock-free scheduling of X10 computations with bounded resources. In SPAA ’07: Proc.
19th ACM symposium on Parallel Algorithms and Architectures, pages 229–240. ACM.

Alverson, G. A., Alverson, R., Callahan, D., Koblenz, B., Porterfield, A., and Smith, B. J. (1992).
Exploiting heterogeneous parallelism on a multithreaded multiprocessor. In ICS ’92: Proc. 6th
ACM Intl. Conference on Supercomputing, pages 188–197. ACM.

AMD Inc. (2006). Performance guidelines for AMD Athlon(TM) 64 and AMD Opteron(TM) cc-
NUMA multiprocessor systems. http://support.amd.com/us/Processor%5FTechDocs/40555.pdf.

Amdahl, G. M. (1967). Validity of the single processor approach to achieving large scale computing
capabilities. In AFIPS ’67 (Spring): Proc. 1967 Spring Joint Computer Conference, pages
483–485. ACM.

Anderson, T. E., Bershad, B. N., Lazowska, E. D., and Levy, H. M. (1991). Scheduler activations:
Effective kernel support for the user-level management of parallelism. In SOSP ’91: Proc. 13th
ACM Symposium on Operating Systems Principles, pages 95–109. ACM.

Arora, N. S., Blumofe, R. D., and Plaxton, C. G. (1998). Thread scheduling for multiprogrammed
multiprocessors. In SPAA ’98: Proc. 10th ACM Symposium on Parallel Algorithms and
Architectures, pages 119–129. ACM.

Arora, N. S., Blumofe, R. D., and Plaxton, C. G. (2001). Thread scheduling for multiprogrammed
multiprocessors. Theory of Computing Systems, 34(2):115–144.

Ayguadé, E., Copty, N., Duran, A., Hoeflinger, J., Lin, Y., Massaioli, F., Teruel, X., Unnikrishnan,
P., and Zhang, G. (2009). The design of OpenMP tasks. IEEE Trans. Parallel Distrib. Syst.,
20:404–418.

Ayguadé, E., Duran, A., Hoeflinger, J., Massaioli, F., and Teruel, X. (2007). An experimental
evaluation of the new OpenMP tasking model. In Adve, V. S., Garzarán, M. J., and Petersen,
P., editors, Language and Compilers for Parallel Computers (LCPC), volume 5234 of Lecture
Notes in Computer Science, pages 63–77. Springer.

Baldeschwieler, J. E., Blumofe, R. D., and Brewer, E. A. (1996). ATLAS: An infrastructure for
global computing. In EW 7: Proc. 7th ACM SIGOPS European Workshop, pages 165–172.
ACM.

Blelloch, G. E. and Gibbons, P. B. (2004). Effectively sharing a cache among threads. In SPAA ’04:
Proc. 16th ACM Symposium on Parallelism in Algorithms and Architectures, pages 235–244.
ACM.

121

Blelloch, G. E., Gibbons, P. B., and Matias, Y. (1999). Provably efficient scheduling for languages
with fine-grained parallelism. Journal of the ACM, 46(2):281–321.

Blumofe, R. D., Joerg, C. F., Kuszmaul, B. C., Leiserson, C. E., Randall, K. H., and Zhou, Y. (1996).
Cilk: An efficient multithreaded runtime system. Journal of Parallel and Distributed Computing,
37(1):55–69.

Blumofe, R. D. and Leiserson, C. E. (1998). Space-efficient scheduling of multithreaded computa-
tions. SIAM Journal of Computing, 27(1):202–229.

Blumofe, R. D. and Leiserson, C. E. (1999). Scheduling multithreaded computations by work
stealing. Journal of the ACM, 46:720–748.

Blumofe, R. D. and Lisiecki, P. A. (1997). Adaptive and reliable parallel computing on networks
of workstations. In ATEC ’97: Proc. USENIX Annual Technical Conference, pages 10–10,
Berkeley, CA. USENIX Association.

Blumofe, R. D. and Papadopoulos, D. (1998). The performance of work stealing in multiprogrammed
environments. Technical Report TR-98-13, Department of Computer Science, University of
Texas at Austin, Austin, TX, USA.

Bolosky, W. J., Scott, M. L., Fitzgerald, R. P., Fowler, R. J., and Cox, A. L. (1991). NUMA policies
and their relation to memory architecture. In ASPLOS ’91: Proc. 4th Intl. Conference on
Architectural Support for Programming Languages and Operating Systems, pages 212–221.
ACM.

Brent, R. P. (1974). The parallel evaluation of general arithmetic expressions. Journal of the ACM,
21:201–206.

Broquedis, F., Aumage, O., Goglin, B., Thibault, S., Wacrenier, P.-A., and Namyst, R. (2010a).
Structuring the execution of OpenMP applications for multicore architectures. In IPDPS 2010:
Proc. 25th IEEE Intl. Parallel and Distributed Processing Symposium. IEEE.

Broquedis, F., Clet-Ortega, J., Moreaud, S., Furmento, N., Goglin, B., Mercier, G., Thibault, S., and
Namyst, R. (2010b). hwloc: A generic framework for managing hardware affinities in HPC
applications. In PDP 2010: Proc. 18th Euromicro Intl. Conference on Parallel, Distributed and
Network-Based Processing, pages 180–186, Pisa, Italia. IEEE Computer Society.

Budimlić, Z., Burke, M., Cavé, V., Knobe, K., Lowney, G., Newton, R., Palsberg, J., Peixotto,
D., Sarkar, V., Schlimbach, F., and Taşirlar, S. (2010). Concurrent collections. Scientific
Programming, 18:203–217.

Cave, V., Zhao, J., Shirako, J., and Sarkar, V. (2011). Habanero-Java: The new adventures of old
X10. In PPPJ 2011: 9th Intl. Conference on the Principles and Practice of Programming in
Java. ACM.

Chamberlain, B., Callahan, D., and Zima, H. (2007). Parallel programmability and the Chapel
language. Intl. Journal of High Performance Computing Applications, 21(3):291–312.

Charles, P., Grothoff, C., Saraswat, V., Donawa, C., Kielstra, A., Ebcioglu, K., von Praun, C., and
Sarkar, V. (2005). X10: An object-oriented approach to non-uniform cluster computing. In
OOPSLA ’05: Proc. 20th ACM SIGPLAN Conference on Object Oriented Programming Systems,
Languages, and Applications, pages 519–538. ACM.

122

Chase, D. and Lev, Y. (2005). Dynamic circular work-stealing deque. In SPAA ’05: Proc. 17th ACM
Symposium on Parallelism in Algorithms and Architectures, pages 21–28. ACM.

Chen, S., Gibbons, P. B., Kozuch, M., Liaskovitis, V., Ailamaki, A., Blelloch, G. E., Falsafi, B.,
Fix, L., Hardavellas, N., Mowry, T. C., and Wilkerson, C. (2007). Scheduling threads for
constructive cache sharing on CMPs. In SPAA ’07: Proc. 19th ACM Symposium on Parallel
Algorithms and Architectures, pages 105–115. ACM.

Dinan, J., Krishnamoorthy, S., Larkins, D. B., Nieplocha, J., and Sadayappan, P. (2008). Scioto:
A framework for global-view task parallelism. In ICPP ’08: Proc. 37th Intl. Conference on
Parallel Processing, pages 586–593. IEEE.

Dinan, J., Larkins, D. B., Sadayappan, P., Krishnamoorthy, S., and Nieplocha, J. (2009). Scalable
work stealing. In SC09: ACM/IEEE Supercomputing 2009, pages 1–11. ACM.

Duran, A., Corbalán, J., and Ayguadé, E. (2008a). An adaptive cut-off for task parallelism. In SC08:
ACM/IEEE Supercomputing 2008, pages 1–11. IEEE.

Duran, A., Corbalán, J., and Ayguadé, E. (2008b). Evaluation of OpenMP task scheduling strategies.
In Eigenmann, R. and de Supinski, B. R., editors, IWOMP ’08: Proc. Intl. Workshop on
OpenMP, volume 5004 of Lecture Notes in Computer Science, pages 100–110. Springer.

Duran, A. and Teruel, X. (2011). Barcelona OpenMP Tasks Suite (BOTS) Benchmark Project.
http://nanos.ac.upc.edu/projects/bots.

Duran, A., Teruel, X., Ferrer, R., Martorell, X., and Ayguadé, E. (2009). Barcelona OpenMP Tasks
Suite: A set of benchmarks targeting the exploitation of task parallelism in OpenMP. In ICPP

’09: Proc. 38th Intl. Conference on Parallel Processing, pages 124–131. IEEE.

Eager, D., Zahorjan, J., and Lazowska, E. (1989). Speedup versus efficiency in parallel systems.
IEEE Transactions on Computers, 38(3):408–423.

Eastlake, D. and Jones, P. (2001). US Secure Hash Algorithm 1 (SHA-1). RFC 3174, Internet
Engineering Task Force.

Faxén, K.-F. (2009). Wool - A work stealing library. SIGARCH Computer Architecture News,
36(5):93–100.

Feng, M. and Leiserson, C. E. (1997). Efficient detection of determinacy races in Cilk programs. In
SPAA ’97: Proc. 9th ACM Symposium on Parallel Algorithms and Architectures, pages 1–11.
ACM.

Friedman, D. and Wise, D. (1978). Aspects of applicative programming for parallel processing.
IEEE Transactions on Computers, C-27(4):289 –296.

Frigo, M., Halpern, P., Leiserson, C. E., and Lewin-Berlin, S. (2009). Reducers and other Cilk++
hyperobjects. In SPAA ’09: Proc. 21st ACM Symposium on Parallelism in Algorithms and
Architectures, pages 79–90. ACM.

Frigo, M., Leiserson, C. E., Prokop, H., and Ramachandran, S. (1999). Cache-oblivious algorithms.
In FOCS ’99: Proc. 40th Annual Symposium on Foundations of Computer Science, pages
285–297. IEEE.

123

Frigo, M., Leiserson, C. E., and Randall, K. H. (1998). The implementation of the Cilk-5 multi-
threaded language. In PLDI ’98: Proc. 1998 ACM SIGPLAN Conference on Programming
Language Design and Implementation, pages 212–223. ACM.

Funk, M. and Peterson, R. (2010). Of NUMA on POWER7 in IBM i. IBM Performance Management
Resource Library, http://www.ibm.com/systems/resources/pwrsysperf%5FP7NUMA.pdf.

Fürlinger, K. and Skinner, D. (2009). Performance profiling for OpenMP tasks. In IWOMP ’09:
Proc. 5th Intl. Workshop on OpenMP, volume 5568 of Lecture Notes in Computer Science,
pages 132–139, Berlin, Heidelberg. Springer.

Gautier, T., Besseron, X., and Pigeon, L. (2007). Kaapi: A thread scheduling runtime system for data
flow computations on cluster of multi-processors. In PASCO ’07: Proc. 2007 Intl. Workshop on
Parallel Symbolic Computation, pages 15–23. ACM.

Goldstine, H. H. and Goldstine, A. (1946). The electronic numerical integrator and computer
(ENIAC). Mathematics of Computation, 2(15):97–110.

Guo, Y., Barik, R., Raman, R., and Sarkar, V. (2009). Work-first and help-first scheduling policies
for async-finish task parallelism. In IPDPS ’09: Proc. 2009 IEEE Intl. Symposium on Parallel
and Distributed Processing, pages 1–12. IEEE.

Guo, Y., Zhao, J., Cave, V., and Sarkar, V. (2010). SLAW: a scalable locality-aware adaptive
work-stealing scheduler for multi-core systems. In PPoPP ’10: Proc. 15th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, pages 341–342. ACM.

Halstead, Jr., R. H. (1985). MULTILISP: A language for concurrent symbolic computation. ACM
Trans. Program. Lang. Syst., 7(4):501–538.

Harris, T. (1963). The Theory of Branching Processes. Springer.

He, Y., Leiserson, C. E., and Leiserson, W. M. (2010). The Cilkview scalability analyzer. In
SPAA ’10: Proc. 22nd ACM Symposium on Parallelism in Algorithms and Architectures, pages
145–156. ACM.

Hendler, D., Lev, Y., Moir, M., and Shavit, N. (2006). A dynamic-sized nonblocking work stealing
deque. Distributed Computing, 18:189–207.

Huang, L., Jin, H., Yi, L., and Chapman, B. M. (2010). Enabling locality-aware computations in
OpenMP. Scientific Programming, 18(3-4):169–181.

Hunold, S., Hoffmann, R., and Suter, F. (2010). Jedule: A tool for visualizing schedules of parallel
applications. In PSTI 2010: Proc. First Intl. Workshop on Parallel Software Tools and Tool
Infrastructures, in conjunction with 39th Intl. Conference on Parallel Processing, pages 169–178.
IEEE Computer Society.

IEEE (1995). Information Technology — Portable Operating Systems Interface (POSIX) — Part: Sys-
tem Application Program Interface (API) — Amendment 2: Threads Extension [C Language].
IEEE Standard 1003.1c–1995, IEEE.

Intel Corp. (2010). Intel Cilk Plus™. http://software.intel.com/en-us/articles/intel-cilk-plus/.

Intel Corp. (2011). Intel VTune™. http://www.intel.com/software/products/vtune.

124

Johnson, T., Davis, T. A., and Hadfield, S. M. (1996). A concurrent dynamic task graph. Parallel
Computing, 22:327–333.

Kambadur, P., Gupta, A., Ghoting, A., Avron, H., and Lumsdaine, A. (2009). PFunc: modern task
parallelism for modern high performance computing. In SC09: ACM/IEEE Supercomputing
2009, pages 43:1–43:11. ACM.

Kleinrock, L. (1976). Queueing Systems, Volume II: Computer Applications. Wiley Interscience.

Kukanov, A. and Voss, M. (2007). The foundations for scalable multi-core software in Intel Threading
Building Blocks. Intel Technology Journal, 11(4).

Kumar, S., Hughes, C. J., and Nguyen, A. D. (2007). Carbon: Architectural support for fine-grained
parallelism on chip multiprocessors. In Tullsen, D. M. and Calder, B., editors, ISCA ’07: 34th
Intl. Symposium on Computer Architecture, pages 162–173. ACM.

LaGrone, J., Aribuki, A., Addison, C., and Chapman, B. M. (2011). A runtime implementation of
OpenMP tasks. In Chapman, B. M., Gropp, W. D., Kumaran, K., and Müller, M. S., editors,
IWOMP’11: 7th Intl. Workshop on OpenMP, volume 6665 of Lecture Notes in Computer
Science, pages 165–178. Springer.

Lea, D. (2000). A Java fork/join framework. In JAVA ’00: Proc. ACM Conference on Java Grande,
pages 36–43. ACM.

Leijen, D., Schulte, W., and Burckhardt, S. (2009). The design of a task parallel library. SIGPLAN
Notices: OOPSLA ’09: 24th ACM SIGPLAN Conference on Object Oriented Programming
Systems, Languages, and Applications, 44(10):227–242.

Leskovec, J., Kleinberg, J., and Faloutsos, C. (2005). Graphs over time: Densification laws, shrinking
diameters and possible explanations. In Proc. 11th ACM SIGKDD Int’l Conf. Know. Disc. Data
Mining (KDD ’05), pages 177–187.

Levinthal, D. (2009). Performance analysis guide for Intel Core i7 processor and Intel Xeon 5500
processors (Intel Corp. White paper). http://software.intel.com/ sites/products/collateral/hpc/v-
tune/performance%5Fanalysis%5Fguide.pdf.

Liao, C., Quinlan, D. J., Panas, T., and de Supinski, B. R. (2010). A ROSE-based OpenMP 3.0
research compiler supporting multiple runtime libraries. In Sato, M., Hanawa, T., Müller, M. S.,
Chapman, B. M., and de Supinski, B. R., editors, IWOMP 2010: Proc. 6th Intl. Workshop on
OpenMP, volume 6132 of Lecture Notes in Computer Science, pages 15–28. Springer.

Lin, Y. and Mazurov, O. (2009). Providing observability for OpenMP 3.0 applications. In IWOMP
’09: Proc. 5th Intl. Workshop on OpenMP, volume 5568 of Lecture Notes in Computer Science,
pages 104–117. Springer.

Mandal, A., Fowler, R., and Porterfield, A. (2010). Modeling memory concurrency for multi-socket
multi-core systems. In ISPASS 2010: IEEE Intl. Symposium on Performance Analysis of Systems
and Software, pages 66 – 75. IEEE Computer Society.

Marathe, J. and Mueller, F. (2006). Hardware profile-guided automatic page placement for ccNUMA
systems. In PPoPP ’06: Proc. 11th ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, pages 90–99.

125

Michael, M. M. (2003). CAS-based lock-free algorithm for shared deques. In Kosch, H.,
Böszörményi, L., and Hellwagner, H., editors, Euro-Par 2003: Proc. 9th Euro-Par Conference
on Parallel Processing, volume 2790 of LNCS, pages 651–660. Springer.

Molka, D., Hackenberg, D., Schone, R., and Muller, M. (2009). Memory performance and cache co-
herency effects on an Intel Nehalem multiprocessor system. In PACT ’09. 18th Intl. Conference
on Parallel Architectures and Compilation Techniques, pages 261 –270.

Narlikar, G. J. (1999). Scheduling threads for low space requirement and good locality. In SPAA ’99:
Proc. 11th ACM Symposium on Parallel Algorithms and Architectures, pages 83–95. ACM.

Narlikar, G. J. and Blelloch, G. E. (1998). Pthreads for dynamic and irregular parallelism. In SC98:
1998 ACM/IEEE Conference on Supercomputing, pages 1–16. IEEE.

Nikolopoulos, D. S., Artiaga, E., Ayguadé, E., and Labarta, J. (2001). Exploiting memory affinity in
OpenMP through schedule reuse. SIGARCH Computer Architecture News, 29(5):49–55.

Olivier, S., Huan, J., Liu, J., Prins, J., Dinan, J., Sadayappan, P., and Tseng, C.-W. (2007). UTS: An
unbalanced tree search benchmark. In Almási, G., Cascaval, C., and Wu, P., editors, LCPC
2006: Proc. 19th Intl. Workshop on Languages and Compilers for Parallel Computing, volume
4382 of LNCS, pages 235–250. Springer.

Olivier, S. and Prins, J. (2008). Scalable dynamic load balancing using UPC. In ICPP ’08: Proc.
37th Intl. Conference on Parallel Processing, pages 123–131. IEEE.

Olivier, S. L., Porterfield, A. K., Wheeler, K. B., and Prins, J. F. (2011). Scheduling task parallelism on
multi-socket multicore systems. In ROSS ’11: Proc. Intl. Workshop on Runtime and Operating
Systems for Supercomputers, pages 49–56. ACM.

Olivier, S. L. and Prins, J. F. (2009). Evaluating OpenMP 3.0 run time systems on unbalanced task
graphs. In Muller, M. S., de Supinski, B. R., and Chapman, B. M., editors, IWOMP ’09: Proc.
5th Intl. Workshop on OpenMP, volume 5568 of Lecture Notes in Computer Science, pages
63–78, Berlin, Heidelberg. Springer.

Olivier, S. L. and Prins, J. F. (2010). Comparison of OpenMP 3.0 and other task parallel frameworks
on unbalanced task graphs. Intl. Journal of Parallel Programming, 38(5-6):341–360.

Olukotun, K., Nayfeh, B. A., Hammond, L., Wilson, K., and Chang, K. (1996). The case for a
single-chip multiprocessor. In ASPLOS-VII: Proc. 7th Intl. Conference on Architectural Support
for Programming Languages and Operating Systems, pages 2–11. ACM.

OpenMP Architecture Review Board (2008). OpenMP API, Version 3.0.

Porterfield, A., Fowler, R., Horst, P., OBrien, D., Olivier, S., Wheeler, K., and Viviano, B. (2011).
Scheduling OpenMP for Qthreads with MAESTRO. Technical Report TR-11-2, Renaissance
Computing Institute, Chapel Hill, NC.

Prins, J., Huan, J., Pugh, W., Tseng, C.-W., and Sadayappan, P. (2003). UPC implementation of an
unbalanced tree search benchmark. Technical Report TR03-034, University of North Carolina
at Chapel Hill.

Reinders, J. (2007). Intel Threading Building Blocks - Outfitting C++ for Multi-core Processor
Parallelism. O’Reilly, Sebastopol, CA.

126

Sanchez, D., Yoo, R. M., and Kozyrakis, C. (2010). Flexible architectural support for fine-grain
scheduling. In ASPLOS ’10: Proc. 15th Intl. Conference on Architectural Support for Program-
ming Languages and Operating Systems, pages 311–322. ACM.

Smith, B. J. (1981). Architecture and applications of the HEP multiprocessor computer system. In
4th Symposium on Real-Time Signal Processing, pages 241–248. SPIE.

Snape, J., van den Berg, J., Guy, S. J., and Manocha, D. (2011). The Hybrid Reciprocal Velocity
Obstacle. IEEE Transactions on Robotics, 27(4):696 –706.

Su, E., Tian, X., Girkar, M., Haab, G., Shah, S., and Petersen, P. (2002). Compiler support of the
workqueuing execution model for Intel SMP architectures. In EWOMP ’02: Proc. 4th European
Workshop on OpenMP.

Sundell, H. and Tsigas, P. (2005). Lock-free and practical doubly linked list-based deques using
single-word compare-and-swap. In Higashino, T., editor, OPODIS 2004: 8th Intl. Conference
on Principles of Distributed Systems, volume 3544 of LNCS, pages 240–255. Springer.

Tallent, N. R. and Mellor-Crummey, J. M. (2009). Effective performance measurement and analysis
of multithreaded applications. In PPoPP ’09: Proc. 14th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, pages 229–240. ACM.

Tallent, N. R., Mellor-Crummey, J. M., and Porterfield, A. (2010). Analyzing lock contention in
multithreaded applications. In PPoPP ’10: Proc. 15th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, pages 269–280. ACM.

Thibault, S., Namyst, R., and Wacrenier, P.-A. (2007). Building portable thread schedulers for
hierarchical multiprocessors: The BubbleSched framework. In EuroPar 2007: Proc. 13th Intl.
Euro-Par Conference on Parallel Processing, Rennes,France. ACM.

Thottethodi, M., Chatterjee, S., and Lebeck, A. R. (1998). Tuning Strassen’s matrix multiplication
for memory efficiency. In SC98: Proc. 1998 ACM/IEEE Conference on Supercomputing, pages
1–14. IEEE.

van Nieuwpoort, R., Kielmann, T., and Bal, H. E. (2000). Satin: Efficient parallel divide-and-conquer
in Java. In Euro-Par ’00: Proc. 6th Intl. Euro-Par Conference on Parallel Processing, pages
690–699, London, UK. Springer.

Wheeler, K. B., Murphy, R. C., and Thain, D. (2008). Qthreads: An API for programming with
millions of lightweight threads. In IPDPS 2008: Proc. 22nd IEEE Intl. Symposium on Parallel
and Distributed Processing, pages 1–8. IEEE.

Wheeler, K. B. and Thain, D. (2010). Visualizing massively multithreaded applications with
ThreadScope. Concurrency and Computation: Practice and Experience, 22:45–67.

Yan, Y., Zhao, J., Guo, Y., and Sarkar, V. (2010). Hierarchical place trees: A portable abstraction
for task parallelism and data movement. In Gao, G. R., Pollock, L. L., Cavazos, J., and Li, X.,
editors, LCPC 2009: 22nd Intl. Workshop on Languages and Compilers for Parallel Computing,
volume 5898 of Lecture Notes in Computer Science, pages 172–187. Springer.

127

