999 research outputs found

    Analysis of Intelligent Classifiers and Enhancing the Detection Accuracy for Intrusion Detection System

    Get PDF
    In this paper we discuss and analyze some of the intelligent classifiers which allows for automatic detection and classification of networks attacks for any intrusion detection system. We will proceed initially with their analysis using the WEKA software to work with the classifiers on a well-known IDS (Intrusion Detection Systems) dataset like NSL-KDD dataset. The NSL-KDD dataset of network attacks was created in a military network by MIT Lincoln Labs. Then we will discuss and experiment some of the hybrid AI (Artificial Intelligence) classifiers that can be used for IDS, and finally we developed a Java software with three most efficient classifiers and compared it with other options. The outputs would show the detection accuracy and efficiency of the single and combined classifiers used

    Statistical analysis driven optimized deep learning system for intrusion detection

    Get PDF
    Attackers have developed ever more sophisticated and intelligent ways to hack information and communication technology systems. The extent of damage an individual hacker can carry out upon infiltrating a system is well understood. A potentially catastrophic scenario can be envisaged where a nation-state intercepting encrypted financial data gets hacked. Thus, intelligent cybersecurity systems have become inevitably important for improved protection against malicious threats. However, as malware attacks continue to dramatically increase in volume and complexity, it has become ever more challenging for traditional analytic tools to detect and mitigate threat. Furthermore, a huge amount of data produced by large networks has made the recognition task even more complicated and challenging. In this work, we propose an innovative statistical analysis driven optimized deep learning system for intrusion detection. The proposed intrusion detection system (IDS) extracts optimized and more correlated features using big data visualization and statistical analysis methods (human-in-the-loop), followed by a deep autoencoder for potential threat detection. Specifically, a pre-processing module eliminates the outliers and converts categorical variables into one-hot-encoded vectors. The feature extraction module discard features with null values and selects the most significant features as input to the deep autoencoder model (trained in a greedy-wise manner). The NSL-KDD dataset from the Canadian Institute for Cybersecurity is used as a benchmark to evaluate the feasibility and effectiveness of the proposed architecture. Simulation results demonstrate the potential of our proposed system and its outperformance as compared to existing state-of-the-art methods and recently published novel approaches. Ongoing work includes further optimization and real-time evaluation of our proposed IDS.Comment: To appear in the 9th International Conference on Brain Inspired Cognitive Systems (BICS 2018

    A novel random neural network based approach for intrusion detection systems

    Get PDF

    Insertion Detection System Employing Neural Network MLP and Detection Trees Using Different Techniques

    Get PDF
    by addressing intruder attacks, network security experts work to maintain services available at all times. The Intrusion Detection System (IDS) is one of the available mechanisms for detecting and classifying any abnormal behavior. As a result, the IDS must always be up to date with the most recent intruder attack signatures to maintain the confidentiality, integrity, and availability of the services. This paper shows how the NSL-KDD dataset may be used to test and evaluate various Machine Learning techniques. It focuses mostly on the NLS-KDD pre-processing step to create an acceptable and balanced experimental data set to improve accuracy and minimize false positives. For this study, the approaches J48 and MLP were employed. The Decision Trees classifier has been demonstrated to have the highest accuracy rate for detecting and categorizing all NSL-KDD dataset attacks

    A Deep Learning Approach to Network Intrusion Detection

    Get PDF
    Software Defined Networking (SDN) has recently emerged to become one of the promising solutions for the future Internet. With the logical centralization of controllers and a global network overview, SDN brings us a chance to strengthen our network security. However, SDN also brings us a dangerous increase in potential threats. In this paper, we apply a deep learning approach for flow-based anomaly detection in an SDN environment. We build a Deep Neural Network (DNN) model for an intrusion detection system and train the model with the NSL-KDD Dataset. In this work, we just use six basic features (that can be easily obtained in an SDN environment) taken from the forty-one features of NSL-KDD Dataset. Through experiments, we confirm that the deep learning approach shows strong potential to be used for flow-based anomaly detection in SDN environments

    Improving the Anomaly Detection by Combining PSO Search Methods and J48 Algorithm

    Get PDF
    The feature selection techniques are used to find the most important and relevant features in a dataset. Therefore, in this study feature selection technique was used to improve the performance of Anomaly Detection. Many feature selection techniques have been developed and implemented on the NSL-KDD dataset. However, with the rapid growth of traffic on a network where more applications, devices, and protocols participate, the traffic data is complex and heterogeneous contribute to security issues. This makes the NSL-KDD dataset no longer reliable for it. The detection model must also be able to recognize the type of novel attack on complex network datasets. So, a robust analysis technique for a more complex and larger dataset is required, to overcome the increase of security issues in a big data network. This study proposes particle swarm optimization (PSO) Search methods as a feature selection method. As contribute to feature analysis knowledge, In the experiment a combination of particle swarm optimization (PSO) Search methods with other search methods are examined. To overcome the limitation NSL-KDD dataset, in the experiments the CICIDS2017 dataset used. To validate the selected features from the proposed technique J48 classification algorithm used in this study. The detection performance of the combination PSO Search method with J48 examined and compare with other feature selection and previous study. The proposed technique successfully finds the important features of the dataset, which improve detection performance with 99.89% accuracy. Compared with the previous study the proposed technique has better accuracy, TPR, and FPR
    • …
    corecore